xref: /openbmc/linux/arch/arm64/kernel/head.S (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Low-level CPU initialisation
4 * Based on arch/arm/kernel/head.S
5 *
6 * Copyright (C) 1994-2002 Russell King
7 * Copyright (C) 2003-2012 ARM Ltd.
8 * Authors:	Catalin Marinas <catalin.marinas@arm.com>
9 *		Will Deacon <will.deacon@arm.com>
10 */
11
12#include <linux/linkage.h>
13#include <linux/init.h>
14#include <linux/pgtable.h>
15
16#include <asm/asm_pointer_auth.h>
17#include <asm/assembler.h>
18#include <asm/boot.h>
19#include <asm/ptrace.h>
20#include <asm/asm-offsets.h>
21#include <asm/cache.h>
22#include <asm/cputype.h>
23#include <asm/el2_setup.h>
24#include <asm/elf.h>
25#include <asm/image.h>
26#include <asm/kernel-pgtable.h>
27#include <asm/kvm_arm.h>
28#include <asm/memory.h>
29#include <asm/pgtable-hwdef.h>
30#include <asm/page.h>
31#include <asm/scs.h>
32#include <asm/smp.h>
33#include <asm/sysreg.h>
34#include <asm/thread_info.h>
35#include <asm/virt.h>
36
37#include "efi-header.S"
38
39#define __PHYS_OFFSET	KERNEL_START
40
41#if (PAGE_OFFSET & 0x1fffff) != 0
42#error PAGE_OFFSET must be at least 2MB aligned
43#endif
44
45/*
46 * Kernel startup entry point.
47 * ---------------------------
48 *
49 * The requirements are:
50 *   MMU = off, D-cache = off, I-cache = on or off,
51 *   x0 = physical address to the FDT blob.
52 *
53 * This code is mostly position independent so you call this at
54 * __pa(PAGE_OFFSET).
55 *
56 * Note that the callee-saved registers are used for storing variables
57 * that are useful before the MMU is enabled. The allocations are described
58 * in the entry routines.
59 */
60	__HEAD
61	/*
62	 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
63	 */
64	efi_signature_nop			// special NOP to identity as PE/COFF executable
65	b	primary_entry			// branch to kernel start, magic
66	.quad	0				// Image load offset from start of RAM, little-endian
67	le64sym	_kernel_size_le			// Effective size of kernel image, little-endian
68	le64sym	_kernel_flags_le		// Informative flags, little-endian
69	.quad	0				// reserved
70	.quad	0				// reserved
71	.quad	0				// reserved
72	.ascii	ARM64_IMAGE_MAGIC		// Magic number
73	.long	.Lpe_header_offset		// Offset to the PE header.
74
75	__EFI_PE_HEADER
76
77	__INIT
78
79	/*
80	 * The following callee saved general purpose registers are used on the
81	 * primary lowlevel boot path:
82	 *
83	 *  Register   Scope                      Purpose
84	 *  x21        primary_entry() .. start_kernel()        FDT pointer passed at boot in x0
85	 *  x23        primary_entry() .. start_kernel()        physical misalignment/KASLR offset
86	 *  x28        __create_page_tables()                   callee preserved temp register
87	 *  x19/x20    __primary_switch()                       callee preserved temp registers
88	 *  x24        __primary_switch() .. relocate_kernel()  current RELR displacement
89	 */
90SYM_CODE_START(primary_entry)
91	bl	preserve_boot_args
92	bl	init_kernel_el			// w0=cpu_boot_mode
93	adrp	x23, __PHYS_OFFSET
94	and	x23, x23, MIN_KIMG_ALIGN - 1	// KASLR offset, defaults to 0
95	bl	set_cpu_boot_mode_flag
96	bl	__create_page_tables
97	/*
98	 * The following calls CPU setup code, see arch/arm64/mm/proc.S for
99	 * details.
100	 * On return, the CPU will be ready for the MMU to be turned on and
101	 * the TCR will have been set.
102	 */
103	bl	__cpu_setup			// initialise processor
104	b	__primary_switch
105SYM_CODE_END(primary_entry)
106
107/*
108 * Preserve the arguments passed by the bootloader in x0 .. x3
109 */
110SYM_CODE_START_LOCAL(preserve_boot_args)
111	mov	x21, x0				// x21=FDT
112
113	adr_l	x0, boot_args			// record the contents of
114	stp	x21, x1, [x0]			// x0 .. x3 at kernel entry
115	stp	x2, x3, [x0, #16]
116
117	dmb	sy				// needed before dc ivac with
118						// MMU off
119
120	mov	x1, #0x20			// 4 x 8 bytes
121	b	__inval_dcache_area		// tail call
122SYM_CODE_END(preserve_boot_args)
123
124/*
125 * Macro to create a table entry to the next page.
126 *
127 *	tbl:	page table address
128 *	virt:	virtual address
129 *	shift:	#imm page table shift
130 *	ptrs:	#imm pointers per table page
131 *
132 * Preserves:	virt
133 * Corrupts:	ptrs, tmp1, tmp2
134 * Returns:	tbl -> next level table page address
135 */
136	.macro	create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
137	add	\tmp1, \tbl, #PAGE_SIZE
138	phys_to_pte \tmp2, \tmp1
139	orr	\tmp2, \tmp2, #PMD_TYPE_TABLE	// address of next table and entry type
140	lsr	\tmp1, \virt, #\shift
141	sub	\ptrs, \ptrs, #1
142	and	\tmp1, \tmp1, \ptrs		// table index
143	str	\tmp2, [\tbl, \tmp1, lsl #3]
144	add	\tbl, \tbl, #PAGE_SIZE		// next level table page
145	.endm
146
147/*
148 * Macro to populate page table entries, these entries can be pointers to the next level
149 * or last level entries pointing to physical memory.
150 *
151 *	tbl:	page table address
152 *	rtbl:	pointer to page table or physical memory
153 *	index:	start index to write
154 *	eindex:	end index to write - [index, eindex] written to
155 *	flags:	flags for pagetable entry to or in
156 *	inc:	increment to rtbl between each entry
157 *	tmp1:	temporary variable
158 *
159 * Preserves:	tbl, eindex, flags, inc
160 * Corrupts:	index, tmp1
161 * Returns:	rtbl
162 */
163	.macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1
164.Lpe\@:	phys_to_pte \tmp1, \rtbl
165	orr	\tmp1, \tmp1, \flags	// tmp1 = table entry
166	str	\tmp1, [\tbl, \index, lsl #3]
167	add	\rtbl, \rtbl, \inc	// rtbl = pa next level
168	add	\index, \index, #1
169	cmp	\index, \eindex
170	b.ls	.Lpe\@
171	.endm
172
173/*
174 * Compute indices of table entries from virtual address range. If multiple entries
175 * were needed in the previous page table level then the next page table level is assumed
176 * to be composed of multiple pages. (This effectively scales the end index).
177 *
178 *	vstart:	virtual address of start of range
179 *	vend:	virtual address of end of range
180 *	shift:	shift used to transform virtual address into index
181 *	ptrs:	number of entries in page table
182 *	istart:	index in table corresponding to vstart
183 *	iend:	index in table corresponding to vend
184 *	count:	On entry: how many extra entries were required in previous level, scales
185 *			  our end index.
186 *		On exit: returns how many extra entries required for next page table level
187 *
188 * Preserves:	vstart, vend, shift, ptrs
189 * Returns:	istart, iend, count
190 */
191	.macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count
192	lsr	\iend, \vend, \shift
193	mov	\istart, \ptrs
194	sub	\istart, \istart, #1
195	and	\iend, \iend, \istart	// iend = (vend >> shift) & (ptrs - 1)
196	mov	\istart, \ptrs
197	mul	\istart, \istart, \count
198	add	\iend, \iend, \istart	// iend += (count - 1) * ptrs
199					// our entries span multiple tables
200
201	lsr	\istart, \vstart, \shift
202	mov	\count, \ptrs
203	sub	\count, \count, #1
204	and	\istart, \istart, \count
205
206	sub	\count, \iend, \istart
207	.endm
208
209/*
210 * Map memory for specified virtual address range. Each level of page table needed supports
211 * multiple entries. If a level requires n entries the next page table level is assumed to be
212 * formed from n pages.
213 *
214 *	tbl:	location of page table
215 *	rtbl:	address to be used for first level page table entry (typically tbl + PAGE_SIZE)
216 *	vstart:	start address to map
217 *	vend:	end address to map - we map [vstart, vend]
218 *	flags:	flags to use to map last level entries
219 *	phys:	physical address corresponding to vstart - physical memory is contiguous
220 *	pgds:	the number of pgd entries
221 *
222 * Temporaries:	istart, iend, tmp, count, sv - these need to be different registers
223 * Preserves:	vstart, vend, flags
224 * Corrupts:	tbl, rtbl, istart, iend, tmp, count, sv
225 */
226	.macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv
227	add \rtbl, \tbl, #PAGE_SIZE
228	mov \sv, \rtbl
229	mov \count, #0
230	compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count
231	populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
232	mov \tbl, \sv
233	mov \sv, \rtbl
234
235#if SWAPPER_PGTABLE_LEVELS > 3
236	compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count
237	populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
238	mov \tbl, \sv
239	mov \sv, \rtbl
240#endif
241
242#if SWAPPER_PGTABLE_LEVELS > 2
243	compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count
244	populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
245	mov \tbl, \sv
246#endif
247
248	compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count
249	bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1
250	populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp
251	.endm
252
253/*
254 * Setup the initial page tables. We only setup the barest amount which is
255 * required to get the kernel running. The following sections are required:
256 *   - identity mapping to enable the MMU (low address, TTBR0)
257 *   - first few MB of the kernel linear mapping to jump to once the MMU has
258 *     been enabled
259 */
260SYM_FUNC_START_LOCAL(__create_page_tables)
261	mov	x28, lr
262
263	/*
264	 * Invalidate the init page tables to avoid potential dirty cache lines
265	 * being evicted. Other page tables are allocated in rodata as part of
266	 * the kernel image, and thus are clean to the PoC per the boot
267	 * protocol.
268	 */
269	adrp	x0, init_pg_dir
270	adrp	x1, init_pg_end
271	sub	x1, x1, x0
272	bl	__inval_dcache_area
273
274	/*
275	 * Clear the init page tables.
276	 */
277	adrp	x0, init_pg_dir
278	adrp	x1, init_pg_end
279	sub	x1, x1, x0
2801:	stp	xzr, xzr, [x0], #16
281	stp	xzr, xzr, [x0], #16
282	stp	xzr, xzr, [x0], #16
283	stp	xzr, xzr, [x0], #16
284	subs	x1, x1, #64
285	b.ne	1b
286
287	mov	x7, SWAPPER_MM_MMUFLAGS
288
289	/*
290	 * Create the identity mapping.
291	 */
292	adrp	x0, idmap_pg_dir
293	adrp	x3, __idmap_text_start		// __pa(__idmap_text_start)
294
295#ifdef CONFIG_ARM64_VA_BITS_52
296	mrs_s	x6, SYS_ID_AA64MMFR2_EL1
297	and	x6, x6, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
298	mov	x5, #52
299	cbnz	x6, 1f
300#endif
301	mov	x5, #VA_BITS_MIN
3021:
303	adr_l	x6, vabits_actual
304	str	x5, [x6]
305	dmb	sy
306	dc	ivac, x6		// Invalidate potentially stale cache line
307
308	/*
309	 * VA_BITS may be too small to allow for an ID mapping to be created
310	 * that covers system RAM if that is located sufficiently high in the
311	 * physical address space. So for the ID map, use an extended virtual
312	 * range in that case, and configure an additional translation level
313	 * if needed.
314	 *
315	 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
316	 * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
317	 * this number conveniently equals the number of leading zeroes in
318	 * the physical address of __idmap_text_end.
319	 */
320	adrp	x5, __idmap_text_end
321	clz	x5, x5
322	cmp	x5, TCR_T0SZ(VA_BITS_MIN) // default T0SZ small enough?
323	b.ge	1f			// .. then skip VA range extension
324
325	adr_l	x6, idmap_t0sz
326	str	x5, [x6]
327	dmb	sy
328	dc	ivac, x6		// Invalidate potentially stale cache line
329
330#if (VA_BITS < 48)
331#define EXTRA_SHIFT	(PGDIR_SHIFT + PAGE_SHIFT - 3)
332#define EXTRA_PTRS	(1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT))
333
334	/*
335	 * If VA_BITS < 48, we have to configure an additional table level.
336	 * First, we have to verify our assumption that the current value of
337	 * VA_BITS was chosen such that all translation levels are fully
338	 * utilised, and that lowering T0SZ will always result in an additional
339	 * translation level to be configured.
340	 */
341#if VA_BITS != EXTRA_SHIFT
342#error "Mismatch between VA_BITS and page size/number of translation levels"
343#endif
344
345	mov	x4, EXTRA_PTRS
346	create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6
347#else
348	/*
349	 * If VA_BITS == 48, we don't have to configure an additional
350	 * translation level, but the top-level table has more entries.
351	 */
352	mov	x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT)
353	str_l	x4, idmap_ptrs_per_pgd, x5
354#endif
3551:
356	ldr_l	x4, idmap_ptrs_per_pgd
357	mov	x5, x3				// __pa(__idmap_text_start)
358	adr_l	x6, __idmap_text_end		// __pa(__idmap_text_end)
359
360	map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14
361
362	/*
363	 * Map the kernel image (starting with PHYS_OFFSET).
364	 */
365	adrp	x0, init_pg_dir
366	mov_q	x5, KIMAGE_VADDR		// compile time __va(_text)
367	add	x5, x5, x23			// add KASLR displacement
368	mov	x4, PTRS_PER_PGD
369	adrp	x6, _end			// runtime __pa(_end)
370	adrp	x3, _text			// runtime __pa(_text)
371	sub	x6, x6, x3			// _end - _text
372	add	x6, x6, x5			// runtime __va(_end)
373
374	map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14
375
376	/*
377	 * Since the page tables have been populated with non-cacheable
378	 * accesses (MMU disabled), invalidate those tables again to
379	 * remove any speculatively loaded cache lines.
380	 */
381	dmb	sy
382
383	adrp	x0, idmap_pg_dir
384	adrp	x1, idmap_pg_end
385	sub	x1, x1, x0
386	bl	__inval_dcache_area
387
388	adrp	x0, init_pg_dir
389	adrp	x1, init_pg_end
390	sub	x1, x1, x0
391	bl	__inval_dcache_area
392
393	ret	x28
394SYM_FUNC_END(__create_page_tables)
395
396/*
397 * The following fragment of code is executed with the MMU enabled.
398 *
399 *   x0 = __PHYS_OFFSET
400 */
401SYM_FUNC_START_LOCAL(__primary_switched)
402	adrp	x4, init_thread_union
403	add	sp, x4, #THREAD_SIZE
404	adr_l	x5, init_task
405	msr	sp_el0, x5			// Save thread_info
406
407	adr_l	x8, vectors			// load VBAR_EL1 with virtual
408	msr	vbar_el1, x8			// vector table address
409	isb
410
411	stp	xzr, x30, [sp, #-16]!
412	mov	x29, sp
413
414#ifdef CONFIG_SHADOW_CALL_STACK
415	adr_l	scs_sp, init_shadow_call_stack	// Set shadow call stack
416#endif
417
418	str_l	x21, __fdt_pointer, x5		// Save FDT pointer
419
420	ldr_l	x4, kimage_vaddr		// Save the offset between
421	sub	x4, x4, x0			// the kernel virtual and
422	str_l	x4, kimage_voffset, x5		// physical mappings
423
424	// Clear BSS
425	adr_l	x0, __bss_start
426	mov	x1, xzr
427	adr_l	x2, __bss_stop
428	sub	x2, x2, x0
429	bl	__pi_memset
430	dsb	ishst				// Make zero page visible to PTW
431
432#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
433	bl	kasan_early_init
434#endif
435	mov	x0, x21				// pass FDT address in x0
436	bl	early_fdt_map			// Try mapping the FDT early
437	bl	init_feature_override		// Parse cpu feature overrides
438#ifdef CONFIG_RANDOMIZE_BASE
439	tst	x23, ~(MIN_KIMG_ALIGN - 1)	// already running randomized?
440	b.ne	0f
441	bl	kaslr_early_init		// parse FDT for KASLR options
442	cbz	x0, 0f				// KASLR disabled? just proceed
443	orr	x23, x23, x0			// record KASLR offset
444	ldp	x29, x30, [sp], #16		// we must enable KASLR, return
445	ret					// to __primary_switch()
4460:
447#endif
448	bl	switch_to_vhe			// Prefer VHE if possible
449	add	sp, sp, #16
450	mov	x29, #0
451	mov	x30, #0
452	b	start_kernel
453SYM_FUNC_END(__primary_switched)
454
455	.pushsection ".rodata", "a"
456SYM_DATA_START(kimage_vaddr)
457	.quad		_text
458SYM_DATA_END(kimage_vaddr)
459EXPORT_SYMBOL(kimage_vaddr)
460	.popsection
461
462/*
463 * end early head section, begin head code that is also used for
464 * hotplug and needs to have the same protections as the text region
465 */
466	.section ".idmap.text","awx"
467
468/*
469 * Starting from EL2 or EL1, configure the CPU to execute at the highest
470 * reachable EL supported by the kernel in a chosen default state. If dropping
471 * from EL2 to EL1, configure EL2 before configuring EL1.
472 *
473 * Since we cannot always rely on ERET synchronizing writes to sysregs (e.g. if
474 * SCTLR_ELx.EOS is clear), we place an ISB prior to ERET.
475 *
476 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if
477 * booted in EL1 or EL2 respectively.
478 */
479SYM_FUNC_START(init_kernel_el)
480	mrs	x0, CurrentEL
481	cmp	x0, #CurrentEL_EL2
482	b.eq	init_el2
483
484SYM_INNER_LABEL(init_el1, SYM_L_LOCAL)
485	mov_q	x0, INIT_SCTLR_EL1_MMU_OFF
486	msr	sctlr_el1, x0
487	isb
488	mov_q	x0, INIT_PSTATE_EL1
489	msr	spsr_el1, x0
490	msr	elr_el1, lr
491	mov	w0, #BOOT_CPU_MODE_EL1
492	eret
493
494SYM_INNER_LABEL(init_el2, SYM_L_LOCAL)
495	mov_q	x0, HCR_HOST_NVHE_FLAGS
496	msr	hcr_el2, x0
497	isb
498
499	init_el2_state
500
501	/* Hypervisor stub */
502	adr_l	x0, __hyp_stub_vectors
503	msr	vbar_el2, x0
504	isb
505
506	/*
507	 * Fruity CPUs seem to have HCR_EL2.E2H set to RES1,
508	 * making it impossible to start in nVHE mode. Is that
509	 * compliant with the architecture? Absolutely not!
510	 */
511	mrs	x0, hcr_el2
512	and	x0, x0, #HCR_E2H
513	cbz	x0, 1f
514
515	/* Switching to VHE requires a sane SCTLR_EL1 as a start */
516	mov_q	x0, INIT_SCTLR_EL1_MMU_OFF
517	msr_s	SYS_SCTLR_EL12, x0
518
519	/*
520	 * Force an eret into a helper "function", and let it return
521	 * to our original caller... This makes sure that we have
522	 * initialised the basic PSTATE state.
523	 */
524	mov	x0, #INIT_PSTATE_EL2
525	msr	spsr_el1, x0
526	adr	x0, __cpu_stick_to_vhe
527	msr	elr_el1, x0
528	eret
529
5301:
531	mov_q	x0, INIT_SCTLR_EL1_MMU_OFF
532	msr	sctlr_el1, x0
533
534	msr	elr_el2, lr
535	mov	w0, #BOOT_CPU_MODE_EL2
536	eret
537
538__cpu_stick_to_vhe:
539	mov	x0, #HVC_VHE_RESTART
540	hvc	#0
541	mov	x0, #BOOT_CPU_MODE_EL2
542	ret
543SYM_FUNC_END(init_kernel_el)
544
545/*
546 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
547 * in w0. See arch/arm64/include/asm/virt.h for more info.
548 */
549SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag)
550	adr_l	x1, __boot_cpu_mode
551	cmp	w0, #BOOT_CPU_MODE_EL2
552	b.ne	1f
553	add	x1, x1, #4
5541:	str	w0, [x1]			// This CPU has booted in EL1
555	dmb	sy
556	dc	ivac, x1			// Invalidate potentially stale cache line
557	ret
558SYM_FUNC_END(set_cpu_boot_mode_flag)
559
560/*
561 * These values are written with the MMU off, but read with the MMU on.
562 * Writers will invalidate the corresponding address, discarding up to a
563 * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures
564 * sufficient alignment that the CWG doesn't overlap another section.
565 */
566	.pushsection ".mmuoff.data.write", "aw"
567/*
568 * We need to find out the CPU boot mode long after boot, so we need to
569 * store it in a writable variable.
570 *
571 * This is not in .bss, because we set it sufficiently early that the boot-time
572 * zeroing of .bss would clobber it.
573 */
574SYM_DATA_START(__boot_cpu_mode)
575	.long	BOOT_CPU_MODE_EL2
576	.long	BOOT_CPU_MODE_EL1
577SYM_DATA_END(__boot_cpu_mode)
578/*
579 * The booting CPU updates the failed status @__early_cpu_boot_status,
580 * with MMU turned off.
581 */
582SYM_DATA_START(__early_cpu_boot_status)
583	.quad 	0
584SYM_DATA_END(__early_cpu_boot_status)
585
586	.popsection
587
588	/*
589	 * This provides a "holding pen" for platforms to hold all secondary
590	 * cores are held until we're ready for them to initialise.
591	 */
592SYM_FUNC_START(secondary_holding_pen)
593	bl	init_kernel_el			// w0=cpu_boot_mode
594	bl	set_cpu_boot_mode_flag
595	mrs	x0, mpidr_el1
596	mov_q	x1, MPIDR_HWID_BITMASK
597	and	x0, x0, x1
598	adr_l	x3, secondary_holding_pen_release
599pen:	ldr	x4, [x3]
600	cmp	x4, x0
601	b.eq	secondary_startup
602	wfe
603	b	pen
604SYM_FUNC_END(secondary_holding_pen)
605
606	/*
607	 * Secondary entry point that jumps straight into the kernel. Only to
608	 * be used where CPUs are brought online dynamically by the kernel.
609	 */
610SYM_FUNC_START(secondary_entry)
611	bl	init_kernel_el			// w0=cpu_boot_mode
612	bl	set_cpu_boot_mode_flag
613	b	secondary_startup
614SYM_FUNC_END(secondary_entry)
615
616SYM_FUNC_START_LOCAL(secondary_startup)
617	/*
618	 * Common entry point for secondary CPUs.
619	 */
620	bl	switch_to_vhe
621	bl	__cpu_secondary_check52bitva
622	bl	__cpu_setup			// initialise processor
623	adrp	x1, swapper_pg_dir
624	bl	__enable_mmu
625	ldr	x8, =__secondary_switched
626	br	x8
627SYM_FUNC_END(secondary_startup)
628
629SYM_FUNC_START_LOCAL(__secondary_switched)
630	adr_l	x5, vectors
631	msr	vbar_el1, x5
632	isb
633
634	adr_l	x0, secondary_data
635	ldr	x1, [x0, #CPU_BOOT_STACK]	// get secondary_data.stack
636	cbz	x1, __secondary_too_slow
637	mov	sp, x1
638	ldr	x2, [x0, #CPU_BOOT_TASK]
639	cbz	x2, __secondary_too_slow
640	msr	sp_el0, x2
641	scs_load x2, x3
642	mov	x29, #0
643	mov	x30, #0
644
645#ifdef CONFIG_ARM64_PTR_AUTH
646	ptrauth_keys_init_cpu x2, x3, x4, x5
647#endif
648
649	b	secondary_start_kernel
650SYM_FUNC_END(__secondary_switched)
651
652SYM_FUNC_START_LOCAL(__secondary_too_slow)
653	wfe
654	wfi
655	b	__secondary_too_slow
656SYM_FUNC_END(__secondary_too_slow)
657
658/*
659 * The booting CPU updates the failed status @__early_cpu_boot_status,
660 * with MMU turned off.
661 *
662 * update_early_cpu_boot_status tmp, status
663 *  - Corrupts tmp1, tmp2
664 *  - Writes 'status' to __early_cpu_boot_status and makes sure
665 *    it is committed to memory.
666 */
667
668	.macro	update_early_cpu_boot_status status, tmp1, tmp2
669	mov	\tmp2, #\status
670	adr_l	\tmp1, __early_cpu_boot_status
671	str	\tmp2, [\tmp1]
672	dmb	sy
673	dc	ivac, \tmp1			// Invalidate potentially stale cache line
674	.endm
675
676/*
677 * Enable the MMU.
678 *
679 *  x0  = SCTLR_EL1 value for turning on the MMU.
680 *  x1  = TTBR1_EL1 value
681 *
682 * Returns to the caller via x30/lr. This requires the caller to be covered
683 * by the .idmap.text section.
684 *
685 * Checks if the selected granule size is supported by the CPU.
686 * If it isn't, park the CPU
687 */
688SYM_FUNC_START(__enable_mmu)
689	mrs	x2, ID_AA64MMFR0_EL1
690	ubfx	x2, x2, #ID_AA64MMFR0_TGRAN_SHIFT, 4
691	cmp     x2, #ID_AA64MMFR0_TGRAN_SUPPORTED_MIN
692	b.lt    __no_granule_support
693	cmp     x2, #ID_AA64MMFR0_TGRAN_SUPPORTED_MAX
694	b.gt    __no_granule_support
695	update_early_cpu_boot_status 0, x2, x3
696	adrp	x2, idmap_pg_dir
697	phys_to_ttbr x1, x1
698	phys_to_ttbr x2, x2
699	msr	ttbr0_el1, x2			// load TTBR0
700	offset_ttbr1 x1, x3
701	msr	ttbr1_el1, x1			// load TTBR1
702	isb
703
704	set_sctlr_el1	x0
705
706	ret
707SYM_FUNC_END(__enable_mmu)
708
709SYM_FUNC_START(__cpu_secondary_check52bitva)
710#ifdef CONFIG_ARM64_VA_BITS_52
711	ldr_l	x0, vabits_actual
712	cmp	x0, #52
713	b.ne	2f
714
715	mrs_s	x0, SYS_ID_AA64MMFR2_EL1
716	and	x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
717	cbnz	x0, 2f
718
719	update_early_cpu_boot_status \
720		CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
7211:	wfe
722	wfi
723	b	1b
724
725#endif
7262:	ret
727SYM_FUNC_END(__cpu_secondary_check52bitva)
728
729SYM_FUNC_START_LOCAL(__no_granule_support)
730	/* Indicate that this CPU can't boot and is stuck in the kernel */
731	update_early_cpu_boot_status \
732		CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2
7331:
734	wfe
735	wfi
736	b	1b
737SYM_FUNC_END(__no_granule_support)
738
739#ifdef CONFIG_RELOCATABLE
740SYM_FUNC_START_LOCAL(__relocate_kernel)
741	/*
742	 * Iterate over each entry in the relocation table, and apply the
743	 * relocations in place.
744	 */
745	ldr	w9, =__rela_offset		// offset to reloc table
746	ldr	w10, =__rela_size		// size of reloc table
747
748	mov_q	x11, KIMAGE_VADDR		// default virtual offset
749	add	x11, x11, x23			// actual virtual offset
750	add	x9, x9, x11			// __va(.rela)
751	add	x10, x9, x10			// __va(.rela) + sizeof(.rela)
752
7530:	cmp	x9, x10
754	b.hs	1f
755	ldp	x12, x13, [x9], #24
756	ldr	x14, [x9, #-8]
757	cmp	w13, #R_AARCH64_RELATIVE
758	b.ne	0b
759	add	x14, x14, x23			// relocate
760	str	x14, [x12, x23]
761	b	0b
762
7631:
764#ifdef CONFIG_RELR
765	/*
766	 * Apply RELR relocations.
767	 *
768	 * RELR is a compressed format for storing relative relocations. The
769	 * encoded sequence of entries looks like:
770	 * [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
771	 *
772	 * i.e. start with an address, followed by any number of bitmaps. The
773	 * address entry encodes 1 relocation. The subsequent bitmap entries
774	 * encode up to 63 relocations each, at subsequent offsets following
775	 * the last address entry.
776	 *
777	 * The bitmap entries must have 1 in the least significant bit. The
778	 * assumption here is that an address cannot have 1 in lsb. Odd
779	 * addresses are not supported. Any odd addresses are stored in the RELA
780	 * section, which is handled above.
781	 *
782	 * Excluding the least significant bit in the bitmap, each non-zero
783	 * bit in the bitmap represents a relocation to be applied to
784	 * a corresponding machine word that follows the base address
785	 * word. The second least significant bit represents the machine
786	 * word immediately following the initial address, and each bit
787	 * that follows represents the next word, in linear order. As such,
788	 * a single bitmap can encode up to 63 relocations in a 64-bit object.
789	 *
790	 * In this implementation we store the address of the next RELR table
791	 * entry in x9, the address being relocated by the current address or
792	 * bitmap entry in x13 and the address being relocated by the current
793	 * bit in x14.
794	 *
795	 * Because addends are stored in place in the binary, RELR relocations
796	 * cannot be applied idempotently. We use x24 to keep track of the
797	 * currently applied displacement so that we can correctly relocate if
798	 * __relocate_kernel is called twice with non-zero displacements (i.e.
799	 * if there is both a physical misalignment and a KASLR displacement).
800	 */
801	ldr	w9, =__relr_offset		// offset to reloc table
802	ldr	w10, =__relr_size		// size of reloc table
803	add	x9, x9, x11			// __va(.relr)
804	add	x10, x9, x10			// __va(.relr) + sizeof(.relr)
805
806	sub	x15, x23, x24			// delta from previous offset
807	cbz	x15, 7f				// nothing to do if unchanged
808	mov	x24, x23			// save new offset
809
8102:	cmp	x9, x10
811	b.hs	7f
812	ldr	x11, [x9], #8
813	tbnz	x11, #0, 3f			// branch to handle bitmaps
814	add	x13, x11, x23
815	ldr	x12, [x13]			// relocate address entry
816	add	x12, x12, x15
817	str	x12, [x13], #8			// adjust to start of bitmap
818	b	2b
819
8203:	mov	x14, x13
8214:	lsr	x11, x11, #1
822	cbz	x11, 6f
823	tbz	x11, #0, 5f			// skip bit if not set
824	ldr	x12, [x14]			// relocate bit
825	add	x12, x12, x15
826	str	x12, [x14]
827
8285:	add	x14, x14, #8			// move to next bit's address
829	b	4b
830
8316:	/*
832	 * Move to the next bitmap's address. 8 is the word size, and 63 is the
833	 * number of significant bits in a bitmap entry.
834	 */
835	add	x13, x13, #(8 * 63)
836	b	2b
837
8387:
839#endif
840	ret
841
842SYM_FUNC_END(__relocate_kernel)
843#endif
844
845SYM_FUNC_START_LOCAL(__primary_switch)
846#ifdef CONFIG_RANDOMIZE_BASE
847	mov	x19, x0				// preserve new SCTLR_EL1 value
848	mrs	x20, sctlr_el1			// preserve old SCTLR_EL1 value
849#endif
850
851	adrp	x1, init_pg_dir
852	bl	__enable_mmu
853#ifdef CONFIG_RELOCATABLE
854#ifdef CONFIG_RELR
855	mov	x24, #0				// no RELR displacement yet
856#endif
857	bl	__relocate_kernel
858#ifdef CONFIG_RANDOMIZE_BASE
859	ldr	x8, =__primary_switched
860	adrp	x0, __PHYS_OFFSET
861	blr	x8
862
863	/*
864	 * If we return here, we have a KASLR displacement in x23 which we need
865	 * to take into account by discarding the current kernel mapping and
866	 * creating a new one.
867	 */
868	pre_disable_mmu_workaround
869	msr	sctlr_el1, x20			// disable the MMU
870	isb
871	bl	__create_page_tables		// recreate kernel mapping
872
873	tlbi	vmalle1				// Remove any stale TLB entries
874	dsb	nsh
875	isb
876
877	set_sctlr_el1	x19			// re-enable the MMU
878
879	bl	__relocate_kernel
880#endif
881#endif
882	ldr	x8, =__primary_switched
883	adrp	x0, __PHYS_OFFSET
884	br	x8
885SYM_FUNC_END(__primary_switch)
886