1 /*: 2 * Hibernate support specific for ARM64 3 * 4 * Derived from work on ARM hibernation support by: 5 * 6 * Ubuntu project, hibernation support for mach-dove 7 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu) 8 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.) 9 * https://lkml.org/lkml/2010/6/18/4 10 * https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html 11 * https://patchwork.kernel.org/patch/96442/ 12 * 13 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 14 * 15 * License terms: GNU General Public License (GPL) version 2 16 */ 17 #define pr_fmt(x) "hibernate: " x 18 #include <linux/cpu.h> 19 #include <linux/kvm_host.h> 20 #include <linux/mm.h> 21 #include <linux/pm.h> 22 #include <linux/sched.h> 23 #include <linux/suspend.h> 24 #include <linux/utsname.h> 25 #include <linux/version.h> 26 27 #include <asm/barrier.h> 28 #include <asm/cacheflush.h> 29 #include <asm/cputype.h> 30 #include <asm/irqflags.h> 31 #include <asm/memory.h> 32 #include <asm/mmu_context.h> 33 #include <asm/pgalloc.h> 34 #include <asm/pgtable.h> 35 #include <asm/pgtable-hwdef.h> 36 #include <asm/sections.h> 37 #include <asm/smp.h> 38 #include <asm/smp_plat.h> 39 #include <asm/suspend.h> 40 #include <asm/sysreg.h> 41 #include <asm/virt.h> 42 43 /* 44 * Hibernate core relies on this value being 0 on resume, and marks it 45 * __nosavedata assuming it will keep the resume kernel's '0' value. This 46 * doesn't happen with either KASLR. 47 * 48 * defined as "__visible int in_suspend __nosavedata" in 49 * kernel/power/hibernate.c 50 */ 51 extern int in_suspend; 52 53 /* Find a symbols alias in the linear map */ 54 #define LMADDR(x) phys_to_virt(virt_to_phys(x)) 55 56 /* Do we need to reset el2? */ 57 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) 58 59 /* temporary el2 vectors in the __hibernate_exit_text section. */ 60 extern char hibernate_el2_vectors[]; 61 62 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */ 63 extern char __hyp_stub_vectors[]; 64 65 /* 66 * The logical cpu number we should resume on, initialised to a non-cpu 67 * number. 68 */ 69 static int sleep_cpu = -EINVAL; 70 71 /* 72 * Values that may not change over hibernate/resume. We put the build number 73 * and date in here so that we guarantee not to resume with a different 74 * kernel. 75 */ 76 struct arch_hibernate_hdr_invariants { 77 char uts_version[__NEW_UTS_LEN + 1]; 78 }; 79 80 /* These values need to be know across a hibernate/restore. */ 81 static struct arch_hibernate_hdr { 82 struct arch_hibernate_hdr_invariants invariants; 83 84 /* These are needed to find the relocated kernel if built with kaslr */ 85 phys_addr_t ttbr1_el1; 86 void (*reenter_kernel)(void); 87 88 /* 89 * We need to know where the __hyp_stub_vectors are after restore to 90 * re-configure el2. 91 */ 92 phys_addr_t __hyp_stub_vectors; 93 94 u64 sleep_cpu_mpidr; 95 } resume_hdr; 96 97 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i) 98 { 99 memset(i, 0, sizeof(*i)); 100 memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version)); 101 } 102 103 int pfn_is_nosave(unsigned long pfn) 104 { 105 unsigned long nosave_begin_pfn = virt_to_pfn(&__nosave_begin); 106 unsigned long nosave_end_pfn = virt_to_pfn(&__nosave_end - 1); 107 108 return (pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn); 109 } 110 111 void notrace save_processor_state(void) 112 { 113 WARN_ON(num_online_cpus() != 1); 114 } 115 116 void notrace restore_processor_state(void) 117 { 118 } 119 120 int arch_hibernation_header_save(void *addr, unsigned int max_size) 121 { 122 struct arch_hibernate_hdr *hdr = addr; 123 124 if (max_size < sizeof(*hdr)) 125 return -EOVERFLOW; 126 127 arch_hdr_invariants(&hdr->invariants); 128 hdr->ttbr1_el1 = virt_to_phys(swapper_pg_dir); 129 hdr->reenter_kernel = _cpu_resume; 130 131 /* We can't use __hyp_get_vectors() because kvm may still be loaded */ 132 if (el2_reset_needed()) 133 hdr->__hyp_stub_vectors = virt_to_phys(__hyp_stub_vectors); 134 else 135 hdr->__hyp_stub_vectors = 0; 136 137 /* Save the mpidr of the cpu we called cpu_suspend() on... */ 138 if (sleep_cpu < 0) { 139 pr_err("Failing to hibernate on an unknown CPU.\n"); 140 return -ENODEV; 141 } 142 hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu); 143 pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 144 hdr->sleep_cpu_mpidr); 145 146 return 0; 147 } 148 EXPORT_SYMBOL(arch_hibernation_header_save); 149 150 int arch_hibernation_header_restore(void *addr) 151 { 152 int ret; 153 struct arch_hibernate_hdr_invariants invariants; 154 struct arch_hibernate_hdr *hdr = addr; 155 156 arch_hdr_invariants(&invariants); 157 if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) { 158 pr_crit("Hibernate image not generated by this kernel!\n"); 159 return -EINVAL; 160 } 161 162 sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr); 163 pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 164 hdr->sleep_cpu_mpidr); 165 if (sleep_cpu < 0) { 166 pr_crit("Hibernated on a CPU not known to this kernel!\n"); 167 sleep_cpu = -EINVAL; 168 return -EINVAL; 169 } 170 if (!cpu_online(sleep_cpu)) { 171 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 172 ret = cpu_up(sleep_cpu); 173 if (ret) { 174 pr_err("Failed to bring hibernate-CPU up!\n"); 175 sleep_cpu = -EINVAL; 176 return ret; 177 } 178 } 179 180 resume_hdr = *hdr; 181 182 return 0; 183 } 184 EXPORT_SYMBOL(arch_hibernation_header_restore); 185 186 /* 187 * Copies length bytes, starting at src_start into an new page, 188 * perform cache maintentance, then maps it at the specified address low 189 * address as executable. 190 * 191 * This is used by hibernate to copy the code it needs to execute when 192 * overwriting the kernel text. This function generates a new set of page 193 * tables, which it loads into ttbr0. 194 * 195 * Length is provided as we probably only want 4K of data, even on a 64K 196 * page system. 197 */ 198 static int create_safe_exec_page(void *src_start, size_t length, 199 unsigned long dst_addr, 200 phys_addr_t *phys_dst_addr, 201 void *(*allocator)(gfp_t mask), 202 gfp_t mask) 203 { 204 int rc = 0; 205 pgd_t *pgd; 206 pud_t *pud; 207 pmd_t *pmd; 208 pte_t *pte; 209 unsigned long dst = (unsigned long)allocator(mask); 210 211 if (!dst) { 212 rc = -ENOMEM; 213 goto out; 214 } 215 216 memcpy((void *)dst, src_start, length); 217 flush_icache_range(dst, dst + length); 218 219 pgd = pgd_offset_raw(allocator(mask), dst_addr); 220 if (pgd_none(*pgd)) { 221 pud = allocator(mask); 222 if (!pud) { 223 rc = -ENOMEM; 224 goto out; 225 } 226 pgd_populate(&init_mm, pgd, pud); 227 } 228 229 pud = pud_offset(pgd, dst_addr); 230 if (pud_none(*pud)) { 231 pmd = allocator(mask); 232 if (!pmd) { 233 rc = -ENOMEM; 234 goto out; 235 } 236 pud_populate(&init_mm, pud, pmd); 237 } 238 239 pmd = pmd_offset(pud, dst_addr); 240 if (pmd_none(*pmd)) { 241 pte = allocator(mask); 242 if (!pte) { 243 rc = -ENOMEM; 244 goto out; 245 } 246 pmd_populate_kernel(&init_mm, pmd, pte); 247 } 248 249 pte = pte_offset_kernel(pmd, dst_addr); 250 set_pte(pte, __pte(virt_to_phys((void *)dst) | 251 pgprot_val(PAGE_KERNEL_EXEC))); 252 253 /* 254 * Load our new page tables. A strict BBM approach requires that we 255 * ensure that TLBs are free of any entries that may overlap with the 256 * global mappings we are about to install. 257 * 258 * For a real hibernate/resume cycle TTBR0 currently points to a zero 259 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI 260 * runtime services), while for a userspace-driven test_resume cycle it 261 * points to userspace page tables (and we must point it at a zero page 262 * ourselves). Elsewhere we only (un)install the idmap with preemption 263 * disabled, so T0SZ should be as required regardless. 264 */ 265 cpu_set_reserved_ttbr0(); 266 local_flush_tlb_all(); 267 write_sysreg(virt_to_phys(pgd), ttbr0_el1); 268 isb(); 269 270 *phys_dst_addr = virt_to_phys((void *)dst); 271 272 out: 273 return rc; 274 } 275 276 #define dcache_clean_range(start, end) __flush_dcache_area(start, (end - start)) 277 278 int swsusp_arch_suspend(void) 279 { 280 int ret = 0; 281 unsigned long flags; 282 struct sleep_stack_data state; 283 284 if (cpus_are_stuck_in_kernel()) { 285 pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n"); 286 return -EBUSY; 287 } 288 289 local_dbg_save(flags); 290 291 if (__cpu_suspend_enter(&state)) { 292 sleep_cpu = smp_processor_id(); 293 ret = swsusp_save(); 294 } else { 295 /* Clean kernel core startup/idle code to PoC*/ 296 dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end); 297 dcache_clean_range(__idmap_text_start, __idmap_text_end); 298 299 /* Clean kvm setup code to PoC? */ 300 if (el2_reset_needed()) 301 dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end); 302 303 /* 304 * Tell the hibernation core that we've just restored 305 * the memory 306 */ 307 in_suspend = 0; 308 309 sleep_cpu = -EINVAL; 310 __cpu_suspend_exit(); 311 } 312 313 local_dbg_restore(flags); 314 315 return ret; 316 } 317 318 static void _copy_pte(pte_t *dst_pte, pte_t *src_pte, unsigned long addr) 319 { 320 pte_t pte = *src_pte; 321 322 if (pte_valid(pte)) { 323 /* 324 * Resume will overwrite areas that may be marked 325 * read only (code, rodata). Clear the RDONLY bit from 326 * the temporary mappings we use during restore. 327 */ 328 set_pte(dst_pte, pte_clear_rdonly(pte)); 329 } else if (debug_pagealloc_enabled() && !pte_none(pte)) { 330 /* 331 * debug_pagealloc will removed the PTE_VALID bit if 332 * the page isn't in use by the resume kernel. It may have 333 * been in use by the original kernel, in which case we need 334 * to put it back in our copy to do the restore. 335 * 336 * Before marking this entry valid, check the pfn should 337 * be mapped. 338 */ 339 BUG_ON(!pfn_valid(pte_pfn(pte))); 340 341 set_pte(dst_pte, pte_mkpresent(pte_clear_rdonly(pte))); 342 } 343 } 344 345 static int copy_pte(pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long start, 346 unsigned long end) 347 { 348 pte_t *src_pte; 349 pte_t *dst_pte; 350 unsigned long addr = start; 351 352 dst_pte = (pte_t *)get_safe_page(GFP_ATOMIC); 353 if (!dst_pte) 354 return -ENOMEM; 355 pmd_populate_kernel(&init_mm, dst_pmd, dst_pte); 356 dst_pte = pte_offset_kernel(dst_pmd, start); 357 358 src_pte = pte_offset_kernel(src_pmd, start); 359 do { 360 _copy_pte(dst_pte, src_pte, addr); 361 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 362 363 return 0; 364 } 365 366 static int copy_pmd(pud_t *dst_pud, pud_t *src_pud, unsigned long start, 367 unsigned long end) 368 { 369 pmd_t *src_pmd; 370 pmd_t *dst_pmd; 371 unsigned long next; 372 unsigned long addr = start; 373 374 if (pud_none(*dst_pud)) { 375 dst_pmd = (pmd_t *)get_safe_page(GFP_ATOMIC); 376 if (!dst_pmd) 377 return -ENOMEM; 378 pud_populate(&init_mm, dst_pud, dst_pmd); 379 } 380 dst_pmd = pmd_offset(dst_pud, start); 381 382 src_pmd = pmd_offset(src_pud, start); 383 do { 384 next = pmd_addr_end(addr, end); 385 if (pmd_none(*src_pmd)) 386 continue; 387 if (pmd_table(*src_pmd)) { 388 if (copy_pte(dst_pmd, src_pmd, addr, next)) 389 return -ENOMEM; 390 } else { 391 set_pmd(dst_pmd, 392 __pmd(pmd_val(*src_pmd) & ~PMD_SECT_RDONLY)); 393 } 394 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 395 396 return 0; 397 } 398 399 static int copy_pud(pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long start, 400 unsigned long end) 401 { 402 pud_t *dst_pud; 403 pud_t *src_pud; 404 unsigned long next; 405 unsigned long addr = start; 406 407 if (pgd_none(*dst_pgd)) { 408 dst_pud = (pud_t *)get_safe_page(GFP_ATOMIC); 409 if (!dst_pud) 410 return -ENOMEM; 411 pgd_populate(&init_mm, dst_pgd, dst_pud); 412 } 413 dst_pud = pud_offset(dst_pgd, start); 414 415 src_pud = pud_offset(src_pgd, start); 416 do { 417 next = pud_addr_end(addr, end); 418 if (pud_none(*src_pud)) 419 continue; 420 if (pud_table(*(src_pud))) { 421 if (copy_pmd(dst_pud, src_pud, addr, next)) 422 return -ENOMEM; 423 } else { 424 set_pud(dst_pud, 425 __pud(pud_val(*src_pud) & ~PMD_SECT_RDONLY)); 426 } 427 } while (dst_pud++, src_pud++, addr = next, addr != end); 428 429 return 0; 430 } 431 432 static int copy_page_tables(pgd_t *dst_pgd, unsigned long start, 433 unsigned long end) 434 { 435 unsigned long next; 436 unsigned long addr = start; 437 pgd_t *src_pgd = pgd_offset_k(start); 438 439 dst_pgd = pgd_offset_raw(dst_pgd, start); 440 do { 441 next = pgd_addr_end(addr, end); 442 if (pgd_none(*src_pgd)) 443 continue; 444 if (copy_pud(dst_pgd, src_pgd, addr, next)) 445 return -ENOMEM; 446 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 447 448 return 0; 449 } 450 451 /* 452 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit(). 453 * 454 * Memory allocated by get_safe_page() will be dealt with by the hibernate code, 455 * we don't need to free it here. 456 */ 457 int swsusp_arch_resume(void) 458 { 459 int rc = 0; 460 void *zero_page; 461 size_t exit_size; 462 pgd_t *tmp_pg_dir; 463 void *lm_restore_pblist; 464 phys_addr_t phys_hibernate_exit; 465 void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *, 466 void *, phys_addr_t, phys_addr_t); 467 468 /* 469 * Restoring the memory image will overwrite the ttbr1 page tables. 470 * Create a second copy of just the linear map, and use this when 471 * restoring. 472 */ 473 tmp_pg_dir = (pgd_t *)get_safe_page(GFP_ATOMIC); 474 if (!tmp_pg_dir) { 475 pr_err("Failed to allocate memory for temporary page tables."); 476 rc = -ENOMEM; 477 goto out; 478 } 479 rc = copy_page_tables(tmp_pg_dir, PAGE_OFFSET, 0); 480 if (rc) 481 goto out; 482 483 /* 484 * Since we only copied the linear map, we need to find restore_pblist's 485 * linear map address. 486 */ 487 lm_restore_pblist = LMADDR(restore_pblist); 488 489 /* 490 * We need a zero page that is zero before & after resume in order to 491 * to break before make on the ttbr1 page tables. 492 */ 493 zero_page = (void *)get_safe_page(GFP_ATOMIC); 494 if (!zero_page) { 495 pr_err("Failed to allocate zero page."); 496 rc = -ENOMEM; 497 goto out; 498 } 499 500 /* 501 * Locate the exit code in the bottom-but-one page, so that *NULL 502 * still has disastrous affects. 503 */ 504 hibernate_exit = (void *)PAGE_SIZE; 505 exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start; 506 /* 507 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate 508 * a new set of ttbr0 page tables and load them. 509 */ 510 rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size, 511 (unsigned long)hibernate_exit, 512 &phys_hibernate_exit, 513 (void *)get_safe_page, GFP_ATOMIC); 514 if (rc) { 515 pr_err("Failed to create safe executable page for hibernate_exit code."); 516 goto out; 517 } 518 519 /* 520 * The hibernate exit text contains a set of el2 vectors, that will 521 * be executed at el2 with the mmu off in order to reload hyp-stub. 522 */ 523 __flush_dcache_area(hibernate_exit, exit_size); 524 525 /* 526 * KASLR will cause the el2 vectors to be in a different location in 527 * the resumed kernel. Load hibernate's temporary copy into el2. 528 * 529 * We can skip this step if we booted at EL1, or are running with VHE. 530 */ 531 if (el2_reset_needed()) { 532 phys_addr_t el2_vectors = phys_hibernate_exit; /* base */ 533 el2_vectors += hibernate_el2_vectors - 534 __hibernate_exit_text_start; /* offset */ 535 536 __hyp_set_vectors(el2_vectors); 537 } 538 539 hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1, 540 resume_hdr.reenter_kernel, lm_restore_pblist, 541 resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page)); 542 543 out: 544 return rc; 545 } 546 547 int hibernate_resume_nonboot_cpu_disable(void) 548 { 549 if (sleep_cpu < 0) { 550 pr_err("Failing to resume from hibernate on an unknown CPU.\n"); 551 return -ENODEV; 552 } 553 554 return freeze_secondary_cpus(sleep_cpu); 555 } 556