1 /*: 2 * Hibernate support specific for ARM64 3 * 4 * Derived from work on ARM hibernation support by: 5 * 6 * Ubuntu project, hibernation support for mach-dove 7 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu) 8 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.) 9 * https://lkml.org/lkml/2010/6/18/4 10 * https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html 11 * https://patchwork.kernel.org/patch/96442/ 12 * 13 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 14 * 15 * License terms: GNU General Public License (GPL) version 2 16 */ 17 #define pr_fmt(x) "hibernate: " x 18 #include <linux/cpu.h> 19 #include <linux/kvm_host.h> 20 #include <linux/mm.h> 21 #include <linux/pm.h> 22 #include <linux/sched.h> 23 #include <linux/suspend.h> 24 #include <linux/utsname.h> 25 #include <linux/version.h> 26 27 #include <asm/barrier.h> 28 #include <asm/cacheflush.h> 29 #include <asm/cputype.h> 30 #include <asm/irqflags.h> 31 #include <asm/memory.h> 32 #include <asm/mmu_context.h> 33 #include <asm/pgalloc.h> 34 #include <asm/pgtable.h> 35 #include <asm/pgtable-hwdef.h> 36 #include <asm/sections.h> 37 #include <asm/smp.h> 38 #include <asm/smp_plat.h> 39 #include <asm/suspend.h> 40 #include <asm/sysreg.h> 41 #include <asm/virt.h> 42 43 /* 44 * Hibernate core relies on this value being 0 on resume, and marks it 45 * __nosavedata assuming it will keep the resume kernel's '0' value. This 46 * doesn't happen with either KASLR. 47 * 48 * defined as "__visible int in_suspend __nosavedata" in 49 * kernel/power/hibernate.c 50 */ 51 extern int in_suspend; 52 53 /* Do we need to reset el2? */ 54 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) 55 56 /* temporary el2 vectors in the __hibernate_exit_text section. */ 57 extern char hibernate_el2_vectors[]; 58 59 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */ 60 extern char __hyp_stub_vectors[]; 61 62 /* 63 * The logical cpu number we should resume on, initialised to a non-cpu 64 * number. 65 */ 66 static int sleep_cpu = -EINVAL; 67 68 /* 69 * Values that may not change over hibernate/resume. We put the build number 70 * and date in here so that we guarantee not to resume with a different 71 * kernel. 72 */ 73 struct arch_hibernate_hdr_invariants { 74 char uts_version[__NEW_UTS_LEN + 1]; 75 }; 76 77 /* These values need to be know across a hibernate/restore. */ 78 static struct arch_hibernate_hdr { 79 struct arch_hibernate_hdr_invariants invariants; 80 81 /* These are needed to find the relocated kernel if built with kaslr */ 82 phys_addr_t ttbr1_el1; 83 void (*reenter_kernel)(void); 84 85 /* 86 * We need to know where the __hyp_stub_vectors are after restore to 87 * re-configure el2. 88 */ 89 phys_addr_t __hyp_stub_vectors; 90 91 u64 sleep_cpu_mpidr; 92 } resume_hdr; 93 94 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i) 95 { 96 memset(i, 0, sizeof(*i)); 97 memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version)); 98 } 99 100 int pfn_is_nosave(unsigned long pfn) 101 { 102 unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin); 103 unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1); 104 105 return (pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn); 106 } 107 108 void notrace save_processor_state(void) 109 { 110 WARN_ON(num_online_cpus() != 1); 111 } 112 113 void notrace restore_processor_state(void) 114 { 115 } 116 117 int arch_hibernation_header_save(void *addr, unsigned int max_size) 118 { 119 struct arch_hibernate_hdr *hdr = addr; 120 121 if (max_size < sizeof(*hdr)) 122 return -EOVERFLOW; 123 124 arch_hdr_invariants(&hdr->invariants); 125 hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir); 126 hdr->reenter_kernel = _cpu_resume; 127 128 /* We can't use __hyp_get_vectors() because kvm may still be loaded */ 129 if (el2_reset_needed()) 130 hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors); 131 else 132 hdr->__hyp_stub_vectors = 0; 133 134 /* Save the mpidr of the cpu we called cpu_suspend() on... */ 135 if (sleep_cpu < 0) { 136 pr_err("Failing to hibernate on an unknown CPU.\n"); 137 return -ENODEV; 138 } 139 hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu); 140 pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 141 hdr->sleep_cpu_mpidr); 142 143 return 0; 144 } 145 EXPORT_SYMBOL(arch_hibernation_header_save); 146 147 int arch_hibernation_header_restore(void *addr) 148 { 149 int ret; 150 struct arch_hibernate_hdr_invariants invariants; 151 struct arch_hibernate_hdr *hdr = addr; 152 153 arch_hdr_invariants(&invariants); 154 if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) { 155 pr_crit("Hibernate image not generated by this kernel!\n"); 156 return -EINVAL; 157 } 158 159 sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr); 160 pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 161 hdr->sleep_cpu_mpidr); 162 if (sleep_cpu < 0) { 163 pr_crit("Hibernated on a CPU not known to this kernel!\n"); 164 sleep_cpu = -EINVAL; 165 return -EINVAL; 166 } 167 if (!cpu_online(sleep_cpu)) { 168 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 169 ret = cpu_up(sleep_cpu); 170 if (ret) { 171 pr_err("Failed to bring hibernate-CPU up!\n"); 172 sleep_cpu = -EINVAL; 173 return ret; 174 } 175 } 176 177 resume_hdr = *hdr; 178 179 return 0; 180 } 181 EXPORT_SYMBOL(arch_hibernation_header_restore); 182 183 /* 184 * Copies length bytes, starting at src_start into an new page, 185 * perform cache maintentance, then maps it at the specified address low 186 * address as executable. 187 * 188 * This is used by hibernate to copy the code it needs to execute when 189 * overwriting the kernel text. This function generates a new set of page 190 * tables, which it loads into ttbr0. 191 * 192 * Length is provided as we probably only want 4K of data, even on a 64K 193 * page system. 194 */ 195 static int create_safe_exec_page(void *src_start, size_t length, 196 unsigned long dst_addr, 197 phys_addr_t *phys_dst_addr, 198 void *(*allocator)(gfp_t mask), 199 gfp_t mask) 200 { 201 int rc = 0; 202 pgd_t *pgd; 203 pud_t *pud; 204 pmd_t *pmd; 205 pte_t *pte; 206 unsigned long dst = (unsigned long)allocator(mask); 207 208 if (!dst) { 209 rc = -ENOMEM; 210 goto out; 211 } 212 213 memcpy((void *)dst, src_start, length); 214 flush_icache_range(dst, dst + length); 215 216 pgd = pgd_offset_raw(allocator(mask), dst_addr); 217 if (pgd_none(*pgd)) { 218 pud = allocator(mask); 219 if (!pud) { 220 rc = -ENOMEM; 221 goto out; 222 } 223 pgd_populate(&init_mm, pgd, pud); 224 } 225 226 pud = pud_offset(pgd, dst_addr); 227 if (pud_none(*pud)) { 228 pmd = allocator(mask); 229 if (!pmd) { 230 rc = -ENOMEM; 231 goto out; 232 } 233 pud_populate(&init_mm, pud, pmd); 234 } 235 236 pmd = pmd_offset(pud, dst_addr); 237 if (pmd_none(*pmd)) { 238 pte = allocator(mask); 239 if (!pte) { 240 rc = -ENOMEM; 241 goto out; 242 } 243 pmd_populate_kernel(&init_mm, pmd, pte); 244 } 245 246 pte = pte_offset_kernel(pmd, dst_addr); 247 set_pte(pte, __pte(virt_to_phys((void *)dst) | 248 pgprot_val(PAGE_KERNEL_EXEC))); 249 250 /* 251 * Load our new page tables. A strict BBM approach requires that we 252 * ensure that TLBs are free of any entries that may overlap with the 253 * global mappings we are about to install. 254 * 255 * For a real hibernate/resume cycle TTBR0 currently points to a zero 256 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI 257 * runtime services), while for a userspace-driven test_resume cycle it 258 * points to userspace page tables (and we must point it at a zero page 259 * ourselves). Elsewhere we only (un)install the idmap with preemption 260 * disabled, so T0SZ should be as required regardless. 261 */ 262 cpu_set_reserved_ttbr0(); 263 local_flush_tlb_all(); 264 write_sysreg(virt_to_phys(pgd), ttbr0_el1); 265 isb(); 266 267 *phys_dst_addr = virt_to_phys((void *)dst); 268 269 out: 270 return rc; 271 } 272 273 #define dcache_clean_range(start, end) __flush_dcache_area(start, (end - start)) 274 275 int swsusp_arch_suspend(void) 276 { 277 int ret = 0; 278 unsigned long flags; 279 struct sleep_stack_data state; 280 281 if (cpus_are_stuck_in_kernel()) { 282 pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n"); 283 return -EBUSY; 284 } 285 286 local_dbg_save(flags); 287 288 if (__cpu_suspend_enter(&state)) { 289 sleep_cpu = smp_processor_id(); 290 ret = swsusp_save(); 291 } else { 292 /* Clean kernel core startup/idle code to PoC*/ 293 dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end); 294 dcache_clean_range(__idmap_text_start, __idmap_text_end); 295 296 /* Clean kvm setup code to PoC? */ 297 if (el2_reset_needed()) 298 dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end); 299 300 /* 301 * Tell the hibernation core that we've just restored 302 * the memory 303 */ 304 in_suspend = 0; 305 306 sleep_cpu = -EINVAL; 307 __cpu_suspend_exit(); 308 } 309 310 local_dbg_restore(flags); 311 312 return ret; 313 } 314 315 static void _copy_pte(pte_t *dst_pte, pte_t *src_pte, unsigned long addr) 316 { 317 pte_t pte = *src_pte; 318 319 if (pte_valid(pte)) { 320 /* 321 * Resume will overwrite areas that may be marked 322 * read only (code, rodata). Clear the RDONLY bit from 323 * the temporary mappings we use during restore. 324 */ 325 set_pte(dst_pte, pte_clear_rdonly(pte)); 326 } else if (debug_pagealloc_enabled() && !pte_none(pte)) { 327 /* 328 * debug_pagealloc will removed the PTE_VALID bit if 329 * the page isn't in use by the resume kernel. It may have 330 * been in use by the original kernel, in which case we need 331 * to put it back in our copy to do the restore. 332 * 333 * Before marking this entry valid, check the pfn should 334 * be mapped. 335 */ 336 BUG_ON(!pfn_valid(pte_pfn(pte))); 337 338 set_pte(dst_pte, pte_mkpresent(pte_clear_rdonly(pte))); 339 } 340 } 341 342 static int copy_pte(pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long start, 343 unsigned long end) 344 { 345 pte_t *src_pte; 346 pte_t *dst_pte; 347 unsigned long addr = start; 348 349 dst_pte = (pte_t *)get_safe_page(GFP_ATOMIC); 350 if (!dst_pte) 351 return -ENOMEM; 352 pmd_populate_kernel(&init_mm, dst_pmd, dst_pte); 353 dst_pte = pte_offset_kernel(dst_pmd, start); 354 355 src_pte = pte_offset_kernel(src_pmd, start); 356 do { 357 _copy_pte(dst_pte, src_pte, addr); 358 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 359 360 return 0; 361 } 362 363 static int copy_pmd(pud_t *dst_pud, pud_t *src_pud, unsigned long start, 364 unsigned long end) 365 { 366 pmd_t *src_pmd; 367 pmd_t *dst_pmd; 368 unsigned long next; 369 unsigned long addr = start; 370 371 if (pud_none(*dst_pud)) { 372 dst_pmd = (pmd_t *)get_safe_page(GFP_ATOMIC); 373 if (!dst_pmd) 374 return -ENOMEM; 375 pud_populate(&init_mm, dst_pud, dst_pmd); 376 } 377 dst_pmd = pmd_offset(dst_pud, start); 378 379 src_pmd = pmd_offset(src_pud, start); 380 do { 381 next = pmd_addr_end(addr, end); 382 if (pmd_none(*src_pmd)) 383 continue; 384 if (pmd_table(*src_pmd)) { 385 if (copy_pte(dst_pmd, src_pmd, addr, next)) 386 return -ENOMEM; 387 } else { 388 set_pmd(dst_pmd, 389 __pmd(pmd_val(*src_pmd) & ~PMD_SECT_RDONLY)); 390 } 391 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 392 393 return 0; 394 } 395 396 static int copy_pud(pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long start, 397 unsigned long end) 398 { 399 pud_t *dst_pud; 400 pud_t *src_pud; 401 unsigned long next; 402 unsigned long addr = start; 403 404 if (pgd_none(*dst_pgd)) { 405 dst_pud = (pud_t *)get_safe_page(GFP_ATOMIC); 406 if (!dst_pud) 407 return -ENOMEM; 408 pgd_populate(&init_mm, dst_pgd, dst_pud); 409 } 410 dst_pud = pud_offset(dst_pgd, start); 411 412 src_pud = pud_offset(src_pgd, start); 413 do { 414 next = pud_addr_end(addr, end); 415 if (pud_none(*src_pud)) 416 continue; 417 if (pud_table(*(src_pud))) { 418 if (copy_pmd(dst_pud, src_pud, addr, next)) 419 return -ENOMEM; 420 } else { 421 set_pud(dst_pud, 422 __pud(pud_val(*src_pud) & ~PMD_SECT_RDONLY)); 423 } 424 } while (dst_pud++, src_pud++, addr = next, addr != end); 425 426 return 0; 427 } 428 429 static int copy_page_tables(pgd_t *dst_pgd, unsigned long start, 430 unsigned long end) 431 { 432 unsigned long next; 433 unsigned long addr = start; 434 pgd_t *src_pgd = pgd_offset_k(start); 435 436 dst_pgd = pgd_offset_raw(dst_pgd, start); 437 do { 438 next = pgd_addr_end(addr, end); 439 if (pgd_none(*src_pgd)) 440 continue; 441 if (copy_pud(dst_pgd, src_pgd, addr, next)) 442 return -ENOMEM; 443 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 444 445 return 0; 446 } 447 448 /* 449 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit(). 450 * 451 * Memory allocated by get_safe_page() will be dealt with by the hibernate code, 452 * we don't need to free it here. 453 */ 454 int swsusp_arch_resume(void) 455 { 456 int rc = 0; 457 void *zero_page; 458 size_t exit_size; 459 pgd_t *tmp_pg_dir; 460 phys_addr_t phys_hibernate_exit; 461 void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *, 462 void *, phys_addr_t, phys_addr_t); 463 464 /* 465 * Restoring the memory image will overwrite the ttbr1 page tables. 466 * Create a second copy of just the linear map, and use this when 467 * restoring. 468 */ 469 tmp_pg_dir = (pgd_t *)get_safe_page(GFP_ATOMIC); 470 if (!tmp_pg_dir) { 471 pr_err("Failed to allocate memory for temporary page tables.\n"); 472 rc = -ENOMEM; 473 goto out; 474 } 475 rc = copy_page_tables(tmp_pg_dir, PAGE_OFFSET, 0); 476 if (rc) 477 goto out; 478 479 /* 480 * We need a zero page that is zero before & after resume in order to 481 * to break before make on the ttbr1 page tables. 482 */ 483 zero_page = (void *)get_safe_page(GFP_ATOMIC); 484 if (!zero_page) { 485 pr_err("Failed to allocate zero page.\n"); 486 rc = -ENOMEM; 487 goto out; 488 } 489 490 /* 491 * Locate the exit code in the bottom-but-one page, so that *NULL 492 * still has disastrous affects. 493 */ 494 hibernate_exit = (void *)PAGE_SIZE; 495 exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start; 496 /* 497 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate 498 * a new set of ttbr0 page tables and load them. 499 */ 500 rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size, 501 (unsigned long)hibernate_exit, 502 &phys_hibernate_exit, 503 (void *)get_safe_page, GFP_ATOMIC); 504 if (rc) { 505 pr_err("Failed to create safe executable page for hibernate_exit code.\n"); 506 goto out; 507 } 508 509 /* 510 * The hibernate exit text contains a set of el2 vectors, that will 511 * be executed at el2 with the mmu off in order to reload hyp-stub. 512 */ 513 __flush_dcache_area(hibernate_exit, exit_size); 514 515 /* 516 * KASLR will cause the el2 vectors to be in a different location in 517 * the resumed kernel. Load hibernate's temporary copy into el2. 518 * 519 * We can skip this step if we booted at EL1, or are running with VHE. 520 */ 521 if (el2_reset_needed()) { 522 phys_addr_t el2_vectors = phys_hibernate_exit; /* base */ 523 el2_vectors += hibernate_el2_vectors - 524 __hibernate_exit_text_start; /* offset */ 525 526 __hyp_set_vectors(el2_vectors); 527 } 528 529 hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1, 530 resume_hdr.reenter_kernel, restore_pblist, 531 resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page)); 532 533 out: 534 return rc; 535 } 536 537 int hibernate_resume_nonboot_cpu_disable(void) 538 { 539 if (sleep_cpu < 0) { 540 pr_err("Failing to resume from hibernate on an unknown CPU.\n"); 541 return -ENODEV; 542 } 543 544 return freeze_secondary_cpus(sleep_cpu); 545 } 546