xref: /openbmc/linux/arch/arm64/kernel/hibernate.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*:
3  * Hibernate support specific for ARM64
4  *
5  * Derived from work on ARM hibernation support by:
6  *
7  * Ubuntu project, hibernation support for mach-dove
8  * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
9  * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
10  *  https://lkml.org/lkml/2010/6/18/4
11  *  https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
12  *  https://patchwork.kernel.org/patch/96442/
13  *
14  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
15  */
16 #define pr_fmt(x) "hibernate: " x
17 #include <linux/cpu.h>
18 #include <linux/kvm_host.h>
19 #include <linux/pm.h>
20 #include <linux/sched.h>
21 #include <linux/suspend.h>
22 #include <linux/utsname.h>
23 
24 #include <asm/barrier.h>
25 #include <asm/cacheflush.h>
26 #include <asm/cputype.h>
27 #include <asm/daifflags.h>
28 #include <asm/irqflags.h>
29 #include <asm/kexec.h>
30 #include <asm/memory.h>
31 #include <asm/mmu_context.h>
32 #include <asm/mte.h>
33 #include <asm/sections.h>
34 #include <asm/smp.h>
35 #include <asm/smp_plat.h>
36 #include <asm/suspend.h>
37 #include <asm/sysreg.h>
38 #include <asm/trans_pgd.h>
39 #include <asm/virt.h>
40 
41 /*
42  * Hibernate core relies on this value being 0 on resume, and marks it
43  * __nosavedata assuming it will keep the resume kernel's '0' value. This
44  * doesn't happen with either KASLR.
45  *
46  * defined as "__visible int in_suspend __nosavedata" in
47  * kernel/power/hibernate.c
48  */
49 extern int in_suspend;
50 
51 /* Do we need to reset el2? */
52 #define el2_reset_needed() (is_hyp_nvhe())
53 
54 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */
55 extern char __hyp_stub_vectors[];
56 
57 /*
58  * The logical cpu number we should resume on, initialised to a non-cpu
59  * number.
60  */
61 static int sleep_cpu = -EINVAL;
62 
63 /*
64  * Values that may not change over hibernate/resume. We put the build number
65  * and date in here so that we guarantee not to resume with a different
66  * kernel.
67  */
68 struct arch_hibernate_hdr_invariants {
69 	char		uts_version[__NEW_UTS_LEN + 1];
70 };
71 
72 /* These values need to be know across a hibernate/restore. */
73 static struct arch_hibernate_hdr {
74 	struct arch_hibernate_hdr_invariants invariants;
75 
76 	/* These are needed to find the relocated kernel if built with kaslr */
77 	phys_addr_t	ttbr1_el1;
78 	void		(*reenter_kernel)(void);
79 
80 	/*
81 	 * We need to know where the __hyp_stub_vectors are after restore to
82 	 * re-configure el2.
83 	 */
84 	phys_addr_t	__hyp_stub_vectors;
85 
86 	u64		sleep_cpu_mpidr;
87 } resume_hdr;
88 
89 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
90 {
91 	memset(i, 0, sizeof(*i));
92 	memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
93 }
94 
95 int pfn_is_nosave(unsigned long pfn)
96 {
97 	unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
98 	unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
99 
100 	return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
101 		crash_is_nosave(pfn);
102 }
103 
104 void notrace save_processor_state(void)
105 {
106 	WARN_ON(num_online_cpus() != 1);
107 }
108 
109 void notrace restore_processor_state(void)
110 {
111 }
112 
113 int arch_hibernation_header_save(void *addr, unsigned int max_size)
114 {
115 	struct arch_hibernate_hdr *hdr = addr;
116 
117 	if (max_size < sizeof(*hdr))
118 		return -EOVERFLOW;
119 
120 	arch_hdr_invariants(&hdr->invariants);
121 	hdr->ttbr1_el1		= __pa_symbol(swapper_pg_dir);
122 	hdr->reenter_kernel	= _cpu_resume;
123 
124 	/* We can't use __hyp_get_vectors() because kvm may still be loaded */
125 	if (el2_reset_needed())
126 		hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
127 	else
128 		hdr->__hyp_stub_vectors = 0;
129 
130 	/* Save the mpidr of the cpu we called cpu_suspend() on... */
131 	if (sleep_cpu < 0) {
132 		pr_err("Failing to hibernate on an unknown CPU.\n");
133 		return -ENODEV;
134 	}
135 	hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
136 	pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
137 		hdr->sleep_cpu_mpidr);
138 
139 	return 0;
140 }
141 EXPORT_SYMBOL(arch_hibernation_header_save);
142 
143 int arch_hibernation_header_restore(void *addr)
144 {
145 	int ret;
146 	struct arch_hibernate_hdr_invariants invariants;
147 	struct arch_hibernate_hdr *hdr = addr;
148 
149 	arch_hdr_invariants(&invariants);
150 	if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
151 		pr_crit("Hibernate image not generated by this kernel!\n");
152 		return -EINVAL;
153 	}
154 
155 	sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
156 	pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
157 		hdr->sleep_cpu_mpidr);
158 	if (sleep_cpu < 0) {
159 		pr_crit("Hibernated on a CPU not known to this kernel!\n");
160 		sleep_cpu = -EINVAL;
161 		return -EINVAL;
162 	}
163 
164 	ret = bringup_hibernate_cpu(sleep_cpu);
165 	if (ret) {
166 		sleep_cpu = -EINVAL;
167 		return ret;
168 	}
169 
170 	resume_hdr = *hdr;
171 
172 	return 0;
173 }
174 EXPORT_SYMBOL(arch_hibernation_header_restore);
175 
176 static void *hibernate_page_alloc(void *arg)
177 {
178 	return (void *)get_safe_page((__force gfp_t)(unsigned long)arg);
179 }
180 
181 /*
182  * Copies length bytes, starting at src_start into an new page,
183  * perform cache maintenance, then maps it at the specified address low
184  * address as executable.
185  *
186  * This is used by hibernate to copy the code it needs to execute when
187  * overwriting the kernel text. This function generates a new set of page
188  * tables, which it loads into ttbr0.
189  *
190  * Length is provided as we probably only want 4K of data, even on a 64K
191  * page system.
192  */
193 static int create_safe_exec_page(void *src_start, size_t length,
194 				 phys_addr_t *phys_dst_addr)
195 {
196 	struct trans_pgd_info trans_info = {
197 		.trans_alloc_page	= hibernate_page_alloc,
198 		.trans_alloc_arg	= (__force void *)GFP_ATOMIC,
199 	};
200 
201 	void *page = (void *)get_safe_page(GFP_ATOMIC);
202 	phys_addr_t trans_ttbr0;
203 	unsigned long t0sz;
204 	int rc;
205 
206 	if (!page)
207 		return -ENOMEM;
208 
209 	memcpy(page, src_start, length);
210 	caches_clean_inval_pou((unsigned long)page, (unsigned long)page + length);
211 	rc = trans_pgd_idmap_page(&trans_info, &trans_ttbr0, &t0sz, page);
212 	if (rc)
213 		return rc;
214 
215 	cpu_install_ttbr0(trans_ttbr0, t0sz);
216 	*phys_dst_addr = virt_to_phys(page);
217 
218 	return 0;
219 }
220 
221 #ifdef CONFIG_ARM64_MTE
222 
223 static DEFINE_XARRAY(mte_pages);
224 
225 static int save_tags(struct page *page, unsigned long pfn)
226 {
227 	void *tag_storage, *ret;
228 
229 	tag_storage = mte_allocate_tag_storage();
230 	if (!tag_storage)
231 		return -ENOMEM;
232 
233 	mte_save_page_tags(page_address(page), tag_storage);
234 
235 	ret = xa_store(&mte_pages, pfn, tag_storage, GFP_KERNEL);
236 	if (WARN(xa_is_err(ret), "Failed to store MTE tags")) {
237 		mte_free_tag_storage(tag_storage);
238 		return xa_err(ret);
239 	} else if (WARN(ret, "swsusp: %s: Duplicate entry", __func__)) {
240 		mte_free_tag_storage(ret);
241 	}
242 
243 	return 0;
244 }
245 
246 static void swsusp_mte_free_storage(void)
247 {
248 	XA_STATE(xa_state, &mte_pages, 0);
249 	void *tags;
250 
251 	xa_lock(&mte_pages);
252 	xas_for_each(&xa_state, tags, ULONG_MAX) {
253 		mte_free_tag_storage(tags);
254 	}
255 	xa_unlock(&mte_pages);
256 
257 	xa_destroy(&mte_pages);
258 }
259 
260 static int swsusp_mte_save_tags(void)
261 {
262 	struct zone *zone;
263 	unsigned long pfn, max_zone_pfn;
264 	int ret = 0;
265 	int n = 0;
266 
267 	if (!system_supports_mte())
268 		return 0;
269 
270 	for_each_populated_zone(zone) {
271 		max_zone_pfn = zone_end_pfn(zone);
272 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
273 			struct page *page = pfn_to_online_page(pfn);
274 
275 			if (!page)
276 				continue;
277 
278 			if (!test_bit(PG_mte_tagged, &page->flags))
279 				continue;
280 
281 			ret = save_tags(page, pfn);
282 			if (ret) {
283 				swsusp_mte_free_storage();
284 				goto out;
285 			}
286 
287 			n++;
288 		}
289 	}
290 	pr_info("Saved %d MTE pages\n", n);
291 
292 out:
293 	return ret;
294 }
295 
296 static void swsusp_mte_restore_tags(void)
297 {
298 	XA_STATE(xa_state, &mte_pages, 0);
299 	int n = 0;
300 	void *tags;
301 
302 	xa_lock(&mte_pages);
303 	xas_for_each(&xa_state, tags, ULONG_MAX) {
304 		unsigned long pfn = xa_state.xa_index;
305 		struct page *page = pfn_to_online_page(pfn);
306 
307 		/*
308 		 * It is not required to invoke page_kasan_tag_reset(page)
309 		 * at this point since the tags stored in page->flags are
310 		 * already restored.
311 		 */
312 		mte_restore_page_tags(page_address(page), tags);
313 
314 		mte_free_tag_storage(tags);
315 		n++;
316 	}
317 	xa_unlock(&mte_pages);
318 
319 	pr_info("Restored %d MTE pages\n", n);
320 
321 	xa_destroy(&mte_pages);
322 }
323 
324 #else	/* CONFIG_ARM64_MTE */
325 
326 static int swsusp_mte_save_tags(void)
327 {
328 	return 0;
329 }
330 
331 static void swsusp_mte_restore_tags(void)
332 {
333 }
334 
335 #endif	/* CONFIG_ARM64_MTE */
336 
337 int swsusp_arch_suspend(void)
338 {
339 	int ret = 0;
340 	unsigned long flags;
341 	struct sleep_stack_data state;
342 
343 	if (cpus_are_stuck_in_kernel()) {
344 		pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
345 		return -EBUSY;
346 	}
347 
348 	flags = local_daif_save();
349 
350 	if (__cpu_suspend_enter(&state)) {
351 		/* make the crash dump kernel image visible/saveable */
352 		crash_prepare_suspend();
353 
354 		ret = swsusp_mte_save_tags();
355 		if (ret)
356 			return ret;
357 
358 		sleep_cpu = smp_processor_id();
359 		ret = swsusp_save();
360 	} else {
361 		/* Clean kernel core startup/idle code to PoC*/
362 		dcache_clean_inval_poc((unsigned long)__mmuoff_data_start,
363 				    (unsigned long)__mmuoff_data_end);
364 		dcache_clean_inval_poc((unsigned long)__idmap_text_start,
365 				    (unsigned long)__idmap_text_end);
366 
367 		/* Clean kvm setup code to PoC? */
368 		if (el2_reset_needed()) {
369 			dcache_clean_inval_poc(
370 				(unsigned long)__hyp_idmap_text_start,
371 				(unsigned long)__hyp_idmap_text_end);
372 			dcache_clean_inval_poc((unsigned long)__hyp_text_start,
373 					    (unsigned long)__hyp_text_end);
374 		}
375 
376 		swsusp_mte_restore_tags();
377 
378 		/* make the crash dump kernel image protected again */
379 		crash_post_resume();
380 
381 		/*
382 		 * Tell the hibernation core that we've just restored
383 		 * the memory
384 		 */
385 		in_suspend = 0;
386 
387 		sleep_cpu = -EINVAL;
388 		__cpu_suspend_exit();
389 
390 		/*
391 		 * Just in case the boot kernel did turn the SSBD
392 		 * mitigation off behind our back, let's set the state
393 		 * to what we expect it to be.
394 		 */
395 		spectre_v4_enable_mitigation(NULL);
396 	}
397 
398 	local_daif_restore(flags);
399 
400 	return ret;
401 }
402 
403 /*
404  * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
405  *
406  * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
407  * we don't need to free it here.
408  */
409 int swsusp_arch_resume(void)
410 {
411 	int rc;
412 	void *zero_page;
413 	size_t exit_size;
414 	pgd_t *tmp_pg_dir;
415 	phys_addr_t el2_vectors;
416 	void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
417 					  void *, phys_addr_t, phys_addr_t);
418 	struct trans_pgd_info trans_info = {
419 		.trans_alloc_page	= hibernate_page_alloc,
420 		.trans_alloc_arg	= (void *)GFP_ATOMIC,
421 	};
422 
423 	/*
424 	 * Restoring the memory image will overwrite the ttbr1 page tables.
425 	 * Create a second copy of just the linear map, and use this when
426 	 * restoring.
427 	 */
428 	rc = trans_pgd_create_copy(&trans_info, &tmp_pg_dir, PAGE_OFFSET,
429 				   PAGE_END);
430 	if (rc)
431 		return rc;
432 
433 	/*
434 	 * We need a zero page that is zero before & after resume in order to
435 	 * to break before make on the ttbr1 page tables.
436 	 */
437 	zero_page = (void *)get_safe_page(GFP_ATOMIC);
438 	if (!zero_page) {
439 		pr_err("Failed to allocate zero page.\n");
440 		return -ENOMEM;
441 	}
442 
443 	if (el2_reset_needed()) {
444 		rc = trans_pgd_copy_el2_vectors(&trans_info, &el2_vectors);
445 		if (rc) {
446 			pr_err("Failed to setup el2 vectors\n");
447 			return rc;
448 		}
449 	}
450 
451 	exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
452 	/*
453 	 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
454 	 * a new set of ttbr0 page tables and load them.
455 	 */
456 	rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
457 				   (phys_addr_t *)&hibernate_exit);
458 	if (rc) {
459 		pr_err("Failed to create safe executable page for hibernate_exit code.\n");
460 		return rc;
461 	}
462 
463 	/*
464 	 * KASLR will cause the el2 vectors to be in a different location in
465 	 * the resumed kernel. Load hibernate's temporary copy into el2.
466 	 *
467 	 * We can skip this step if we booted at EL1, or are running with VHE.
468 	 */
469 	if (el2_reset_needed())
470 		__hyp_set_vectors(el2_vectors);
471 
472 	hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
473 		       resume_hdr.reenter_kernel, restore_pblist,
474 		       resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
475 
476 	return 0;
477 }
478 
479 int hibernate_resume_nonboot_cpu_disable(void)
480 {
481 	if (sleep_cpu < 0) {
482 		pr_err("Failing to resume from hibernate on an unknown CPU.\n");
483 		return -ENODEV;
484 	}
485 
486 	return freeze_secondary_cpus(sleep_cpu);
487 }
488