xref: /openbmc/linux/arch/arm64/kernel/head.S (revision cce8e04c)
1/*
2 * Low-level CPU initialisation
3 * Based on arch/arm/kernel/head.S
4 *
5 * Copyright (C) 1994-2002 Russell King
6 * Copyright (C) 2003-2012 ARM Ltd.
7 * Authors:	Catalin Marinas <catalin.marinas@arm.com>
8 *		Will Deacon <will.deacon@arm.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <linux/linkage.h>
24#include <linux/init.h>
25#include <linux/irqchip/arm-gic-v3.h>
26
27#include <asm/assembler.h>
28#include <asm/boot.h>
29#include <asm/ptrace.h>
30#include <asm/asm-offsets.h>
31#include <asm/cache.h>
32#include <asm/cputype.h>
33#include <asm/elf.h>
34#include <asm/image.h>
35#include <asm/kernel-pgtable.h>
36#include <asm/kvm_arm.h>
37#include <asm/memory.h>
38#include <asm/pgtable-hwdef.h>
39#include <asm/pgtable.h>
40#include <asm/page.h>
41#include <asm/smp.h>
42#include <asm/sysreg.h>
43#include <asm/thread_info.h>
44#include <asm/virt.h>
45
46#include "efi-header.S"
47
48#define __PHYS_OFFSET	(KERNEL_START - TEXT_OFFSET)
49
50#if (TEXT_OFFSET & 0xfff) != 0
51#error TEXT_OFFSET must be at least 4KB aligned
52#elif (PAGE_OFFSET & 0x1fffff) != 0
53#error PAGE_OFFSET must be at least 2MB aligned
54#elif TEXT_OFFSET > 0x1fffff
55#error TEXT_OFFSET must be less than 2MB
56#endif
57
58/*
59 * Kernel startup entry point.
60 * ---------------------------
61 *
62 * The requirements are:
63 *   MMU = off, D-cache = off, I-cache = on or off,
64 *   x0 = physical address to the FDT blob.
65 *
66 * This code is mostly position independent so you call this at
67 * __pa(PAGE_OFFSET + TEXT_OFFSET).
68 *
69 * Note that the callee-saved registers are used for storing variables
70 * that are useful before the MMU is enabled. The allocations are described
71 * in the entry routines.
72 */
73	__HEAD
74_head:
75	/*
76	 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
77	 */
78#ifdef CONFIG_EFI
79	/*
80	 * This add instruction has no meaningful effect except that
81	 * its opcode forms the magic "MZ" signature required by UEFI.
82	 */
83	add	x13, x18, #0x16
84	b	stext
85#else
86	b	stext				// branch to kernel start, magic
87	.long	0				// reserved
88#endif
89	le64sym	_kernel_offset_le		// Image load offset from start of RAM, little-endian
90	le64sym	_kernel_size_le			// Effective size of kernel image, little-endian
91	le64sym	_kernel_flags_le		// Informative flags, little-endian
92	.quad	0				// reserved
93	.quad	0				// reserved
94	.quad	0				// reserved
95	.ascii	ARM64_IMAGE_MAGIC		// Magic number
96#ifdef CONFIG_EFI
97	.long	pe_header - _head		// Offset to the PE header.
98
99pe_header:
100	__EFI_PE_HEADER
101#else
102	.long	0				// reserved
103#endif
104
105	__INIT
106
107	/*
108	 * The following callee saved general purpose registers are used on the
109	 * primary lowlevel boot path:
110	 *
111	 *  Register   Scope                      Purpose
112	 *  x21        stext() .. start_kernel()  FDT pointer passed at boot in x0
113	 *  x23        stext() .. start_kernel()  physical misalignment/KASLR offset
114	 *  x28        __create_page_tables()     callee preserved temp register
115	 *  x19/x20    __primary_switch()         callee preserved temp registers
116	 */
117ENTRY(stext)
118	bl	preserve_boot_args
119	bl	el2_setup			// Drop to EL1, w0=cpu_boot_mode
120	adrp	x23, __PHYS_OFFSET
121	and	x23, x23, MIN_KIMG_ALIGN - 1	// KASLR offset, defaults to 0
122	bl	set_cpu_boot_mode_flag
123	bl	__create_page_tables
124	/*
125	 * The following calls CPU setup code, see arch/arm64/mm/proc.S for
126	 * details.
127	 * On return, the CPU will be ready for the MMU to be turned on and
128	 * the TCR will have been set.
129	 */
130	bl	__cpu_setup			// initialise processor
131	b	__primary_switch
132ENDPROC(stext)
133
134/*
135 * Preserve the arguments passed by the bootloader in x0 .. x3
136 */
137preserve_boot_args:
138	mov	x21, x0				// x21=FDT
139
140	adr_l	x0, boot_args			// record the contents of
141	stp	x21, x1, [x0]			// x0 .. x3 at kernel entry
142	stp	x2, x3, [x0, #16]
143
144	dmb	sy				// needed before dc ivac with
145						// MMU off
146
147	mov	x1, #0x20			// 4 x 8 bytes
148	b	__inval_dcache_area		// tail call
149ENDPROC(preserve_boot_args)
150
151/*
152 * Macro to create a table entry to the next page.
153 *
154 *	tbl:	page table address
155 *	virt:	virtual address
156 *	shift:	#imm page table shift
157 *	ptrs:	#imm pointers per table page
158 *
159 * Preserves:	virt
160 * Corrupts:	ptrs, tmp1, tmp2
161 * Returns:	tbl -> next level table page address
162 */
163	.macro	create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
164	add	\tmp1, \tbl, #PAGE_SIZE
165	phys_to_pte \tmp2, \tmp1
166	orr	\tmp2, \tmp2, #PMD_TYPE_TABLE	// address of next table and entry type
167	lsr	\tmp1, \virt, #\shift
168	sub	\ptrs, \ptrs, #1
169	and	\tmp1, \tmp1, \ptrs		// table index
170	str	\tmp2, [\tbl, \tmp1, lsl #3]
171	add	\tbl, \tbl, #PAGE_SIZE		// next level table page
172	.endm
173
174/*
175 * Macro to populate page table entries, these entries can be pointers to the next level
176 * or last level entries pointing to physical memory.
177 *
178 *	tbl:	page table address
179 *	rtbl:	pointer to page table or physical memory
180 *	index:	start index to write
181 *	eindex:	end index to write - [index, eindex] written to
182 *	flags:	flags for pagetable entry to or in
183 *	inc:	increment to rtbl between each entry
184 *	tmp1:	temporary variable
185 *
186 * Preserves:	tbl, eindex, flags, inc
187 * Corrupts:	index, tmp1
188 * Returns:	rtbl
189 */
190	.macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1
191.Lpe\@:	phys_to_pte \tmp1, \rtbl
192	orr	\tmp1, \tmp1, \flags	// tmp1 = table entry
193	str	\tmp1, [\tbl, \index, lsl #3]
194	add	\rtbl, \rtbl, \inc	// rtbl = pa next level
195	add	\index, \index, #1
196	cmp	\index, \eindex
197	b.ls	.Lpe\@
198	.endm
199
200/*
201 * Compute indices of table entries from virtual address range. If multiple entries
202 * were needed in the previous page table level then the next page table level is assumed
203 * to be composed of multiple pages. (This effectively scales the end index).
204 *
205 *	vstart:	virtual address of start of range
206 *	vend:	virtual address of end of range
207 *	shift:	shift used to transform virtual address into index
208 *	ptrs:	number of entries in page table
209 *	istart:	index in table corresponding to vstart
210 *	iend:	index in table corresponding to vend
211 *	count:	On entry: how many extra entries were required in previous level, scales
212 *			  our end index.
213 *		On exit: returns how many extra entries required for next page table level
214 *
215 * Preserves:	vstart, vend, shift, ptrs
216 * Returns:	istart, iend, count
217 */
218	.macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count
219	lsr	\iend, \vend, \shift
220	mov	\istart, \ptrs
221	sub	\istart, \istart, #1
222	and	\iend, \iend, \istart	// iend = (vend >> shift) & (ptrs - 1)
223	mov	\istart, \ptrs
224	mul	\istart, \istart, \count
225	add	\iend, \iend, \istart	// iend += (count - 1) * ptrs
226					// our entries span multiple tables
227
228	lsr	\istart, \vstart, \shift
229	mov	\count, \ptrs
230	sub	\count, \count, #1
231	and	\istart, \istart, \count
232
233	sub	\count, \iend, \istart
234	.endm
235
236/*
237 * Map memory for specified virtual address range. Each level of page table needed supports
238 * multiple entries. If a level requires n entries the next page table level is assumed to be
239 * formed from n pages.
240 *
241 *	tbl:	location of page table
242 *	rtbl:	address to be used for first level page table entry (typically tbl + PAGE_SIZE)
243 *	vstart:	start address to map
244 *	vend:	end address to map - we map [vstart, vend]
245 *	flags:	flags to use to map last level entries
246 *	phys:	physical address corresponding to vstart - physical memory is contiguous
247 *	pgds:	the number of pgd entries
248 *
249 * Temporaries:	istart, iend, tmp, count, sv - these need to be different registers
250 * Preserves:	vstart, vend, flags
251 * Corrupts:	tbl, rtbl, istart, iend, tmp, count, sv
252 */
253	.macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv
254	add \rtbl, \tbl, #PAGE_SIZE
255	mov \sv, \rtbl
256	mov \count, #0
257	compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count
258	populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
259	mov \tbl, \sv
260	mov \sv, \rtbl
261
262#if SWAPPER_PGTABLE_LEVELS > 3
263	compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count
264	populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
265	mov \tbl, \sv
266	mov \sv, \rtbl
267#endif
268
269#if SWAPPER_PGTABLE_LEVELS > 2
270	compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count
271	populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
272	mov \tbl, \sv
273#endif
274
275	compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count
276	bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1
277	populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp
278	.endm
279
280/*
281 * Setup the initial page tables. We only setup the barest amount which is
282 * required to get the kernel running. The following sections are required:
283 *   - identity mapping to enable the MMU (low address, TTBR0)
284 *   - first few MB of the kernel linear mapping to jump to once the MMU has
285 *     been enabled
286 */
287__create_page_tables:
288	mov	x28, lr
289
290	/*
291	 * Invalidate the init page tables to avoid potential dirty cache lines
292	 * being evicted. Other page tables are allocated in rodata as part of
293	 * the kernel image, and thus are clean to the PoC per the boot
294	 * protocol.
295	 */
296	adrp	x0, init_pg_dir
297	adrp	x1, init_pg_end
298	sub	x1, x1, x0
299	bl	__inval_dcache_area
300
301	/*
302	 * Clear the init page tables.
303	 */
304	adrp	x0, init_pg_dir
305	adrp	x1, init_pg_end
306	sub	x1, x1, x0
3071:	stp	xzr, xzr, [x0], #16
308	stp	xzr, xzr, [x0], #16
309	stp	xzr, xzr, [x0], #16
310	stp	xzr, xzr, [x0], #16
311	subs	x1, x1, #64
312	b.ne	1b
313
314	mov	x7, SWAPPER_MM_MMUFLAGS
315
316	/*
317	 * Create the identity mapping.
318	 */
319	adrp	x0, idmap_pg_dir
320	adrp	x3, __idmap_text_start		// __pa(__idmap_text_start)
321
322#ifdef CONFIG_ARM64_USER_VA_BITS_52
323	mrs_s	x6, SYS_ID_AA64MMFR2_EL1
324	and	x6, x6, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
325	mov	x5, #52
326	cbnz	x6, 1f
327#endif
328	mov	x5, #VA_BITS
3291:
330	adr_l	x6, vabits_user
331	str	x5, [x6]
332	dmb	sy
333	dc	ivac, x6		// Invalidate potentially stale cache line
334
335	/*
336	 * VA_BITS may be too small to allow for an ID mapping to be created
337	 * that covers system RAM if that is located sufficiently high in the
338	 * physical address space. So for the ID map, use an extended virtual
339	 * range in that case, and configure an additional translation level
340	 * if needed.
341	 *
342	 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
343	 * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
344	 * this number conveniently equals the number of leading zeroes in
345	 * the physical address of __idmap_text_end.
346	 */
347	adrp	x5, __idmap_text_end
348	clz	x5, x5
349	cmp	x5, TCR_T0SZ(VA_BITS)	// default T0SZ small enough?
350	b.ge	1f			// .. then skip VA range extension
351
352	adr_l	x6, idmap_t0sz
353	str	x5, [x6]
354	dmb	sy
355	dc	ivac, x6		// Invalidate potentially stale cache line
356
357#if (VA_BITS < 48)
358#define EXTRA_SHIFT	(PGDIR_SHIFT + PAGE_SHIFT - 3)
359#define EXTRA_PTRS	(1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT))
360
361	/*
362	 * If VA_BITS < 48, we have to configure an additional table level.
363	 * First, we have to verify our assumption that the current value of
364	 * VA_BITS was chosen such that all translation levels are fully
365	 * utilised, and that lowering T0SZ will always result in an additional
366	 * translation level to be configured.
367	 */
368#if VA_BITS != EXTRA_SHIFT
369#error "Mismatch between VA_BITS and page size/number of translation levels"
370#endif
371
372	mov	x4, EXTRA_PTRS
373	create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6
374#else
375	/*
376	 * If VA_BITS == 48, we don't have to configure an additional
377	 * translation level, but the top-level table has more entries.
378	 */
379	mov	x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT)
380	str_l	x4, idmap_ptrs_per_pgd, x5
381#endif
3821:
383	ldr_l	x4, idmap_ptrs_per_pgd
384	mov	x5, x3				// __pa(__idmap_text_start)
385	adr_l	x6, __idmap_text_end		// __pa(__idmap_text_end)
386
387	map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14
388
389	/*
390	 * Map the kernel image (starting with PHYS_OFFSET).
391	 */
392	adrp	x0, init_pg_dir
393	mov_q	x5, KIMAGE_VADDR + TEXT_OFFSET	// compile time __va(_text)
394	add	x5, x5, x23			// add KASLR displacement
395	mov	x4, PTRS_PER_PGD
396	adrp	x6, _end			// runtime __pa(_end)
397	adrp	x3, _text			// runtime __pa(_text)
398	sub	x6, x6, x3			// _end - _text
399	add	x6, x6, x5			// runtime __va(_end)
400
401	map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14
402
403	/*
404	 * Since the page tables have been populated with non-cacheable
405	 * accesses (MMU disabled), invalidate the idmap and swapper page
406	 * tables again to remove any speculatively loaded cache lines.
407	 */
408	adrp	x0, idmap_pg_dir
409	adrp	x1, init_pg_end
410	sub	x1, x1, x0
411	dmb	sy
412	bl	__inval_dcache_area
413
414	ret	x28
415ENDPROC(__create_page_tables)
416	.ltorg
417
418/*
419 * The following fragment of code is executed with the MMU enabled.
420 *
421 *   x0 = __PHYS_OFFSET
422 */
423__primary_switched:
424	adrp	x4, init_thread_union
425	add	sp, x4, #THREAD_SIZE
426	adr_l	x5, init_task
427	msr	sp_el0, x5			// Save thread_info
428
429	adr_l	x8, vectors			// load VBAR_EL1 with virtual
430	msr	vbar_el1, x8			// vector table address
431	isb
432
433	stp	xzr, x30, [sp, #-16]!
434	mov	x29, sp
435
436	str_l	x21, __fdt_pointer, x5		// Save FDT pointer
437
438	ldr_l	x4, kimage_vaddr		// Save the offset between
439	sub	x4, x4, x0			// the kernel virtual and
440	str_l	x4, kimage_voffset, x5		// physical mappings
441
442	// Clear BSS
443	adr_l	x0, __bss_start
444	mov	x1, xzr
445	adr_l	x2, __bss_stop
446	sub	x2, x2, x0
447	bl	__pi_memset
448	dsb	ishst				// Make zero page visible to PTW
449
450#ifdef CONFIG_KASAN
451	bl	kasan_early_init
452#endif
453#ifdef CONFIG_RANDOMIZE_BASE
454	tst	x23, ~(MIN_KIMG_ALIGN - 1)	// already running randomized?
455	b.ne	0f
456	mov	x0, x21				// pass FDT address in x0
457	bl	kaslr_early_init		// parse FDT for KASLR options
458	cbz	x0, 0f				// KASLR disabled? just proceed
459	orr	x23, x23, x0			// record KASLR offset
460	ldp	x29, x30, [sp], #16		// we must enable KASLR, return
461	ret					// to __primary_switch()
4620:
463#endif
464	add	sp, sp, #16
465	mov	x29, #0
466	mov	x30, #0
467	b	start_kernel
468ENDPROC(__primary_switched)
469
470/*
471 * end early head section, begin head code that is also used for
472 * hotplug and needs to have the same protections as the text region
473 */
474	.section ".idmap.text","awx"
475
476ENTRY(kimage_vaddr)
477	.quad		_text - TEXT_OFFSET
478
479/*
480 * If we're fortunate enough to boot at EL2, ensure that the world is
481 * sane before dropping to EL1.
482 *
483 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if
484 * booted in EL1 or EL2 respectively.
485 */
486ENTRY(el2_setup)
487	msr	SPsel, #1			// We want to use SP_EL{1,2}
488	mrs	x0, CurrentEL
489	cmp	x0, #CurrentEL_EL2
490	b.eq	1f
491	mov_q	x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1)
492	msr	sctlr_el1, x0
493	mov	w0, #BOOT_CPU_MODE_EL1		// This cpu booted in EL1
494	isb
495	ret
496
4971:	mov_q	x0, (SCTLR_EL2_RES1 | ENDIAN_SET_EL2)
498	msr	sctlr_el2, x0
499
500#ifdef CONFIG_ARM64_VHE
501	/*
502	 * Check for VHE being present. For the rest of the EL2 setup,
503	 * x2 being non-zero indicates that we do have VHE, and that the
504	 * kernel is intended to run at EL2.
505	 */
506	mrs	x2, id_aa64mmfr1_el1
507	ubfx	x2, x2, #8, #4
508#else
509	mov	x2, xzr
510#endif
511
512	/* Hyp configuration. */
513	mov_q	x0, HCR_HOST_NVHE_FLAGS
514	cbz	x2, set_hcr
515	mov_q	x0, HCR_HOST_VHE_FLAGS
516set_hcr:
517	msr	hcr_el2, x0
518	isb
519
520	/*
521	 * Allow Non-secure EL1 and EL0 to access physical timer and counter.
522	 * This is not necessary for VHE, since the host kernel runs in EL2,
523	 * and EL0 accesses are configured in the later stage of boot process.
524	 * Note that when HCR_EL2.E2H == 1, CNTHCTL_EL2 has the same bit layout
525	 * as CNTKCTL_EL1, and CNTKCTL_EL1 accessing instructions are redefined
526	 * to access CNTHCTL_EL2. This allows the kernel designed to run at EL1
527	 * to transparently mess with the EL0 bits via CNTKCTL_EL1 access in
528	 * EL2.
529	 */
530	cbnz	x2, 1f
531	mrs	x0, cnthctl_el2
532	orr	x0, x0, #3			// Enable EL1 physical timers
533	msr	cnthctl_el2, x0
5341:
535	msr	cntvoff_el2, xzr		// Clear virtual offset
536
537#ifdef CONFIG_ARM_GIC_V3
538	/* GICv3 system register access */
539	mrs	x0, id_aa64pfr0_el1
540	ubfx	x0, x0, #24, #4
541	cmp	x0, #1
542	b.ne	3f
543
544	mrs_s	x0, SYS_ICC_SRE_EL2
545	orr	x0, x0, #ICC_SRE_EL2_SRE	// Set ICC_SRE_EL2.SRE==1
546	orr	x0, x0, #ICC_SRE_EL2_ENABLE	// Set ICC_SRE_EL2.Enable==1
547	msr_s	SYS_ICC_SRE_EL2, x0
548	isb					// Make sure SRE is now set
549	mrs_s	x0, SYS_ICC_SRE_EL2		// Read SRE back,
550	tbz	x0, #0, 3f			// and check that it sticks
551	msr_s	SYS_ICH_HCR_EL2, xzr		// Reset ICC_HCR_EL2 to defaults
552
5533:
554#endif
555
556	/* Populate ID registers. */
557	mrs	x0, midr_el1
558	mrs	x1, mpidr_el1
559	msr	vpidr_el2, x0
560	msr	vmpidr_el2, x1
561
562#ifdef CONFIG_COMPAT
563	msr	hstr_el2, xzr			// Disable CP15 traps to EL2
564#endif
565
566	/* EL2 debug */
567	mrs	x1, id_aa64dfr0_el1		// Check ID_AA64DFR0_EL1 PMUVer
568	sbfx	x0, x1, #8, #4
569	cmp	x0, #1
570	b.lt	4f				// Skip if no PMU present
571	mrs	x0, pmcr_el0			// Disable debug access traps
572	ubfx	x0, x0, #11, #5			// to EL2 and allow access to
5734:
574	csel	x3, xzr, x0, lt			// all PMU counters from EL1
575
576	/* Statistical profiling */
577	ubfx	x0, x1, #32, #4			// Check ID_AA64DFR0_EL1 PMSVer
578	cbz	x0, 7f				// Skip if SPE not present
579	cbnz	x2, 6f				// VHE?
580	mrs_s	x4, SYS_PMBIDR_EL1		// If SPE available at EL2,
581	and	x4, x4, #(1 << SYS_PMBIDR_EL1_P_SHIFT)
582	cbnz	x4, 5f				// then permit sampling of physical
583	mov	x4, #(1 << SYS_PMSCR_EL2_PCT_SHIFT | \
584		      1 << SYS_PMSCR_EL2_PA_SHIFT)
585	msr_s	SYS_PMSCR_EL2, x4		// addresses and physical counter
5865:
587	mov	x1, #(MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT)
588	orr	x3, x3, x1			// If we don't have VHE, then
589	b	7f				// use EL1&0 translation.
5906:						// For VHE, use EL2 translation
591	orr	x3, x3, #MDCR_EL2_TPMS		// and disable access from EL1
5927:
593	msr	mdcr_el2, x3			// Configure debug traps
594
595	/* LORegions */
596	mrs	x1, id_aa64mmfr1_el1
597	ubfx	x0, x1, #ID_AA64MMFR1_LOR_SHIFT, 4
598	cbz	x0, 1f
599	msr_s	SYS_LORC_EL1, xzr
6001:
601
602	/* Stage-2 translation */
603	msr	vttbr_el2, xzr
604
605	cbz	x2, install_el2_stub
606
607	mov	w0, #BOOT_CPU_MODE_EL2		// This CPU booted in EL2
608	isb
609	ret
610
611install_el2_stub:
612	/*
613	 * When VHE is not in use, early init of EL2 and EL1 needs to be
614	 * done here.
615	 * When VHE _is_ in use, EL1 will not be used in the host and
616	 * requires no configuration, and all non-hyp-specific EL2 setup
617	 * will be done via the _EL1 system register aliases in __cpu_setup.
618	 */
619	mov_q	x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1)
620	msr	sctlr_el1, x0
621
622	/* Coprocessor traps. */
623	mov	x0, #0x33ff
624	msr	cptr_el2, x0			// Disable copro. traps to EL2
625
626	/* SVE register access */
627	mrs	x1, id_aa64pfr0_el1
628	ubfx	x1, x1, #ID_AA64PFR0_SVE_SHIFT, #4
629	cbz	x1, 7f
630
631	bic	x0, x0, #CPTR_EL2_TZ		// Also disable SVE traps
632	msr	cptr_el2, x0			// Disable copro. traps to EL2
633	isb
634	mov	x1, #ZCR_ELx_LEN_MASK		// SVE: Enable full vector
635	msr_s	SYS_ZCR_EL2, x1			// length for EL1.
636
637	/* Hypervisor stub */
6387:	adr_l	x0, __hyp_stub_vectors
639	msr	vbar_el2, x0
640
641	/* spsr */
642	mov	x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
643		      PSR_MODE_EL1h)
644	msr	spsr_el2, x0
645	msr	elr_el2, lr
646	mov	w0, #BOOT_CPU_MODE_EL2		// This CPU booted in EL2
647	eret
648ENDPROC(el2_setup)
649
650/*
651 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
652 * in w0. See arch/arm64/include/asm/virt.h for more info.
653 */
654set_cpu_boot_mode_flag:
655	adr_l	x1, __boot_cpu_mode
656	cmp	w0, #BOOT_CPU_MODE_EL2
657	b.ne	1f
658	add	x1, x1, #4
6591:	str	w0, [x1]			// This CPU has booted in EL1
660	dmb	sy
661	dc	ivac, x1			// Invalidate potentially stale cache line
662	ret
663ENDPROC(set_cpu_boot_mode_flag)
664
665/*
666 * These values are written with the MMU off, but read with the MMU on.
667 * Writers will invalidate the corresponding address, discarding up to a
668 * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures
669 * sufficient alignment that the CWG doesn't overlap another section.
670 */
671	.pushsection ".mmuoff.data.write", "aw"
672/*
673 * We need to find out the CPU boot mode long after boot, so we need to
674 * store it in a writable variable.
675 *
676 * This is not in .bss, because we set it sufficiently early that the boot-time
677 * zeroing of .bss would clobber it.
678 */
679ENTRY(__boot_cpu_mode)
680	.long	BOOT_CPU_MODE_EL2
681	.long	BOOT_CPU_MODE_EL1
682/*
683 * The booting CPU updates the failed status @__early_cpu_boot_status,
684 * with MMU turned off.
685 */
686ENTRY(__early_cpu_boot_status)
687	.long 	0
688
689	.popsection
690
691	/*
692	 * This provides a "holding pen" for platforms to hold all secondary
693	 * cores are held until we're ready for them to initialise.
694	 */
695ENTRY(secondary_holding_pen)
696	bl	el2_setup			// Drop to EL1, w0=cpu_boot_mode
697	bl	set_cpu_boot_mode_flag
698	mrs	x0, mpidr_el1
699	mov_q	x1, MPIDR_HWID_BITMASK
700	and	x0, x0, x1
701	adr_l	x3, secondary_holding_pen_release
702pen:	ldr	x4, [x3]
703	cmp	x4, x0
704	b.eq	secondary_startup
705	wfe
706	b	pen
707ENDPROC(secondary_holding_pen)
708
709	/*
710	 * Secondary entry point that jumps straight into the kernel. Only to
711	 * be used where CPUs are brought online dynamically by the kernel.
712	 */
713ENTRY(secondary_entry)
714	bl	el2_setup			// Drop to EL1
715	bl	set_cpu_boot_mode_flag
716	b	secondary_startup
717ENDPROC(secondary_entry)
718
719secondary_startup:
720	/*
721	 * Common entry point for secondary CPUs.
722	 */
723	bl	__cpu_secondary_check52bitva
724	bl	__cpu_setup			// initialise processor
725	adrp	x1, swapper_pg_dir
726	bl	__enable_mmu
727	ldr	x8, =__secondary_switched
728	br	x8
729ENDPROC(secondary_startup)
730
731__secondary_switched:
732	adr_l	x5, vectors
733	msr	vbar_el1, x5
734	isb
735
736	adr_l	x0, secondary_data
737	ldr	x1, [x0, #CPU_BOOT_STACK]	// get secondary_data.stack
738	mov	sp, x1
739	ldr	x2, [x0, #CPU_BOOT_TASK]
740	msr	sp_el0, x2
741	mov	x29, #0
742	mov	x30, #0
743	b	secondary_start_kernel
744ENDPROC(__secondary_switched)
745
746/*
747 * The booting CPU updates the failed status @__early_cpu_boot_status,
748 * with MMU turned off.
749 *
750 * update_early_cpu_boot_status tmp, status
751 *  - Corrupts tmp1, tmp2
752 *  - Writes 'status' to __early_cpu_boot_status and makes sure
753 *    it is committed to memory.
754 */
755
756	.macro	update_early_cpu_boot_status status, tmp1, tmp2
757	mov	\tmp2, #\status
758	adr_l	\tmp1, __early_cpu_boot_status
759	str	\tmp2, [\tmp1]
760	dmb	sy
761	dc	ivac, \tmp1			// Invalidate potentially stale cache line
762	.endm
763
764/*
765 * Enable the MMU.
766 *
767 *  x0  = SCTLR_EL1 value for turning on the MMU.
768 *  x1  = TTBR1_EL1 value
769 *
770 * Returns to the caller via x30/lr. This requires the caller to be covered
771 * by the .idmap.text section.
772 *
773 * Checks if the selected granule size is supported by the CPU.
774 * If it isn't, park the CPU
775 */
776ENTRY(__enable_mmu)
777	mrs	x2, ID_AA64MMFR0_EL1
778	ubfx	x2, x2, #ID_AA64MMFR0_TGRAN_SHIFT, 4
779	cmp	x2, #ID_AA64MMFR0_TGRAN_SUPPORTED
780	b.ne	__no_granule_support
781	update_early_cpu_boot_status 0, x2, x3
782	adrp	x2, idmap_pg_dir
783	phys_to_ttbr x1, x1
784	phys_to_ttbr x2, x2
785	msr	ttbr0_el1, x2			// load TTBR0
786	offset_ttbr1 x1
787	msr	ttbr1_el1, x1			// load TTBR1
788	isb
789	msr	sctlr_el1, x0
790	isb
791	/*
792	 * Invalidate the local I-cache so that any instructions fetched
793	 * speculatively from the PoC are discarded, since they may have
794	 * been dynamically patched at the PoU.
795	 */
796	ic	iallu
797	dsb	nsh
798	isb
799	ret
800ENDPROC(__enable_mmu)
801
802ENTRY(__cpu_secondary_check52bitva)
803#ifdef CONFIG_ARM64_USER_VA_BITS_52
804	ldr_l	x0, vabits_user
805	cmp	x0, #52
806	b.ne	2f
807
808	mrs_s	x0, SYS_ID_AA64MMFR2_EL1
809	and	x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
810	cbnz	x0, 2f
811
812	update_early_cpu_boot_status \
813		CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
8141:	wfe
815	wfi
816	b	1b
817
818#endif
8192:	ret
820ENDPROC(__cpu_secondary_check52bitva)
821
822__no_granule_support:
823	/* Indicate that this CPU can't boot and is stuck in the kernel */
824	update_early_cpu_boot_status \
825		CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2
8261:
827	wfe
828	wfi
829	b	1b
830ENDPROC(__no_granule_support)
831
832#ifdef CONFIG_RELOCATABLE
833__relocate_kernel:
834	/*
835	 * Iterate over each entry in the relocation table, and apply the
836	 * relocations in place.
837	 */
838	ldr	w9, =__rela_offset		// offset to reloc table
839	ldr	w10, =__rela_size		// size of reloc table
840
841	mov_q	x11, KIMAGE_VADDR		// default virtual offset
842	add	x11, x11, x23			// actual virtual offset
843	add	x9, x9, x11			// __va(.rela)
844	add	x10, x9, x10			// __va(.rela) + sizeof(.rela)
845
8460:	cmp	x9, x10
847	b.hs	1f
848	ldp	x11, x12, [x9], #24
849	ldr	x13, [x9, #-8]
850	cmp	w12, #R_AARCH64_RELATIVE
851	b.ne	0b
852	add	x13, x13, x23			// relocate
853	str	x13, [x11, x23]
854	b	0b
8551:	ret
856ENDPROC(__relocate_kernel)
857#endif
858
859__primary_switch:
860#ifdef CONFIG_RANDOMIZE_BASE
861	mov	x19, x0				// preserve new SCTLR_EL1 value
862	mrs	x20, sctlr_el1			// preserve old SCTLR_EL1 value
863#endif
864
865	adrp	x1, init_pg_dir
866	bl	__enable_mmu
867#ifdef CONFIG_RELOCATABLE
868	bl	__relocate_kernel
869#ifdef CONFIG_RANDOMIZE_BASE
870	ldr	x8, =__primary_switched
871	adrp	x0, __PHYS_OFFSET
872	blr	x8
873
874	/*
875	 * If we return here, we have a KASLR displacement in x23 which we need
876	 * to take into account by discarding the current kernel mapping and
877	 * creating a new one.
878	 */
879	pre_disable_mmu_workaround
880	msr	sctlr_el1, x20			// disable the MMU
881	isb
882	bl	__create_page_tables		// recreate kernel mapping
883
884	tlbi	vmalle1				// Remove any stale TLB entries
885	dsb	nsh
886
887	msr	sctlr_el1, x19			// re-enable the MMU
888	isb
889	ic	iallu				// flush instructions fetched
890	dsb	nsh				// via old mapping
891	isb
892
893	bl	__relocate_kernel
894#endif
895#endif
896	ldr	x8, =__primary_switched
897	adrp	x0, __PHYS_OFFSET
898	br	x8
899ENDPROC(__primary_switch)
900