1 /*: 2 * Hibernate support specific for ARM64 3 * 4 * Derived from work on ARM hibernation support by: 5 * 6 * Ubuntu project, hibernation support for mach-dove 7 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu) 8 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.) 9 * https://lkml.org/lkml/2010/6/18/4 10 * https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html 11 * https://patchwork.kernel.org/patch/96442/ 12 * 13 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 14 * 15 * License terms: GNU General Public License (GPL) version 2 16 */ 17 #define pr_fmt(x) "hibernate: " x 18 #include <linux/cpu.h> 19 #include <linux/kvm_host.h> 20 #include <linux/mm.h> 21 #include <linux/pm.h> 22 #include <linux/sched.h> 23 #include <linux/suspend.h> 24 #include <linux/utsname.h> 25 #include <linux/version.h> 26 27 #include <asm/barrier.h> 28 #include <asm/cacheflush.h> 29 #include <asm/cputype.h> 30 #include <asm/daifflags.h> 31 #include <asm/irqflags.h> 32 #include <asm/kexec.h> 33 #include <asm/memory.h> 34 #include <asm/mmu_context.h> 35 #include <asm/pgalloc.h> 36 #include <asm/pgtable.h> 37 #include <asm/pgtable-hwdef.h> 38 #include <asm/sections.h> 39 #include <asm/smp.h> 40 #include <asm/smp_plat.h> 41 #include <asm/suspend.h> 42 #include <asm/sysreg.h> 43 #include <asm/virt.h> 44 45 /* 46 * Hibernate core relies on this value being 0 on resume, and marks it 47 * __nosavedata assuming it will keep the resume kernel's '0' value. This 48 * doesn't happen with either KASLR. 49 * 50 * defined as "__visible int in_suspend __nosavedata" in 51 * kernel/power/hibernate.c 52 */ 53 extern int in_suspend; 54 55 /* Do we need to reset el2? */ 56 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) 57 58 /* temporary el2 vectors in the __hibernate_exit_text section. */ 59 extern char hibernate_el2_vectors[]; 60 61 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */ 62 extern char __hyp_stub_vectors[]; 63 64 /* 65 * The logical cpu number we should resume on, initialised to a non-cpu 66 * number. 67 */ 68 static int sleep_cpu = -EINVAL; 69 70 /* 71 * Values that may not change over hibernate/resume. We put the build number 72 * and date in here so that we guarantee not to resume with a different 73 * kernel. 74 */ 75 struct arch_hibernate_hdr_invariants { 76 char uts_version[__NEW_UTS_LEN + 1]; 77 }; 78 79 /* These values need to be know across a hibernate/restore. */ 80 static struct arch_hibernate_hdr { 81 struct arch_hibernate_hdr_invariants invariants; 82 83 /* These are needed to find the relocated kernel if built with kaslr */ 84 phys_addr_t ttbr1_el1; 85 void (*reenter_kernel)(void); 86 87 /* 88 * We need to know where the __hyp_stub_vectors are after restore to 89 * re-configure el2. 90 */ 91 phys_addr_t __hyp_stub_vectors; 92 93 u64 sleep_cpu_mpidr; 94 } resume_hdr; 95 96 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i) 97 { 98 memset(i, 0, sizeof(*i)); 99 memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version)); 100 } 101 102 int pfn_is_nosave(unsigned long pfn) 103 { 104 unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin); 105 unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1); 106 107 return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) || 108 crash_is_nosave(pfn); 109 } 110 111 void notrace save_processor_state(void) 112 { 113 WARN_ON(num_online_cpus() != 1); 114 } 115 116 void notrace restore_processor_state(void) 117 { 118 } 119 120 int arch_hibernation_header_save(void *addr, unsigned int max_size) 121 { 122 struct arch_hibernate_hdr *hdr = addr; 123 124 if (max_size < sizeof(*hdr)) 125 return -EOVERFLOW; 126 127 arch_hdr_invariants(&hdr->invariants); 128 hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir); 129 hdr->reenter_kernel = _cpu_resume; 130 131 /* We can't use __hyp_get_vectors() because kvm may still be loaded */ 132 if (el2_reset_needed()) 133 hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors); 134 else 135 hdr->__hyp_stub_vectors = 0; 136 137 /* Save the mpidr of the cpu we called cpu_suspend() on... */ 138 if (sleep_cpu < 0) { 139 pr_err("Failing to hibernate on an unknown CPU.\n"); 140 return -ENODEV; 141 } 142 hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu); 143 pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 144 hdr->sleep_cpu_mpidr); 145 146 return 0; 147 } 148 EXPORT_SYMBOL(arch_hibernation_header_save); 149 150 int arch_hibernation_header_restore(void *addr) 151 { 152 int ret; 153 struct arch_hibernate_hdr_invariants invariants; 154 struct arch_hibernate_hdr *hdr = addr; 155 156 arch_hdr_invariants(&invariants); 157 if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) { 158 pr_crit("Hibernate image not generated by this kernel!\n"); 159 return -EINVAL; 160 } 161 162 sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr); 163 pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 164 hdr->sleep_cpu_mpidr); 165 if (sleep_cpu < 0) { 166 pr_crit("Hibernated on a CPU not known to this kernel!\n"); 167 sleep_cpu = -EINVAL; 168 return -EINVAL; 169 } 170 if (!cpu_online(sleep_cpu)) { 171 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 172 ret = cpu_up(sleep_cpu); 173 if (ret) { 174 pr_err("Failed to bring hibernate-CPU up!\n"); 175 sleep_cpu = -EINVAL; 176 return ret; 177 } 178 } 179 180 resume_hdr = *hdr; 181 182 return 0; 183 } 184 EXPORT_SYMBOL(arch_hibernation_header_restore); 185 186 /* 187 * Copies length bytes, starting at src_start into an new page, 188 * perform cache maintentance, then maps it at the specified address low 189 * address as executable. 190 * 191 * This is used by hibernate to copy the code it needs to execute when 192 * overwriting the kernel text. This function generates a new set of page 193 * tables, which it loads into ttbr0. 194 * 195 * Length is provided as we probably only want 4K of data, even on a 64K 196 * page system. 197 */ 198 static int create_safe_exec_page(void *src_start, size_t length, 199 unsigned long dst_addr, 200 phys_addr_t *phys_dst_addr, 201 void *(*allocator)(gfp_t mask), 202 gfp_t mask) 203 { 204 int rc = 0; 205 pgd_t *pgdp; 206 pud_t *pudp; 207 pmd_t *pmdp; 208 pte_t *ptep; 209 unsigned long dst = (unsigned long)allocator(mask); 210 211 if (!dst) { 212 rc = -ENOMEM; 213 goto out; 214 } 215 216 memcpy((void *)dst, src_start, length); 217 __flush_icache_range(dst, dst + length); 218 219 pgdp = pgd_offset_raw(allocator(mask), dst_addr); 220 if (pgd_none(READ_ONCE(*pgdp))) { 221 pudp = allocator(mask); 222 if (!pudp) { 223 rc = -ENOMEM; 224 goto out; 225 } 226 pgd_populate(&init_mm, pgdp, pudp); 227 } 228 229 pudp = pud_offset(pgdp, dst_addr); 230 if (pud_none(READ_ONCE(*pudp))) { 231 pmdp = allocator(mask); 232 if (!pmdp) { 233 rc = -ENOMEM; 234 goto out; 235 } 236 pud_populate(&init_mm, pudp, pmdp); 237 } 238 239 pmdp = pmd_offset(pudp, dst_addr); 240 if (pmd_none(READ_ONCE(*pmdp))) { 241 ptep = allocator(mask); 242 if (!ptep) { 243 rc = -ENOMEM; 244 goto out; 245 } 246 pmd_populate_kernel(&init_mm, pmdp, ptep); 247 } 248 249 ptep = pte_offset_kernel(pmdp, dst_addr); 250 set_pte(ptep, pfn_pte(virt_to_pfn(dst), PAGE_KERNEL_EXEC)); 251 252 /* 253 * Load our new page tables. A strict BBM approach requires that we 254 * ensure that TLBs are free of any entries that may overlap with the 255 * global mappings we are about to install. 256 * 257 * For a real hibernate/resume cycle TTBR0 currently points to a zero 258 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI 259 * runtime services), while for a userspace-driven test_resume cycle it 260 * points to userspace page tables (and we must point it at a zero page 261 * ourselves). Elsewhere we only (un)install the idmap with preemption 262 * disabled, so T0SZ should be as required regardless. 263 */ 264 cpu_set_reserved_ttbr0(); 265 local_flush_tlb_all(); 266 write_sysreg(phys_to_ttbr(virt_to_phys(pgdp)), ttbr0_el1); 267 isb(); 268 269 *phys_dst_addr = virt_to_phys((void *)dst); 270 271 out: 272 return rc; 273 } 274 275 #define dcache_clean_range(start, end) __flush_dcache_area(start, (end - start)) 276 277 int swsusp_arch_suspend(void) 278 { 279 int ret = 0; 280 unsigned long flags; 281 struct sleep_stack_data state; 282 283 if (cpus_are_stuck_in_kernel()) { 284 pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n"); 285 return -EBUSY; 286 } 287 288 flags = local_daif_save(); 289 290 if (__cpu_suspend_enter(&state)) { 291 /* make the crash dump kernel image visible/saveable */ 292 crash_prepare_suspend(); 293 294 sleep_cpu = smp_processor_id(); 295 ret = swsusp_save(); 296 } else { 297 /* Clean kernel core startup/idle code to PoC*/ 298 dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end); 299 dcache_clean_range(__idmap_text_start, __idmap_text_end); 300 301 /* Clean kvm setup code to PoC? */ 302 if (el2_reset_needed()) { 303 dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end); 304 dcache_clean_range(__hyp_text_start, __hyp_text_end); 305 } 306 307 /* make the crash dump kernel image protected again */ 308 crash_post_resume(); 309 310 /* 311 * Tell the hibernation core that we've just restored 312 * the memory 313 */ 314 in_suspend = 0; 315 316 sleep_cpu = -EINVAL; 317 __cpu_suspend_exit(); 318 319 /* 320 * Just in case the boot kernel did turn the SSBD 321 * mitigation off behind our back, let's set the state 322 * to what we expect it to be. 323 */ 324 switch (arm64_get_ssbd_state()) { 325 case ARM64_SSBD_FORCE_ENABLE: 326 case ARM64_SSBD_KERNEL: 327 arm64_set_ssbd_mitigation(true); 328 } 329 } 330 331 local_daif_restore(flags); 332 333 return ret; 334 } 335 336 static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr) 337 { 338 pte_t pte = READ_ONCE(*src_ptep); 339 340 if (pte_valid(pte)) { 341 /* 342 * Resume will overwrite areas that may be marked 343 * read only (code, rodata). Clear the RDONLY bit from 344 * the temporary mappings we use during restore. 345 */ 346 set_pte(dst_ptep, pte_mkwrite(pte)); 347 } else if (debug_pagealloc_enabled() && !pte_none(pte)) { 348 /* 349 * debug_pagealloc will removed the PTE_VALID bit if 350 * the page isn't in use by the resume kernel. It may have 351 * been in use by the original kernel, in which case we need 352 * to put it back in our copy to do the restore. 353 * 354 * Before marking this entry valid, check the pfn should 355 * be mapped. 356 */ 357 BUG_ON(!pfn_valid(pte_pfn(pte))); 358 359 set_pte(dst_ptep, pte_mkpresent(pte_mkwrite(pte))); 360 } 361 } 362 363 static int copy_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start, 364 unsigned long end) 365 { 366 pte_t *src_ptep; 367 pte_t *dst_ptep; 368 unsigned long addr = start; 369 370 dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC); 371 if (!dst_ptep) 372 return -ENOMEM; 373 pmd_populate_kernel(&init_mm, dst_pmdp, dst_ptep); 374 dst_ptep = pte_offset_kernel(dst_pmdp, start); 375 376 src_ptep = pte_offset_kernel(src_pmdp, start); 377 do { 378 _copy_pte(dst_ptep, src_ptep, addr); 379 } while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end); 380 381 return 0; 382 } 383 384 static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start, 385 unsigned long end) 386 { 387 pmd_t *src_pmdp; 388 pmd_t *dst_pmdp; 389 unsigned long next; 390 unsigned long addr = start; 391 392 if (pud_none(READ_ONCE(*dst_pudp))) { 393 dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC); 394 if (!dst_pmdp) 395 return -ENOMEM; 396 pud_populate(&init_mm, dst_pudp, dst_pmdp); 397 } 398 dst_pmdp = pmd_offset(dst_pudp, start); 399 400 src_pmdp = pmd_offset(src_pudp, start); 401 do { 402 pmd_t pmd = READ_ONCE(*src_pmdp); 403 404 next = pmd_addr_end(addr, end); 405 if (pmd_none(pmd)) 406 continue; 407 if (pmd_table(pmd)) { 408 if (copy_pte(dst_pmdp, src_pmdp, addr, next)) 409 return -ENOMEM; 410 } else { 411 set_pmd(dst_pmdp, 412 __pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY)); 413 } 414 } while (dst_pmdp++, src_pmdp++, addr = next, addr != end); 415 416 return 0; 417 } 418 419 static int copy_pud(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start, 420 unsigned long end) 421 { 422 pud_t *dst_pudp; 423 pud_t *src_pudp; 424 unsigned long next; 425 unsigned long addr = start; 426 427 if (pgd_none(READ_ONCE(*dst_pgdp))) { 428 dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC); 429 if (!dst_pudp) 430 return -ENOMEM; 431 pgd_populate(&init_mm, dst_pgdp, dst_pudp); 432 } 433 dst_pudp = pud_offset(dst_pgdp, start); 434 435 src_pudp = pud_offset(src_pgdp, start); 436 do { 437 pud_t pud = READ_ONCE(*src_pudp); 438 439 next = pud_addr_end(addr, end); 440 if (pud_none(pud)) 441 continue; 442 if (pud_table(pud)) { 443 if (copy_pmd(dst_pudp, src_pudp, addr, next)) 444 return -ENOMEM; 445 } else { 446 set_pud(dst_pudp, 447 __pud(pud_val(pud) & ~PMD_SECT_RDONLY)); 448 } 449 } while (dst_pudp++, src_pudp++, addr = next, addr != end); 450 451 return 0; 452 } 453 454 static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start, 455 unsigned long end) 456 { 457 unsigned long next; 458 unsigned long addr = start; 459 pgd_t *src_pgdp = pgd_offset_k(start); 460 461 dst_pgdp = pgd_offset_raw(dst_pgdp, start); 462 do { 463 next = pgd_addr_end(addr, end); 464 if (pgd_none(READ_ONCE(*src_pgdp))) 465 continue; 466 if (copy_pud(dst_pgdp, src_pgdp, addr, next)) 467 return -ENOMEM; 468 } while (dst_pgdp++, src_pgdp++, addr = next, addr != end); 469 470 return 0; 471 } 472 473 /* 474 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit(). 475 * 476 * Memory allocated by get_safe_page() will be dealt with by the hibernate code, 477 * we don't need to free it here. 478 */ 479 int swsusp_arch_resume(void) 480 { 481 int rc = 0; 482 void *zero_page; 483 size_t exit_size; 484 pgd_t *tmp_pg_dir; 485 phys_addr_t phys_hibernate_exit; 486 void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *, 487 void *, phys_addr_t, phys_addr_t); 488 489 /* 490 * Restoring the memory image will overwrite the ttbr1 page tables. 491 * Create a second copy of just the linear map, and use this when 492 * restoring. 493 */ 494 tmp_pg_dir = (pgd_t *)get_safe_page(GFP_ATOMIC); 495 if (!tmp_pg_dir) { 496 pr_err("Failed to allocate memory for temporary page tables.\n"); 497 rc = -ENOMEM; 498 goto out; 499 } 500 rc = copy_page_tables(tmp_pg_dir, PAGE_OFFSET, 0); 501 if (rc) 502 goto out; 503 504 /* 505 * We need a zero page that is zero before & after resume in order to 506 * to break before make on the ttbr1 page tables. 507 */ 508 zero_page = (void *)get_safe_page(GFP_ATOMIC); 509 if (!zero_page) { 510 pr_err("Failed to allocate zero page.\n"); 511 rc = -ENOMEM; 512 goto out; 513 } 514 515 /* 516 * Locate the exit code in the bottom-but-one page, so that *NULL 517 * still has disastrous affects. 518 */ 519 hibernate_exit = (void *)PAGE_SIZE; 520 exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start; 521 /* 522 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate 523 * a new set of ttbr0 page tables and load them. 524 */ 525 rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size, 526 (unsigned long)hibernate_exit, 527 &phys_hibernate_exit, 528 (void *)get_safe_page, GFP_ATOMIC); 529 if (rc) { 530 pr_err("Failed to create safe executable page for hibernate_exit code.\n"); 531 goto out; 532 } 533 534 /* 535 * The hibernate exit text contains a set of el2 vectors, that will 536 * be executed at el2 with the mmu off in order to reload hyp-stub. 537 */ 538 __flush_dcache_area(hibernate_exit, exit_size); 539 540 /* 541 * KASLR will cause the el2 vectors to be in a different location in 542 * the resumed kernel. Load hibernate's temporary copy into el2. 543 * 544 * We can skip this step if we booted at EL1, or are running with VHE. 545 */ 546 if (el2_reset_needed()) { 547 phys_addr_t el2_vectors = phys_hibernate_exit; /* base */ 548 el2_vectors += hibernate_el2_vectors - 549 __hibernate_exit_text_start; /* offset */ 550 551 __hyp_set_vectors(el2_vectors); 552 } 553 554 hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1, 555 resume_hdr.reenter_kernel, restore_pblist, 556 resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page)); 557 558 out: 559 return rc; 560 } 561 562 int hibernate_resume_nonboot_cpu_disable(void) 563 { 564 if (sleep_cpu < 0) { 565 pr_err("Failing to resume from hibernate on an unknown CPU.\n"); 566 return -ENODEV; 567 } 568 569 return freeze_secondary_cpus(sleep_cpu); 570 } 571