1 // SPDX-License-Identifier: GPL-2.0-only 2 /*: 3 * Hibernate support specific for ARM64 4 * 5 * Derived from work on ARM hibernation support by: 6 * 7 * Ubuntu project, hibernation support for mach-dove 8 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu) 9 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.) 10 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 11 */ 12 #define pr_fmt(x) "hibernate: " x 13 #include <linux/cpu.h> 14 #include <linux/kvm_host.h> 15 #include <linux/pm.h> 16 #include <linux/sched.h> 17 #include <linux/suspend.h> 18 #include <linux/utsname.h> 19 20 #include <asm/barrier.h> 21 #include <asm/cacheflush.h> 22 #include <asm/cputype.h> 23 #include <asm/daifflags.h> 24 #include <asm/irqflags.h> 25 #include <asm/kexec.h> 26 #include <asm/memory.h> 27 #include <asm/mmu_context.h> 28 #include <asm/mte.h> 29 #include <asm/sections.h> 30 #include <asm/smp.h> 31 #include <asm/smp_plat.h> 32 #include <asm/suspend.h> 33 #include <asm/sysreg.h> 34 #include <asm/trans_pgd.h> 35 #include <asm/virt.h> 36 37 /* 38 * Hibernate core relies on this value being 0 on resume, and marks it 39 * __nosavedata assuming it will keep the resume kernel's '0' value. This 40 * doesn't happen with either KASLR. 41 * 42 * defined as "__visible int in_suspend __nosavedata" in 43 * kernel/power/hibernate.c 44 */ 45 extern int in_suspend; 46 47 /* Do we need to reset el2? */ 48 #define el2_reset_needed() (is_hyp_nvhe()) 49 50 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */ 51 extern char __hyp_stub_vectors[]; 52 53 /* 54 * The logical cpu number we should resume on, initialised to a non-cpu 55 * number. 56 */ 57 static int sleep_cpu = -EINVAL; 58 59 /* 60 * Values that may not change over hibernate/resume. We put the build number 61 * and date in here so that we guarantee not to resume with a different 62 * kernel. 63 */ 64 struct arch_hibernate_hdr_invariants { 65 char uts_version[__NEW_UTS_LEN + 1]; 66 }; 67 68 /* These values need to be know across a hibernate/restore. */ 69 static struct arch_hibernate_hdr { 70 struct arch_hibernate_hdr_invariants invariants; 71 72 /* These are needed to find the relocated kernel if built with kaslr */ 73 phys_addr_t ttbr1_el1; 74 void (*reenter_kernel)(void); 75 76 /* 77 * We need to know where the __hyp_stub_vectors are after restore to 78 * re-configure el2. 79 */ 80 phys_addr_t __hyp_stub_vectors; 81 82 u64 sleep_cpu_mpidr; 83 } resume_hdr; 84 85 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i) 86 { 87 memset(i, 0, sizeof(*i)); 88 memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version)); 89 } 90 91 int pfn_is_nosave(unsigned long pfn) 92 { 93 unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin); 94 unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1); 95 96 return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) || 97 crash_is_nosave(pfn); 98 } 99 100 void notrace save_processor_state(void) 101 { 102 WARN_ON(num_online_cpus() != 1); 103 } 104 105 void notrace restore_processor_state(void) 106 { 107 } 108 109 int arch_hibernation_header_save(void *addr, unsigned int max_size) 110 { 111 struct arch_hibernate_hdr *hdr = addr; 112 113 if (max_size < sizeof(*hdr)) 114 return -EOVERFLOW; 115 116 arch_hdr_invariants(&hdr->invariants); 117 hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir); 118 hdr->reenter_kernel = _cpu_resume; 119 120 /* We can't use __hyp_get_vectors() because kvm may still be loaded */ 121 if (el2_reset_needed()) 122 hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors); 123 else 124 hdr->__hyp_stub_vectors = 0; 125 126 /* Save the mpidr of the cpu we called cpu_suspend() on... */ 127 if (sleep_cpu < 0) { 128 pr_err("Failing to hibernate on an unknown CPU.\n"); 129 return -ENODEV; 130 } 131 hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu); 132 pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 133 hdr->sleep_cpu_mpidr); 134 135 return 0; 136 } 137 EXPORT_SYMBOL(arch_hibernation_header_save); 138 139 int arch_hibernation_header_restore(void *addr) 140 { 141 int ret; 142 struct arch_hibernate_hdr_invariants invariants; 143 struct arch_hibernate_hdr *hdr = addr; 144 145 arch_hdr_invariants(&invariants); 146 if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) { 147 pr_crit("Hibernate image not generated by this kernel!\n"); 148 return -EINVAL; 149 } 150 151 sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr); 152 pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 153 hdr->sleep_cpu_mpidr); 154 if (sleep_cpu < 0) { 155 pr_crit("Hibernated on a CPU not known to this kernel!\n"); 156 sleep_cpu = -EINVAL; 157 return -EINVAL; 158 } 159 160 ret = bringup_hibernate_cpu(sleep_cpu); 161 if (ret) { 162 sleep_cpu = -EINVAL; 163 return ret; 164 } 165 166 resume_hdr = *hdr; 167 168 return 0; 169 } 170 EXPORT_SYMBOL(arch_hibernation_header_restore); 171 172 static void *hibernate_page_alloc(void *arg) 173 { 174 return (void *)get_safe_page((__force gfp_t)(unsigned long)arg); 175 } 176 177 /* 178 * Copies length bytes, starting at src_start into an new page, 179 * perform cache maintenance, then maps it at the specified address low 180 * address as executable. 181 * 182 * This is used by hibernate to copy the code it needs to execute when 183 * overwriting the kernel text. This function generates a new set of page 184 * tables, which it loads into ttbr0. 185 * 186 * Length is provided as we probably only want 4K of data, even on a 64K 187 * page system. 188 */ 189 static int create_safe_exec_page(void *src_start, size_t length, 190 phys_addr_t *phys_dst_addr) 191 { 192 struct trans_pgd_info trans_info = { 193 .trans_alloc_page = hibernate_page_alloc, 194 .trans_alloc_arg = (__force void *)GFP_ATOMIC, 195 }; 196 197 void *page = (void *)get_safe_page(GFP_ATOMIC); 198 phys_addr_t trans_ttbr0; 199 unsigned long t0sz; 200 int rc; 201 202 if (!page) 203 return -ENOMEM; 204 205 memcpy(page, src_start, length); 206 caches_clean_inval_pou((unsigned long)page, (unsigned long)page + length); 207 rc = trans_pgd_idmap_page(&trans_info, &trans_ttbr0, &t0sz, page); 208 if (rc) 209 return rc; 210 211 cpu_install_ttbr0(trans_ttbr0, t0sz); 212 *phys_dst_addr = virt_to_phys(page); 213 214 return 0; 215 } 216 217 #ifdef CONFIG_ARM64_MTE 218 219 static DEFINE_XARRAY(mte_pages); 220 221 static int save_tags(struct page *page, unsigned long pfn) 222 { 223 void *tag_storage, *ret; 224 225 tag_storage = mte_allocate_tag_storage(); 226 if (!tag_storage) 227 return -ENOMEM; 228 229 mte_save_page_tags(page_address(page), tag_storage); 230 231 ret = xa_store(&mte_pages, pfn, tag_storage, GFP_KERNEL); 232 if (WARN(xa_is_err(ret), "Failed to store MTE tags")) { 233 mte_free_tag_storage(tag_storage); 234 return xa_err(ret); 235 } else if (WARN(ret, "swsusp: %s: Duplicate entry", __func__)) { 236 mte_free_tag_storage(ret); 237 } 238 239 return 0; 240 } 241 242 static void swsusp_mte_free_storage(void) 243 { 244 XA_STATE(xa_state, &mte_pages, 0); 245 void *tags; 246 247 xa_lock(&mte_pages); 248 xas_for_each(&xa_state, tags, ULONG_MAX) { 249 mte_free_tag_storage(tags); 250 } 251 xa_unlock(&mte_pages); 252 253 xa_destroy(&mte_pages); 254 } 255 256 static int swsusp_mte_save_tags(void) 257 { 258 struct zone *zone; 259 unsigned long pfn, max_zone_pfn; 260 int ret = 0; 261 int n = 0; 262 263 if (!system_supports_mte()) 264 return 0; 265 266 for_each_populated_zone(zone) { 267 max_zone_pfn = zone_end_pfn(zone); 268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 269 struct page *page = pfn_to_online_page(pfn); 270 271 if (!page) 272 continue; 273 274 if (!test_bit(PG_mte_tagged, &page->flags)) 275 continue; 276 277 ret = save_tags(page, pfn); 278 if (ret) { 279 swsusp_mte_free_storage(); 280 goto out; 281 } 282 283 n++; 284 } 285 } 286 pr_info("Saved %d MTE pages\n", n); 287 288 out: 289 return ret; 290 } 291 292 static void swsusp_mte_restore_tags(void) 293 { 294 XA_STATE(xa_state, &mte_pages, 0); 295 int n = 0; 296 void *tags; 297 298 xa_lock(&mte_pages); 299 xas_for_each(&xa_state, tags, ULONG_MAX) { 300 unsigned long pfn = xa_state.xa_index; 301 struct page *page = pfn_to_online_page(pfn); 302 303 /* 304 * It is not required to invoke page_kasan_tag_reset(page) 305 * at this point since the tags stored in page->flags are 306 * already restored. 307 */ 308 mte_restore_page_tags(page_address(page), tags); 309 310 mte_free_tag_storage(tags); 311 n++; 312 } 313 xa_unlock(&mte_pages); 314 315 pr_info("Restored %d MTE pages\n", n); 316 317 xa_destroy(&mte_pages); 318 } 319 320 #else /* CONFIG_ARM64_MTE */ 321 322 static int swsusp_mte_save_tags(void) 323 { 324 return 0; 325 } 326 327 static void swsusp_mte_restore_tags(void) 328 { 329 } 330 331 #endif /* CONFIG_ARM64_MTE */ 332 333 int swsusp_arch_suspend(void) 334 { 335 int ret = 0; 336 unsigned long flags; 337 struct sleep_stack_data state; 338 339 if (cpus_are_stuck_in_kernel()) { 340 pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n"); 341 return -EBUSY; 342 } 343 344 flags = local_daif_save(); 345 346 if (__cpu_suspend_enter(&state)) { 347 /* make the crash dump kernel image visible/saveable */ 348 crash_prepare_suspend(); 349 350 ret = swsusp_mte_save_tags(); 351 if (ret) 352 return ret; 353 354 sleep_cpu = smp_processor_id(); 355 ret = swsusp_save(); 356 } else { 357 /* Clean kernel core startup/idle code to PoC*/ 358 dcache_clean_inval_poc((unsigned long)__mmuoff_data_start, 359 (unsigned long)__mmuoff_data_end); 360 dcache_clean_inval_poc((unsigned long)__idmap_text_start, 361 (unsigned long)__idmap_text_end); 362 363 /* Clean kvm setup code to PoC? */ 364 if (el2_reset_needed()) { 365 dcache_clean_inval_poc( 366 (unsigned long)__hyp_idmap_text_start, 367 (unsigned long)__hyp_idmap_text_end); 368 dcache_clean_inval_poc((unsigned long)__hyp_text_start, 369 (unsigned long)__hyp_text_end); 370 } 371 372 swsusp_mte_restore_tags(); 373 374 /* make the crash dump kernel image protected again */ 375 crash_post_resume(); 376 377 /* 378 * Tell the hibernation core that we've just restored 379 * the memory 380 */ 381 in_suspend = 0; 382 383 sleep_cpu = -EINVAL; 384 __cpu_suspend_exit(); 385 386 /* 387 * Just in case the boot kernel did turn the SSBD 388 * mitigation off behind our back, let's set the state 389 * to what we expect it to be. 390 */ 391 spectre_v4_enable_mitigation(NULL); 392 } 393 394 local_daif_restore(flags); 395 396 return ret; 397 } 398 399 /* 400 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit(). 401 * 402 * Memory allocated by get_safe_page() will be dealt with by the hibernate code, 403 * we don't need to free it here. 404 */ 405 int swsusp_arch_resume(void) 406 { 407 int rc; 408 void *zero_page; 409 size_t exit_size; 410 pgd_t *tmp_pg_dir; 411 phys_addr_t el2_vectors; 412 void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *, 413 void *, phys_addr_t, phys_addr_t); 414 struct trans_pgd_info trans_info = { 415 .trans_alloc_page = hibernate_page_alloc, 416 .trans_alloc_arg = (void *)GFP_ATOMIC, 417 }; 418 419 /* 420 * Restoring the memory image will overwrite the ttbr1 page tables. 421 * Create a second copy of just the linear map, and use this when 422 * restoring. 423 */ 424 rc = trans_pgd_create_copy(&trans_info, &tmp_pg_dir, PAGE_OFFSET, 425 PAGE_END); 426 if (rc) 427 return rc; 428 429 /* 430 * We need a zero page that is zero before & after resume in order 431 * to break before make on the ttbr1 page tables. 432 */ 433 zero_page = (void *)get_safe_page(GFP_ATOMIC); 434 if (!zero_page) { 435 pr_err("Failed to allocate zero page.\n"); 436 return -ENOMEM; 437 } 438 439 if (el2_reset_needed()) { 440 rc = trans_pgd_copy_el2_vectors(&trans_info, &el2_vectors); 441 if (rc) { 442 pr_err("Failed to setup el2 vectors\n"); 443 return rc; 444 } 445 } 446 447 exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start; 448 /* 449 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate 450 * a new set of ttbr0 page tables and load them. 451 */ 452 rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size, 453 (phys_addr_t *)&hibernate_exit); 454 if (rc) { 455 pr_err("Failed to create safe executable page for hibernate_exit code.\n"); 456 return rc; 457 } 458 459 /* 460 * KASLR will cause the el2 vectors to be in a different location in 461 * the resumed kernel. Load hibernate's temporary copy into el2. 462 * 463 * We can skip this step if we booted at EL1, or are running with VHE. 464 */ 465 if (el2_reset_needed()) 466 __hyp_set_vectors(el2_vectors); 467 468 hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1, 469 resume_hdr.reenter_kernel, restore_pblist, 470 resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page)); 471 472 return 0; 473 } 474 475 int hibernate_resume_nonboot_cpu_disable(void) 476 { 477 if (sleep_cpu < 0) { 478 pr_err("Failing to resume from hibernate on an unknown CPU.\n"); 479 return -ENODEV; 480 } 481 482 return freeze_secondary_cpus(sleep_cpu); 483 } 484