xref: /openbmc/linux/arch/arm64/kernel/hibernate.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*:
3  * Hibernate support specific for ARM64
4  *
5  * Derived from work on ARM hibernation support by:
6  *
7  * Ubuntu project, hibernation support for mach-dove
8  * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
9  * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
10  *  https://lkml.org/lkml/2010/6/18/4
11  *  https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
12  *  https://patchwork.kernel.org/patch/96442/
13  *
14  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
15  */
16 #define pr_fmt(x) "hibernate: " x
17 #include <linux/cpu.h>
18 #include <linux/kvm_host.h>
19 #include <linux/mm.h>
20 #include <linux/pm.h>
21 #include <linux/sched.h>
22 #include <linux/suspend.h>
23 #include <linux/utsname.h>
24 #include <linux/version.h>
25 
26 #include <asm/barrier.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <asm/daifflags.h>
30 #include <asm/irqflags.h>
31 #include <asm/kexec.h>
32 #include <asm/memory.h>
33 #include <asm/mmu_context.h>
34 #include <asm/pgalloc.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgtable-hwdef.h>
37 #include <asm/sections.h>
38 #include <asm/smp.h>
39 #include <asm/smp_plat.h>
40 #include <asm/suspend.h>
41 #include <asm/sysreg.h>
42 #include <asm/virt.h>
43 
44 /*
45  * Hibernate core relies on this value being 0 on resume, and marks it
46  * __nosavedata assuming it will keep the resume kernel's '0' value. This
47  * doesn't happen with either KASLR.
48  *
49  * defined as "__visible int in_suspend __nosavedata" in
50  * kernel/power/hibernate.c
51  */
52 extern int in_suspend;
53 
54 /* Do we need to reset el2? */
55 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode())
56 
57 /* temporary el2 vectors in the __hibernate_exit_text section. */
58 extern char hibernate_el2_vectors[];
59 
60 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */
61 extern char __hyp_stub_vectors[];
62 
63 /*
64  * The logical cpu number we should resume on, initialised to a non-cpu
65  * number.
66  */
67 static int sleep_cpu = -EINVAL;
68 
69 /*
70  * Values that may not change over hibernate/resume. We put the build number
71  * and date in here so that we guarantee not to resume with a different
72  * kernel.
73  */
74 struct arch_hibernate_hdr_invariants {
75 	char		uts_version[__NEW_UTS_LEN + 1];
76 };
77 
78 /* These values need to be know across a hibernate/restore. */
79 static struct arch_hibernate_hdr {
80 	struct arch_hibernate_hdr_invariants invariants;
81 
82 	/* These are needed to find the relocated kernel if built with kaslr */
83 	phys_addr_t	ttbr1_el1;
84 	void		(*reenter_kernel)(void);
85 
86 	/*
87 	 * We need to know where the __hyp_stub_vectors are after restore to
88 	 * re-configure el2.
89 	 */
90 	phys_addr_t	__hyp_stub_vectors;
91 
92 	u64		sleep_cpu_mpidr;
93 } resume_hdr;
94 
95 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
96 {
97 	memset(i, 0, sizeof(*i));
98 	memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
99 }
100 
101 int pfn_is_nosave(unsigned long pfn)
102 {
103 	unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
104 	unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
105 
106 	return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
107 		crash_is_nosave(pfn);
108 }
109 
110 void notrace save_processor_state(void)
111 {
112 	WARN_ON(num_online_cpus() != 1);
113 }
114 
115 void notrace restore_processor_state(void)
116 {
117 }
118 
119 int arch_hibernation_header_save(void *addr, unsigned int max_size)
120 {
121 	struct arch_hibernate_hdr *hdr = addr;
122 
123 	if (max_size < sizeof(*hdr))
124 		return -EOVERFLOW;
125 
126 	arch_hdr_invariants(&hdr->invariants);
127 	hdr->ttbr1_el1		= __pa_symbol(swapper_pg_dir);
128 	hdr->reenter_kernel	= _cpu_resume;
129 
130 	/* We can't use __hyp_get_vectors() because kvm may still be loaded */
131 	if (el2_reset_needed())
132 		hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
133 	else
134 		hdr->__hyp_stub_vectors = 0;
135 
136 	/* Save the mpidr of the cpu we called cpu_suspend() on... */
137 	if (sleep_cpu < 0) {
138 		pr_err("Failing to hibernate on an unknown CPU.\n");
139 		return -ENODEV;
140 	}
141 	hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
142 	pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
143 		hdr->sleep_cpu_mpidr);
144 
145 	return 0;
146 }
147 EXPORT_SYMBOL(arch_hibernation_header_save);
148 
149 int arch_hibernation_header_restore(void *addr)
150 {
151 	int ret;
152 	struct arch_hibernate_hdr_invariants invariants;
153 	struct arch_hibernate_hdr *hdr = addr;
154 
155 	arch_hdr_invariants(&invariants);
156 	if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
157 		pr_crit("Hibernate image not generated by this kernel!\n");
158 		return -EINVAL;
159 	}
160 
161 	sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
162 	pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
163 		hdr->sleep_cpu_mpidr);
164 	if (sleep_cpu < 0) {
165 		pr_crit("Hibernated on a CPU not known to this kernel!\n");
166 		sleep_cpu = -EINVAL;
167 		return -EINVAL;
168 	}
169 
170 	ret = bringup_hibernate_cpu(sleep_cpu);
171 	if (ret) {
172 		sleep_cpu = -EINVAL;
173 		return ret;
174 	}
175 
176 	resume_hdr = *hdr;
177 
178 	return 0;
179 }
180 EXPORT_SYMBOL(arch_hibernation_header_restore);
181 
182 static int trans_pgd_map_page(pgd_t *trans_pgd, void *page,
183 		       unsigned long dst_addr,
184 		       pgprot_t pgprot)
185 {
186 	pgd_t *pgdp;
187 	pud_t *pudp;
188 	pmd_t *pmdp;
189 	pte_t *ptep;
190 
191 	pgdp = pgd_offset_raw(trans_pgd, dst_addr);
192 	if (pgd_none(READ_ONCE(*pgdp))) {
193 		pudp = (void *)get_safe_page(GFP_ATOMIC);
194 		if (!pudp)
195 			return -ENOMEM;
196 		pgd_populate(&init_mm, pgdp, pudp);
197 	}
198 
199 	pudp = pud_offset(pgdp, dst_addr);
200 	if (pud_none(READ_ONCE(*pudp))) {
201 		pmdp = (void *)get_safe_page(GFP_ATOMIC);
202 		if (!pmdp)
203 			return -ENOMEM;
204 		pud_populate(&init_mm, pudp, pmdp);
205 	}
206 
207 	pmdp = pmd_offset(pudp, dst_addr);
208 	if (pmd_none(READ_ONCE(*pmdp))) {
209 		ptep = (void *)get_safe_page(GFP_ATOMIC);
210 		if (!ptep)
211 			return -ENOMEM;
212 		pmd_populate_kernel(&init_mm, pmdp, ptep);
213 	}
214 
215 	ptep = pte_offset_kernel(pmdp, dst_addr);
216 	set_pte(ptep, pfn_pte(virt_to_pfn(page), PAGE_KERNEL_EXEC));
217 
218 	return 0;
219 }
220 
221 /*
222  * Copies length bytes, starting at src_start into an new page,
223  * perform cache maintenance, then maps it at the specified address low
224  * address as executable.
225  *
226  * This is used by hibernate to copy the code it needs to execute when
227  * overwriting the kernel text. This function generates a new set of page
228  * tables, which it loads into ttbr0.
229  *
230  * Length is provided as we probably only want 4K of data, even on a 64K
231  * page system.
232  */
233 static int create_safe_exec_page(void *src_start, size_t length,
234 				 unsigned long dst_addr,
235 				 phys_addr_t *phys_dst_addr)
236 {
237 	void *page = (void *)get_safe_page(GFP_ATOMIC);
238 	pgd_t *trans_pgd;
239 	int rc;
240 
241 	if (!page)
242 		return -ENOMEM;
243 
244 	memcpy(page, src_start, length);
245 	__flush_icache_range((unsigned long)page, (unsigned long)page + length);
246 
247 	trans_pgd = (void *)get_safe_page(GFP_ATOMIC);
248 	if (!trans_pgd)
249 		return -ENOMEM;
250 
251 	rc = trans_pgd_map_page(trans_pgd, page, dst_addr,
252 				PAGE_KERNEL_EXEC);
253 	if (rc)
254 		return rc;
255 
256 	/*
257 	 * Load our new page tables. A strict BBM approach requires that we
258 	 * ensure that TLBs are free of any entries that may overlap with the
259 	 * global mappings we are about to install.
260 	 *
261 	 * For a real hibernate/resume cycle TTBR0 currently points to a zero
262 	 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI
263 	 * runtime services), while for a userspace-driven test_resume cycle it
264 	 * points to userspace page tables (and we must point it at a zero page
265 	 * ourselves). Elsewhere we only (un)install the idmap with preemption
266 	 * disabled, so T0SZ should be as required regardless.
267 	 */
268 	cpu_set_reserved_ttbr0();
269 	local_flush_tlb_all();
270 	write_sysreg(phys_to_ttbr(virt_to_phys(trans_pgd)), ttbr0_el1);
271 	isb();
272 
273 	*phys_dst_addr = virt_to_phys(page);
274 
275 	return 0;
276 }
277 
278 #define dcache_clean_range(start, end)	__flush_dcache_area(start, (end - start))
279 
280 int swsusp_arch_suspend(void)
281 {
282 	int ret = 0;
283 	unsigned long flags;
284 	struct sleep_stack_data state;
285 
286 	if (cpus_are_stuck_in_kernel()) {
287 		pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
288 		return -EBUSY;
289 	}
290 
291 	flags = local_daif_save();
292 
293 	if (__cpu_suspend_enter(&state)) {
294 		/* make the crash dump kernel image visible/saveable */
295 		crash_prepare_suspend();
296 
297 		sleep_cpu = smp_processor_id();
298 		ret = swsusp_save();
299 	} else {
300 		/* Clean kernel core startup/idle code to PoC*/
301 		dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end);
302 		dcache_clean_range(__idmap_text_start, __idmap_text_end);
303 
304 		/* Clean kvm setup code to PoC? */
305 		if (el2_reset_needed()) {
306 			dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end);
307 			dcache_clean_range(__hyp_text_start, __hyp_text_end);
308 		}
309 
310 		/* make the crash dump kernel image protected again */
311 		crash_post_resume();
312 
313 		/*
314 		 * Tell the hibernation core that we've just restored
315 		 * the memory
316 		 */
317 		in_suspend = 0;
318 
319 		sleep_cpu = -EINVAL;
320 		__cpu_suspend_exit();
321 
322 		/*
323 		 * Just in case the boot kernel did turn the SSBD
324 		 * mitigation off behind our back, let's set the state
325 		 * to what we expect it to be.
326 		 */
327 		switch (arm64_get_ssbd_state()) {
328 		case ARM64_SSBD_FORCE_ENABLE:
329 		case ARM64_SSBD_KERNEL:
330 			arm64_set_ssbd_mitigation(true);
331 		}
332 	}
333 
334 	local_daif_restore(flags);
335 
336 	return ret;
337 }
338 
339 static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr)
340 {
341 	pte_t pte = READ_ONCE(*src_ptep);
342 
343 	if (pte_valid(pte)) {
344 		/*
345 		 * Resume will overwrite areas that may be marked
346 		 * read only (code, rodata). Clear the RDONLY bit from
347 		 * the temporary mappings we use during restore.
348 		 */
349 		set_pte(dst_ptep, pte_mkwrite(pte));
350 	} else if (debug_pagealloc_enabled() && !pte_none(pte)) {
351 		/*
352 		 * debug_pagealloc will removed the PTE_VALID bit if
353 		 * the page isn't in use by the resume kernel. It may have
354 		 * been in use by the original kernel, in which case we need
355 		 * to put it back in our copy to do the restore.
356 		 *
357 		 * Before marking this entry valid, check the pfn should
358 		 * be mapped.
359 		 */
360 		BUG_ON(!pfn_valid(pte_pfn(pte)));
361 
362 		set_pte(dst_ptep, pte_mkpresent(pte_mkwrite(pte)));
363 	}
364 }
365 
366 static int copy_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start,
367 		    unsigned long end)
368 {
369 	pte_t *src_ptep;
370 	pte_t *dst_ptep;
371 	unsigned long addr = start;
372 
373 	dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC);
374 	if (!dst_ptep)
375 		return -ENOMEM;
376 	pmd_populate_kernel(&init_mm, dst_pmdp, dst_ptep);
377 	dst_ptep = pte_offset_kernel(dst_pmdp, start);
378 
379 	src_ptep = pte_offset_kernel(src_pmdp, start);
380 	do {
381 		_copy_pte(dst_ptep, src_ptep, addr);
382 	} while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end);
383 
384 	return 0;
385 }
386 
387 static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start,
388 		    unsigned long end)
389 {
390 	pmd_t *src_pmdp;
391 	pmd_t *dst_pmdp;
392 	unsigned long next;
393 	unsigned long addr = start;
394 
395 	if (pud_none(READ_ONCE(*dst_pudp))) {
396 		dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC);
397 		if (!dst_pmdp)
398 			return -ENOMEM;
399 		pud_populate(&init_mm, dst_pudp, dst_pmdp);
400 	}
401 	dst_pmdp = pmd_offset(dst_pudp, start);
402 
403 	src_pmdp = pmd_offset(src_pudp, start);
404 	do {
405 		pmd_t pmd = READ_ONCE(*src_pmdp);
406 
407 		next = pmd_addr_end(addr, end);
408 		if (pmd_none(pmd))
409 			continue;
410 		if (pmd_table(pmd)) {
411 			if (copy_pte(dst_pmdp, src_pmdp, addr, next))
412 				return -ENOMEM;
413 		} else {
414 			set_pmd(dst_pmdp,
415 				__pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY));
416 		}
417 	} while (dst_pmdp++, src_pmdp++, addr = next, addr != end);
418 
419 	return 0;
420 }
421 
422 static int copy_pud(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start,
423 		    unsigned long end)
424 {
425 	pud_t *dst_pudp;
426 	pud_t *src_pudp;
427 	unsigned long next;
428 	unsigned long addr = start;
429 
430 	if (pgd_none(READ_ONCE(*dst_pgdp))) {
431 		dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC);
432 		if (!dst_pudp)
433 			return -ENOMEM;
434 		pgd_populate(&init_mm, dst_pgdp, dst_pudp);
435 	}
436 	dst_pudp = pud_offset(dst_pgdp, start);
437 
438 	src_pudp = pud_offset(src_pgdp, start);
439 	do {
440 		pud_t pud = READ_ONCE(*src_pudp);
441 
442 		next = pud_addr_end(addr, end);
443 		if (pud_none(pud))
444 			continue;
445 		if (pud_table(pud)) {
446 			if (copy_pmd(dst_pudp, src_pudp, addr, next))
447 				return -ENOMEM;
448 		} else {
449 			set_pud(dst_pudp,
450 				__pud(pud_val(pud) & ~PUD_SECT_RDONLY));
451 		}
452 	} while (dst_pudp++, src_pudp++, addr = next, addr != end);
453 
454 	return 0;
455 }
456 
457 static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start,
458 			    unsigned long end)
459 {
460 	unsigned long next;
461 	unsigned long addr = start;
462 	pgd_t *src_pgdp = pgd_offset_k(start);
463 
464 	dst_pgdp = pgd_offset_raw(dst_pgdp, start);
465 	do {
466 		next = pgd_addr_end(addr, end);
467 		if (pgd_none(READ_ONCE(*src_pgdp)))
468 			continue;
469 		if (copy_pud(dst_pgdp, src_pgdp, addr, next))
470 			return -ENOMEM;
471 	} while (dst_pgdp++, src_pgdp++, addr = next, addr != end);
472 
473 	return 0;
474 }
475 
476 static int trans_pgd_create_copy(pgd_t **dst_pgdp, unsigned long start,
477 			  unsigned long end)
478 {
479 	int rc;
480 	pgd_t *trans_pgd = (pgd_t *)get_safe_page(GFP_ATOMIC);
481 
482 	if (!trans_pgd) {
483 		pr_err("Failed to allocate memory for temporary page tables.\n");
484 		return -ENOMEM;
485 	}
486 
487 	rc = copy_page_tables(trans_pgd, start, end);
488 	if (!rc)
489 		*dst_pgdp = trans_pgd;
490 
491 	return rc;
492 }
493 
494 /*
495  * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
496  *
497  * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
498  * we don't need to free it here.
499  */
500 int swsusp_arch_resume(void)
501 {
502 	int rc;
503 	void *zero_page;
504 	size_t exit_size;
505 	pgd_t *tmp_pg_dir;
506 	phys_addr_t phys_hibernate_exit;
507 	void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
508 					  void *, phys_addr_t, phys_addr_t);
509 
510 	/*
511 	 * Restoring the memory image will overwrite the ttbr1 page tables.
512 	 * Create a second copy of just the linear map, and use this when
513 	 * restoring.
514 	 */
515 	rc = trans_pgd_create_copy(&tmp_pg_dir, PAGE_OFFSET, PAGE_END);
516 	if (rc)
517 		return rc;
518 
519 	/*
520 	 * We need a zero page that is zero before & after resume in order to
521 	 * to break before make on the ttbr1 page tables.
522 	 */
523 	zero_page = (void *)get_safe_page(GFP_ATOMIC);
524 	if (!zero_page) {
525 		pr_err("Failed to allocate zero page.\n");
526 		return -ENOMEM;
527 	}
528 
529 	/*
530 	 * Locate the exit code in the bottom-but-one page, so that *NULL
531 	 * still has disastrous affects.
532 	 */
533 	hibernate_exit = (void *)PAGE_SIZE;
534 	exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
535 	/*
536 	 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
537 	 * a new set of ttbr0 page tables and load them.
538 	 */
539 	rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
540 				   (unsigned long)hibernate_exit,
541 				   &phys_hibernate_exit);
542 	if (rc) {
543 		pr_err("Failed to create safe executable page for hibernate_exit code.\n");
544 		return rc;
545 	}
546 
547 	/*
548 	 * The hibernate exit text contains a set of el2 vectors, that will
549 	 * be executed at el2 with the mmu off in order to reload hyp-stub.
550 	 */
551 	__flush_dcache_area(hibernate_exit, exit_size);
552 
553 	/*
554 	 * KASLR will cause the el2 vectors to be in a different location in
555 	 * the resumed kernel. Load hibernate's temporary copy into el2.
556 	 *
557 	 * We can skip this step if we booted at EL1, or are running with VHE.
558 	 */
559 	if (el2_reset_needed()) {
560 		phys_addr_t el2_vectors = phys_hibernate_exit;  /* base */
561 		el2_vectors += hibernate_el2_vectors -
562 			       __hibernate_exit_text_start;     /* offset */
563 
564 		__hyp_set_vectors(el2_vectors);
565 	}
566 
567 	hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
568 		       resume_hdr.reenter_kernel, restore_pblist,
569 		       resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
570 
571 	return 0;
572 }
573 
574 int hibernate_resume_nonboot_cpu_disable(void)
575 {
576 	if (sleep_cpu < 0) {
577 		pr_err("Failing to resume from hibernate on an unknown CPU.\n");
578 		return -ENODEV;
579 	}
580 
581 	return freeze_secondary_cpus(sleep_cpu);
582 }
583