xref: /openbmc/linux/arch/arm64/kernel/hibernate.c (revision 9ac17575)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*:
3  * Hibernate support specific for ARM64
4  *
5  * Derived from work on ARM hibernation support by:
6  *
7  * Ubuntu project, hibernation support for mach-dove
8  * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
9  * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
10  *  https://lkml.org/lkml/2010/6/18/4
11  *  https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
12  *  https://patchwork.kernel.org/patch/96442/
13  *
14  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
15  */
16 #define pr_fmt(x) "hibernate: " x
17 #include <linux/cpu.h>
18 #include <linux/kvm_host.h>
19 #include <linux/mm.h>
20 #include <linux/pm.h>
21 #include <linux/sched.h>
22 #include <linux/suspend.h>
23 #include <linux/utsname.h>
24 #include <linux/version.h>
25 
26 #include <asm/barrier.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <asm/daifflags.h>
30 #include <asm/irqflags.h>
31 #include <asm/kexec.h>
32 #include <asm/memory.h>
33 #include <asm/mmu_context.h>
34 #include <asm/pgalloc.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgtable-hwdef.h>
37 #include <asm/sections.h>
38 #include <asm/smp.h>
39 #include <asm/smp_plat.h>
40 #include <asm/suspend.h>
41 #include <asm/sysreg.h>
42 #include <asm/virt.h>
43 
44 /*
45  * Hibernate core relies on this value being 0 on resume, and marks it
46  * __nosavedata assuming it will keep the resume kernel's '0' value. This
47  * doesn't happen with either KASLR.
48  *
49  * defined as "__visible int in_suspend __nosavedata" in
50  * kernel/power/hibernate.c
51  */
52 extern int in_suspend;
53 
54 /* Do we need to reset el2? */
55 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode())
56 
57 /* temporary el2 vectors in the __hibernate_exit_text section. */
58 extern char hibernate_el2_vectors[];
59 
60 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */
61 extern char __hyp_stub_vectors[];
62 
63 /*
64  * The logical cpu number we should resume on, initialised to a non-cpu
65  * number.
66  */
67 static int sleep_cpu = -EINVAL;
68 
69 /*
70  * Values that may not change over hibernate/resume. We put the build number
71  * and date in here so that we guarantee not to resume with a different
72  * kernel.
73  */
74 struct arch_hibernate_hdr_invariants {
75 	char		uts_version[__NEW_UTS_LEN + 1];
76 };
77 
78 /* These values need to be know across a hibernate/restore. */
79 static struct arch_hibernate_hdr {
80 	struct arch_hibernate_hdr_invariants invariants;
81 
82 	/* These are needed to find the relocated kernel if built with kaslr */
83 	phys_addr_t	ttbr1_el1;
84 	void		(*reenter_kernel)(void);
85 
86 	/*
87 	 * We need to know where the __hyp_stub_vectors are after restore to
88 	 * re-configure el2.
89 	 */
90 	phys_addr_t	__hyp_stub_vectors;
91 
92 	u64		sleep_cpu_mpidr;
93 } resume_hdr;
94 
95 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
96 {
97 	memset(i, 0, sizeof(*i));
98 	memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
99 }
100 
101 int pfn_is_nosave(unsigned long pfn)
102 {
103 	unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
104 	unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
105 
106 	return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
107 		crash_is_nosave(pfn);
108 }
109 
110 void notrace save_processor_state(void)
111 {
112 	WARN_ON(num_online_cpus() != 1);
113 }
114 
115 void notrace restore_processor_state(void)
116 {
117 }
118 
119 int arch_hibernation_header_save(void *addr, unsigned int max_size)
120 {
121 	struct arch_hibernate_hdr *hdr = addr;
122 
123 	if (max_size < sizeof(*hdr))
124 		return -EOVERFLOW;
125 
126 	arch_hdr_invariants(&hdr->invariants);
127 	hdr->ttbr1_el1		= __pa_symbol(swapper_pg_dir);
128 	hdr->reenter_kernel	= _cpu_resume;
129 
130 	/* We can't use __hyp_get_vectors() because kvm may still be loaded */
131 	if (el2_reset_needed())
132 		hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
133 	else
134 		hdr->__hyp_stub_vectors = 0;
135 
136 	/* Save the mpidr of the cpu we called cpu_suspend() on... */
137 	if (sleep_cpu < 0) {
138 		pr_err("Failing to hibernate on an unknown CPU.\n");
139 		return -ENODEV;
140 	}
141 	hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
142 	pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
143 		hdr->sleep_cpu_mpidr);
144 
145 	return 0;
146 }
147 EXPORT_SYMBOL(arch_hibernation_header_save);
148 
149 int arch_hibernation_header_restore(void *addr)
150 {
151 	int ret;
152 	struct arch_hibernate_hdr_invariants invariants;
153 	struct arch_hibernate_hdr *hdr = addr;
154 
155 	arch_hdr_invariants(&invariants);
156 	if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
157 		pr_crit("Hibernate image not generated by this kernel!\n");
158 		return -EINVAL;
159 	}
160 
161 	sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
162 	pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
163 		hdr->sleep_cpu_mpidr);
164 	if (sleep_cpu < 0) {
165 		pr_crit("Hibernated on a CPU not known to this kernel!\n");
166 		sleep_cpu = -EINVAL;
167 		return -EINVAL;
168 	}
169 
170 	ret = bringup_hibernate_cpu(sleep_cpu);
171 	if (ret) {
172 		sleep_cpu = -EINVAL;
173 		return ret;
174 	}
175 
176 	resume_hdr = *hdr;
177 
178 	return 0;
179 }
180 EXPORT_SYMBOL(arch_hibernation_header_restore);
181 
182 static int trans_pgd_map_page(pgd_t *trans_pgd, void *page,
183 		       unsigned long dst_addr,
184 		       pgprot_t pgprot)
185 {
186 	pgd_t *pgdp;
187 	p4d_t *p4dp;
188 	pud_t *pudp;
189 	pmd_t *pmdp;
190 	pte_t *ptep;
191 
192 	pgdp = pgd_offset_raw(trans_pgd, dst_addr);
193 	if (pgd_none(READ_ONCE(*pgdp))) {
194 		pudp = (void *)get_safe_page(GFP_ATOMIC);
195 		if (!pudp)
196 			return -ENOMEM;
197 		pgd_populate(&init_mm, pgdp, pudp);
198 	}
199 
200 	p4dp = p4d_offset(pgdp, dst_addr);
201 	if (p4d_none(READ_ONCE(*p4dp))) {
202 		pudp = (void *)get_safe_page(GFP_ATOMIC);
203 		if (!pudp)
204 			return -ENOMEM;
205 		p4d_populate(&init_mm, p4dp, pudp);
206 	}
207 
208 	pudp = pud_offset(p4dp, dst_addr);
209 	if (pud_none(READ_ONCE(*pudp))) {
210 		pmdp = (void *)get_safe_page(GFP_ATOMIC);
211 		if (!pmdp)
212 			return -ENOMEM;
213 		pud_populate(&init_mm, pudp, pmdp);
214 	}
215 
216 	pmdp = pmd_offset(pudp, dst_addr);
217 	if (pmd_none(READ_ONCE(*pmdp))) {
218 		ptep = (void *)get_safe_page(GFP_ATOMIC);
219 		if (!ptep)
220 			return -ENOMEM;
221 		pmd_populate_kernel(&init_mm, pmdp, ptep);
222 	}
223 
224 	ptep = pte_offset_kernel(pmdp, dst_addr);
225 	set_pte(ptep, pfn_pte(virt_to_pfn(page), PAGE_KERNEL_EXEC));
226 
227 	return 0;
228 }
229 
230 /*
231  * Copies length bytes, starting at src_start into an new page,
232  * perform cache maintenance, then maps it at the specified address low
233  * address as executable.
234  *
235  * This is used by hibernate to copy the code it needs to execute when
236  * overwriting the kernel text. This function generates a new set of page
237  * tables, which it loads into ttbr0.
238  *
239  * Length is provided as we probably only want 4K of data, even on a 64K
240  * page system.
241  */
242 static int create_safe_exec_page(void *src_start, size_t length,
243 				 unsigned long dst_addr,
244 				 phys_addr_t *phys_dst_addr)
245 {
246 	void *page = (void *)get_safe_page(GFP_ATOMIC);
247 	pgd_t *trans_pgd;
248 	int rc;
249 
250 	if (!page)
251 		return -ENOMEM;
252 
253 	memcpy(page, src_start, length);
254 	__flush_icache_range((unsigned long)page, (unsigned long)page + length);
255 
256 	trans_pgd = (void *)get_safe_page(GFP_ATOMIC);
257 	if (!trans_pgd)
258 		return -ENOMEM;
259 
260 	rc = trans_pgd_map_page(trans_pgd, page, dst_addr,
261 				PAGE_KERNEL_EXEC);
262 	if (rc)
263 		return rc;
264 
265 	/*
266 	 * Load our new page tables. A strict BBM approach requires that we
267 	 * ensure that TLBs are free of any entries that may overlap with the
268 	 * global mappings we are about to install.
269 	 *
270 	 * For a real hibernate/resume cycle TTBR0 currently points to a zero
271 	 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI
272 	 * runtime services), while for a userspace-driven test_resume cycle it
273 	 * points to userspace page tables (and we must point it at a zero page
274 	 * ourselves). Elsewhere we only (un)install the idmap with preemption
275 	 * disabled, so T0SZ should be as required regardless.
276 	 */
277 	cpu_set_reserved_ttbr0();
278 	local_flush_tlb_all();
279 	write_sysreg(phys_to_ttbr(virt_to_phys(trans_pgd)), ttbr0_el1);
280 	isb();
281 
282 	*phys_dst_addr = virt_to_phys(page);
283 
284 	return 0;
285 }
286 
287 #define dcache_clean_range(start, end)	__flush_dcache_area(start, (end - start))
288 
289 int swsusp_arch_suspend(void)
290 {
291 	int ret = 0;
292 	unsigned long flags;
293 	struct sleep_stack_data state;
294 
295 	if (cpus_are_stuck_in_kernel()) {
296 		pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
297 		return -EBUSY;
298 	}
299 
300 	flags = local_daif_save();
301 
302 	if (__cpu_suspend_enter(&state)) {
303 		/* make the crash dump kernel image visible/saveable */
304 		crash_prepare_suspend();
305 
306 		sleep_cpu = smp_processor_id();
307 		ret = swsusp_save();
308 	} else {
309 		/* Clean kernel core startup/idle code to PoC*/
310 		dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end);
311 		dcache_clean_range(__idmap_text_start, __idmap_text_end);
312 
313 		/* Clean kvm setup code to PoC? */
314 		if (el2_reset_needed()) {
315 			dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end);
316 			dcache_clean_range(__hyp_text_start, __hyp_text_end);
317 		}
318 
319 		/* make the crash dump kernel image protected again */
320 		crash_post_resume();
321 
322 		/*
323 		 * Tell the hibernation core that we've just restored
324 		 * the memory
325 		 */
326 		in_suspend = 0;
327 
328 		sleep_cpu = -EINVAL;
329 		__cpu_suspend_exit();
330 
331 		/*
332 		 * Just in case the boot kernel did turn the SSBD
333 		 * mitigation off behind our back, let's set the state
334 		 * to what we expect it to be.
335 		 */
336 		switch (arm64_get_ssbd_state()) {
337 		case ARM64_SSBD_FORCE_ENABLE:
338 		case ARM64_SSBD_KERNEL:
339 			arm64_set_ssbd_mitigation(true);
340 		}
341 	}
342 
343 	local_daif_restore(flags);
344 
345 	return ret;
346 }
347 
348 static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr)
349 {
350 	pte_t pte = READ_ONCE(*src_ptep);
351 
352 	if (pte_valid(pte)) {
353 		/*
354 		 * Resume will overwrite areas that may be marked
355 		 * read only (code, rodata). Clear the RDONLY bit from
356 		 * the temporary mappings we use during restore.
357 		 */
358 		set_pte(dst_ptep, pte_mkwrite(pte));
359 	} else if (debug_pagealloc_enabled() && !pte_none(pte)) {
360 		/*
361 		 * debug_pagealloc will removed the PTE_VALID bit if
362 		 * the page isn't in use by the resume kernel. It may have
363 		 * been in use by the original kernel, in which case we need
364 		 * to put it back in our copy to do the restore.
365 		 *
366 		 * Before marking this entry valid, check the pfn should
367 		 * be mapped.
368 		 */
369 		BUG_ON(!pfn_valid(pte_pfn(pte)));
370 
371 		set_pte(dst_ptep, pte_mkpresent(pte_mkwrite(pte)));
372 	}
373 }
374 
375 static int copy_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start,
376 		    unsigned long end)
377 {
378 	pte_t *src_ptep;
379 	pte_t *dst_ptep;
380 	unsigned long addr = start;
381 
382 	dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC);
383 	if (!dst_ptep)
384 		return -ENOMEM;
385 	pmd_populate_kernel(&init_mm, dst_pmdp, dst_ptep);
386 	dst_ptep = pte_offset_kernel(dst_pmdp, start);
387 
388 	src_ptep = pte_offset_kernel(src_pmdp, start);
389 	do {
390 		_copy_pte(dst_ptep, src_ptep, addr);
391 	} while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end);
392 
393 	return 0;
394 }
395 
396 static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start,
397 		    unsigned long end)
398 {
399 	pmd_t *src_pmdp;
400 	pmd_t *dst_pmdp;
401 	unsigned long next;
402 	unsigned long addr = start;
403 
404 	if (pud_none(READ_ONCE(*dst_pudp))) {
405 		dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC);
406 		if (!dst_pmdp)
407 			return -ENOMEM;
408 		pud_populate(&init_mm, dst_pudp, dst_pmdp);
409 	}
410 	dst_pmdp = pmd_offset(dst_pudp, start);
411 
412 	src_pmdp = pmd_offset(src_pudp, start);
413 	do {
414 		pmd_t pmd = READ_ONCE(*src_pmdp);
415 
416 		next = pmd_addr_end(addr, end);
417 		if (pmd_none(pmd))
418 			continue;
419 		if (pmd_table(pmd)) {
420 			if (copy_pte(dst_pmdp, src_pmdp, addr, next))
421 				return -ENOMEM;
422 		} else {
423 			set_pmd(dst_pmdp,
424 				__pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY));
425 		}
426 	} while (dst_pmdp++, src_pmdp++, addr = next, addr != end);
427 
428 	return 0;
429 }
430 
431 static int copy_pud(p4d_t *dst_p4dp, p4d_t *src_p4dp, unsigned long start,
432 		    unsigned long end)
433 {
434 	pud_t *dst_pudp;
435 	pud_t *src_pudp;
436 	unsigned long next;
437 	unsigned long addr = start;
438 
439 	if (p4d_none(READ_ONCE(*dst_p4dp))) {
440 		dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC);
441 		if (!dst_pudp)
442 			return -ENOMEM;
443 		p4d_populate(&init_mm, dst_p4dp, dst_pudp);
444 	}
445 	dst_pudp = pud_offset(dst_p4dp, start);
446 
447 	src_pudp = pud_offset(src_p4dp, start);
448 	do {
449 		pud_t pud = READ_ONCE(*src_pudp);
450 
451 		next = pud_addr_end(addr, end);
452 		if (pud_none(pud))
453 			continue;
454 		if (pud_table(pud)) {
455 			if (copy_pmd(dst_pudp, src_pudp, addr, next))
456 				return -ENOMEM;
457 		} else {
458 			set_pud(dst_pudp,
459 				__pud(pud_val(pud) & ~PUD_SECT_RDONLY));
460 		}
461 	} while (dst_pudp++, src_pudp++, addr = next, addr != end);
462 
463 	return 0;
464 }
465 
466 static int copy_p4d(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start,
467 		    unsigned long end)
468 {
469 	p4d_t *dst_p4dp;
470 	p4d_t *src_p4dp;
471 	unsigned long next;
472 	unsigned long addr = start;
473 
474 	dst_p4dp = p4d_offset(dst_pgdp, start);
475 	src_p4dp = p4d_offset(src_pgdp, start);
476 	do {
477 		next = p4d_addr_end(addr, end);
478 		if (p4d_none(READ_ONCE(*src_p4dp)))
479 			continue;
480 		if (copy_pud(dst_p4dp, src_p4dp, addr, next))
481 			return -ENOMEM;
482 	} while (dst_p4dp++, src_p4dp++, addr = next, addr != end);
483 
484 	return 0;
485 }
486 
487 static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start,
488 			    unsigned long end)
489 {
490 	unsigned long next;
491 	unsigned long addr = start;
492 	pgd_t *src_pgdp = pgd_offset_k(start);
493 
494 	dst_pgdp = pgd_offset_raw(dst_pgdp, start);
495 	do {
496 		next = pgd_addr_end(addr, end);
497 		if (pgd_none(READ_ONCE(*src_pgdp)))
498 			continue;
499 		if (copy_p4d(dst_pgdp, src_pgdp, addr, next))
500 			return -ENOMEM;
501 	} while (dst_pgdp++, src_pgdp++, addr = next, addr != end);
502 
503 	return 0;
504 }
505 
506 static int trans_pgd_create_copy(pgd_t **dst_pgdp, unsigned long start,
507 			  unsigned long end)
508 {
509 	int rc;
510 	pgd_t *trans_pgd = (pgd_t *)get_safe_page(GFP_ATOMIC);
511 
512 	if (!trans_pgd) {
513 		pr_err("Failed to allocate memory for temporary page tables.\n");
514 		return -ENOMEM;
515 	}
516 
517 	rc = copy_page_tables(trans_pgd, start, end);
518 	if (!rc)
519 		*dst_pgdp = trans_pgd;
520 
521 	return rc;
522 }
523 
524 /*
525  * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
526  *
527  * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
528  * we don't need to free it here.
529  */
530 int swsusp_arch_resume(void)
531 {
532 	int rc;
533 	void *zero_page;
534 	size_t exit_size;
535 	pgd_t *tmp_pg_dir;
536 	phys_addr_t phys_hibernate_exit;
537 	void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
538 					  void *, phys_addr_t, phys_addr_t);
539 
540 	/*
541 	 * Restoring the memory image will overwrite the ttbr1 page tables.
542 	 * Create a second copy of just the linear map, and use this when
543 	 * restoring.
544 	 */
545 	rc = trans_pgd_create_copy(&tmp_pg_dir, PAGE_OFFSET, PAGE_END);
546 	if (rc)
547 		return rc;
548 
549 	/*
550 	 * We need a zero page that is zero before & after resume in order to
551 	 * to break before make on the ttbr1 page tables.
552 	 */
553 	zero_page = (void *)get_safe_page(GFP_ATOMIC);
554 	if (!zero_page) {
555 		pr_err("Failed to allocate zero page.\n");
556 		return -ENOMEM;
557 	}
558 
559 	/*
560 	 * Locate the exit code in the bottom-but-one page, so that *NULL
561 	 * still has disastrous affects.
562 	 */
563 	hibernate_exit = (void *)PAGE_SIZE;
564 	exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
565 	/*
566 	 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
567 	 * a new set of ttbr0 page tables and load them.
568 	 */
569 	rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
570 				   (unsigned long)hibernate_exit,
571 				   &phys_hibernate_exit);
572 	if (rc) {
573 		pr_err("Failed to create safe executable page for hibernate_exit code.\n");
574 		return rc;
575 	}
576 
577 	/*
578 	 * The hibernate exit text contains a set of el2 vectors, that will
579 	 * be executed at el2 with the mmu off in order to reload hyp-stub.
580 	 */
581 	__flush_dcache_area(hibernate_exit, exit_size);
582 
583 	/*
584 	 * KASLR will cause the el2 vectors to be in a different location in
585 	 * the resumed kernel. Load hibernate's temporary copy into el2.
586 	 *
587 	 * We can skip this step if we booted at EL1, or are running with VHE.
588 	 */
589 	if (el2_reset_needed()) {
590 		phys_addr_t el2_vectors = phys_hibernate_exit;  /* base */
591 		el2_vectors += hibernate_el2_vectors -
592 			       __hibernate_exit_text_start;     /* offset */
593 
594 		__hyp_set_vectors(el2_vectors);
595 	}
596 
597 	hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
598 		       resume_hdr.reenter_kernel, restore_pblist,
599 		       resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
600 
601 	return 0;
602 }
603 
604 int hibernate_resume_nonboot_cpu_disable(void)
605 {
606 	if (sleep_cpu < 0) {
607 		pr_err("Failing to resume from hibernate on an unknown CPU.\n");
608 		return -ENODEV;
609 	}
610 
611 	return freeze_secondary_cpus(sleep_cpu);
612 }
613