xref: /openbmc/linux/arch/arm64/kernel/head.S (revision a06c488d)
1/*
2 * Low-level CPU initialisation
3 * Based on arch/arm/kernel/head.S
4 *
5 * Copyright (C) 1994-2002 Russell King
6 * Copyright (C) 2003-2012 ARM Ltd.
7 * Authors:	Catalin Marinas <catalin.marinas@arm.com>
8 *		Will Deacon <will.deacon@arm.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <linux/linkage.h>
24#include <linux/init.h>
25#include <linux/irqchip/arm-gic-v3.h>
26
27#include <asm/assembler.h>
28#include <asm/ptrace.h>
29#include <asm/asm-offsets.h>
30#include <asm/cache.h>
31#include <asm/cputype.h>
32#include <asm/kernel-pgtable.h>
33#include <asm/memory.h>
34#include <asm/pgtable-hwdef.h>
35#include <asm/pgtable.h>
36#include <asm/page.h>
37#include <asm/sysreg.h>
38#include <asm/thread_info.h>
39#include <asm/virt.h>
40
41#define __PHYS_OFFSET	(KERNEL_START - TEXT_OFFSET)
42
43#if (TEXT_OFFSET & 0xfff) != 0
44#error TEXT_OFFSET must be at least 4KB aligned
45#elif (PAGE_OFFSET & 0x1fffff) != 0
46#error PAGE_OFFSET must be at least 2MB aligned
47#elif TEXT_OFFSET > 0x1fffff
48#error TEXT_OFFSET must be less than 2MB
49#endif
50
51#define KERNEL_START	_text
52#define KERNEL_END	_end
53
54/*
55 * Kernel startup entry point.
56 * ---------------------------
57 *
58 * The requirements are:
59 *   MMU = off, D-cache = off, I-cache = on or off,
60 *   x0 = physical address to the FDT blob.
61 *
62 * This code is mostly position independent so you call this at
63 * __pa(PAGE_OFFSET + TEXT_OFFSET).
64 *
65 * Note that the callee-saved registers are used for storing variables
66 * that are useful before the MMU is enabled. The allocations are described
67 * in the entry routines.
68 */
69	__HEAD
70
71	/*
72	 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
73	 */
74#ifdef CONFIG_EFI
75efi_head:
76	/*
77	 * This add instruction has no meaningful effect except that
78	 * its opcode forms the magic "MZ" signature required by UEFI.
79	 */
80	add	x13, x18, #0x16
81	b	stext
82#else
83	b	stext				// branch to kernel start, magic
84	.long	0				// reserved
85#endif
86	.quad	_kernel_offset_le		// Image load offset from start of RAM, little-endian
87	.quad	_kernel_size_le			// Effective size of kernel image, little-endian
88	.quad	_kernel_flags_le		// Informative flags, little-endian
89	.quad	0				// reserved
90	.quad	0				// reserved
91	.quad	0				// reserved
92	.byte	0x41				// Magic number, "ARM\x64"
93	.byte	0x52
94	.byte	0x4d
95	.byte	0x64
96#ifdef CONFIG_EFI
97	.long	pe_header - efi_head		// Offset to the PE header.
98#else
99	.word	0				// reserved
100#endif
101
102#ifdef CONFIG_EFI
103	.globl	__efistub_stext_offset
104	.set	__efistub_stext_offset, stext - efi_head
105	.align 3
106pe_header:
107	.ascii	"PE"
108	.short 	0
109coff_header:
110	.short	0xaa64				// AArch64
111	.short	2				// nr_sections
112	.long	0 				// TimeDateStamp
113	.long	0				// PointerToSymbolTable
114	.long	1				// NumberOfSymbols
115	.short	section_table - optional_header	// SizeOfOptionalHeader
116	.short	0x206				// Characteristics.
117						// IMAGE_FILE_DEBUG_STRIPPED |
118						// IMAGE_FILE_EXECUTABLE_IMAGE |
119						// IMAGE_FILE_LINE_NUMS_STRIPPED
120optional_header:
121	.short	0x20b				// PE32+ format
122	.byte	0x02				// MajorLinkerVersion
123	.byte	0x14				// MinorLinkerVersion
124	.long	_end - stext			// SizeOfCode
125	.long	0				// SizeOfInitializedData
126	.long	0				// SizeOfUninitializedData
127	.long	__efistub_entry - efi_head	// AddressOfEntryPoint
128	.long	__efistub_stext_offset		// BaseOfCode
129
130extra_header_fields:
131	.quad	0				// ImageBase
132	.long	0x1000				// SectionAlignment
133	.long	PECOFF_FILE_ALIGNMENT		// FileAlignment
134	.short	0				// MajorOperatingSystemVersion
135	.short	0				// MinorOperatingSystemVersion
136	.short	0				// MajorImageVersion
137	.short	0				// MinorImageVersion
138	.short	0				// MajorSubsystemVersion
139	.short	0				// MinorSubsystemVersion
140	.long	0				// Win32VersionValue
141
142	.long	_end - efi_head			// SizeOfImage
143
144	// Everything before the kernel image is considered part of the header
145	.long	__efistub_stext_offset		// SizeOfHeaders
146	.long	0				// CheckSum
147	.short	0xa				// Subsystem (EFI application)
148	.short	0				// DllCharacteristics
149	.quad	0				// SizeOfStackReserve
150	.quad	0				// SizeOfStackCommit
151	.quad	0				// SizeOfHeapReserve
152	.quad	0				// SizeOfHeapCommit
153	.long	0				// LoaderFlags
154	.long	0x6				// NumberOfRvaAndSizes
155
156	.quad	0				// ExportTable
157	.quad	0				// ImportTable
158	.quad	0				// ResourceTable
159	.quad	0				// ExceptionTable
160	.quad	0				// CertificationTable
161	.quad	0				// BaseRelocationTable
162
163	// Section table
164section_table:
165
166	/*
167	 * The EFI application loader requires a relocation section
168	 * because EFI applications must be relocatable.  This is a
169	 * dummy section as far as we are concerned.
170	 */
171	.ascii	".reloc"
172	.byte	0
173	.byte	0			// end of 0 padding of section name
174	.long	0
175	.long	0
176	.long	0			// SizeOfRawData
177	.long	0			// PointerToRawData
178	.long	0			// PointerToRelocations
179	.long	0			// PointerToLineNumbers
180	.short	0			// NumberOfRelocations
181	.short	0			// NumberOfLineNumbers
182	.long	0x42100040		// Characteristics (section flags)
183
184
185	.ascii	".text"
186	.byte	0
187	.byte	0
188	.byte	0        		// end of 0 padding of section name
189	.long	_end - stext		// VirtualSize
190	.long	__efistub_stext_offset	// VirtualAddress
191	.long	_edata - stext		// SizeOfRawData
192	.long	__efistub_stext_offset	// PointerToRawData
193
194	.long	0		// PointerToRelocations (0 for executables)
195	.long	0		// PointerToLineNumbers (0 for executables)
196	.short	0		// NumberOfRelocations  (0 for executables)
197	.short	0		// NumberOfLineNumbers  (0 for executables)
198	.long	0xe0500020	// Characteristics (section flags)
199
200	/*
201	 * EFI will load stext onwards at the 4k section alignment
202	 * described in the PE/COFF header. To ensure that instruction
203	 * sequences using an adrp and a :lo12: immediate will function
204	 * correctly at this alignment, we must ensure that stext is
205	 * placed at a 4k boundary in the Image to begin with.
206	 */
207	.align 12
208#endif
209
210ENTRY(stext)
211	bl	preserve_boot_args
212	bl	el2_setup			// Drop to EL1, w20=cpu_boot_mode
213	adrp	x24, __PHYS_OFFSET
214	bl	set_cpu_boot_mode_flag
215	bl	__create_page_tables		// x25=TTBR0, x26=TTBR1
216	/*
217	 * The following calls CPU setup code, see arch/arm64/mm/proc.S for
218	 * details.
219	 * On return, the CPU will be ready for the MMU to be turned on and
220	 * the TCR will have been set.
221	 */
222	ldr	x27, =__mmap_switched		// address to jump to after
223						// MMU has been enabled
224	adr_l	lr, __enable_mmu		// return (PIC) address
225	b	__cpu_setup			// initialise processor
226ENDPROC(stext)
227
228/*
229 * Preserve the arguments passed by the bootloader in x0 .. x3
230 */
231preserve_boot_args:
232	mov	x21, x0				// x21=FDT
233
234	adr_l	x0, boot_args			// record the contents of
235	stp	x21, x1, [x0]			// x0 .. x3 at kernel entry
236	stp	x2, x3, [x0, #16]
237
238	dmb	sy				// needed before dc ivac with
239						// MMU off
240
241	add	x1, x0, #0x20			// 4 x 8 bytes
242	b	__inval_cache_range		// tail call
243ENDPROC(preserve_boot_args)
244
245/*
246 * Macro to create a table entry to the next page.
247 *
248 *	tbl:	page table address
249 *	virt:	virtual address
250 *	shift:	#imm page table shift
251 *	ptrs:	#imm pointers per table page
252 *
253 * Preserves:	virt
254 * Corrupts:	tmp1, tmp2
255 * Returns:	tbl -> next level table page address
256 */
257	.macro	create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
258	lsr	\tmp1, \virt, #\shift
259	and	\tmp1, \tmp1, #\ptrs - 1	// table index
260	add	\tmp2, \tbl, #PAGE_SIZE
261	orr	\tmp2, \tmp2, #PMD_TYPE_TABLE	// address of next table and entry type
262	str	\tmp2, [\tbl, \tmp1, lsl #3]
263	add	\tbl, \tbl, #PAGE_SIZE		// next level table page
264	.endm
265
266/*
267 * Macro to populate the PGD (and possibily PUD) for the corresponding
268 * block entry in the next level (tbl) for the given virtual address.
269 *
270 * Preserves:	tbl, next, virt
271 * Corrupts:	tmp1, tmp2
272 */
273	.macro	create_pgd_entry, tbl, virt, tmp1, tmp2
274	create_table_entry \tbl, \virt, PGDIR_SHIFT, PTRS_PER_PGD, \tmp1, \tmp2
275#if SWAPPER_PGTABLE_LEVELS > 3
276	create_table_entry \tbl, \virt, PUD_SHIFT, PTRS_PER_PUD, \tmp1, \tmp2
277#endif
278#if SWAPPER_PGTABLE_LEVELS > 2
279	create_table_entry \tbl, \virt, SWAPPER_TABLE_SHIFT, PTRS_PER_PTE, \tmp1, \tmp2
280#endif
281	.endm
282
283/*
284 * Macro to populate block entries in the page table for the start..end
285 * virtual range (inclusive).
286 *
287 * Preserves:	tbl, flags
288 * Corrupts:	phys, start, end, pstate
289 */
290	.macro	create_block_map, tbl, flags, phys, start, end
291	lsr	\phys, \phys, #SWAPPER_BLOCK_SHIFT
292	lsr	\start, \start, #SWAPPER_BLOCK_SHIFT
293	and	\start, \start, #PTRS_PER_PTE - 1	// table index
294	orr	\phys, \flags, \phys, lsl #SWAPPER_BLOCK_SHIFT	// table entry
295	lsr	\end, \end, #SWAPPER_BLOCK_SHIFT
296	and	\end, \end, #PTRS_PER_PTE - 1		// table end index
2979999:	str	\phys, [\tbl, \start, lsl #3]		// store the entry
298	add	\start, \start, #1			// next entry
299	add	\phys, \phys, #SWAPPER_BLOCK_SIZE		// next block
300	cmp	\start, \end
301	b.ls	9999b
302	.endm
303
304/*
305 * Setup the initial page tables. We only setup the barest amount which is
306 * required to get the kernel running. The following sections are required:
307 *   - identity mapping to enable the MMU (low address, TTBR0)
308 *   - first few MB of the kernel linear mapping to jump to once the MMU has
309 *     been enabled
310 */
311__create_page_tables:
312	adrp	x25, idmap_pg_dir
313	adrp	x26, swapper_pg_dir
314	mov	x27, lr
315
316	/*
317	 * Invalidate the idmap and swapper page tables to avoid potential
318	 * dirty cache lines being evicted.
319	 */
320	mov	x0, x25
321	add	x1, x26, #SWAPPER_DIR_SIZE
322	bl	__inval_cache_range
323
324	/*
325	 * Clear the idmap and swapper page tables.
326	 */
327	mov	x0, x25
328	add	x6, x26, #SWAPPER_DIR_SIZE
3291:	stp	xzr, xzr, [x0], #16
330	stp	xzr, xzr, [x0], #16
331	stp	xzr, xzr, [x0], #16
332	stp	xzr, xzr, [x0], #16
333	cmp	x0, x6
334	b.lo	1b
335
336	ldr	x7, =SWAPPER_MM_MMUFLAGS
337
338	/*
339	 * Create the identity mapping.
340	 */
341	mov	x0, x25				// idmap_pg_dir
342	adrp	x3, __idmap_text_start		// __pa(__idmap_text_start)
343
344#ifndef CONFIG_ARM64_VA_BITS_48
345#define EXTRA_SHIFT	(PGDIR_SHIFT + PAGE_SHIFT - 3)
346#define EXTRA_PTRS	(1 << (48 - EXTRA_SHIFT))
347
348	/*
349	 * If VA_BITS < 48, it may be too small to allow for an ID mapping to be
350	 * created that covers system RAM if that is located sufficiently high
351	 * in the physical address space. So for the ID map, use an extended
352	 * virtual range in that case, by configuring an additional translation
353	 * level.
354	 * First, we have to verify our assumption that the current value of
355	 * VA_BITS was chosen such that all translation levels are fully
356	 * utilised, and that lowering T0SZ will always result in an additional
357	 * translation level to be configured.
358	 */
359#if VA_BITS != EXTRA_SHIFT
360#error "Mismatch between VA_BITS and page size/number of translation levels"
361#endif
362
363	/*
364	 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
365	 * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
366	 * this number conveniently equals the number of leading zeroes in
367	 * the physical address of __idmap_text_end.
368	 */
369	adrp	x5, __idmap_text_end
370	clz	x5, x5
371	cmp	x5, TCR_T0SZ(VA_BITS)	// default T0SZ small enough?
372	b.ge	1f			// .. then skip additional level
373
374	adr_l	x6, idmap_t0sz
375	str	x5, [x6]
376	dmb	sy
377	dc	ivac, x6		// Invalidate potentially stale cache line
378
379	create_table_entry x0, x3, EXTRA_SHIFT, EXTRA_PTRS, x5, x6
3801:
381#endif
382
383	create_pgd_entry x0, x3, x5, x6
384	mov	x5, x3				// __pa(__idmap_text_start)
385	adr_l	x6, __idmap_text_end		// __pa(__idmap_text_end)
386	create_block_map x0, x7, x3, x5, x6
387
388	/*
389	 * Map the kernel image (starting with PHYS_OFFSET).
390	 */
391	mov	x0, x26				// swapper_pg_dir
392	mov	x5, #PAGE_OFFSET
393	create_pgd_entry x0, x5, x3, x6
394	ldr	x6, =KERNEL_END			// __va(KERNEL_END)
395	mov	x3, x24				// phys offset
396	create_block_map x0, x7, x3, x5, x6
397
398	/*
399	 * Since the page tables have been populated with non-cacheable
400	 * accesses (MMU disabled), invalidate the idmap and swapper page
401	 * tables again to remove any speculatively loaded cache lines.
402	 */
403	mov	x0, x25
404	add	x1, x26, #SWAPPER_DIR_SIZE
405	dmb	sy
406	bl	__inval_cache_range
407
408	mov	lr, x27
409	ret
410ENDPROC(__create_page_tables)
411	.ltorg
412
413/*
414 * The following fragment of code is executed with the MMU enabled.
415 */
416	.set	initial_sp, init_thread_union + THREAD_START_SP
417__mmap_switched:
418	// Clear BSS
419	adr_l	x0, __bss_start
420	mov	x1, xzr
421	adr_l	x2, __bss_stop
422	sub	x2, x2, x0
423	bl	__pi_memset
424
425	adr_l	sp, initial_sp, x4
426	mov	x4, sp
427	and	x4, x4, #~(THREAD_SIZE - 1)
428	msr	sp_el0, x4			// Save thread_info
429	str_l	x21, __fdt_pointer, x5		// Save FDT pointer
430	str_l	x24, memstart_addr, x6		// Save PHYS_OFFSET
431	mov	x29, #0
432#ifdef CONFIG_KASAN
433	bl	kasan_early_init
434#endif
435	b	start_kernel
436ENDPROC(__mmap_switched)
437
438/*
439 * end early head section, begin head code that is also used for
440 * hotplug and needs to have the same protections as the text region
441 */
442	.section ".text","ax"
443/*
444 * If we're fortunate enough to boot at EL2, ensure that the world is
445 * sane before dropping to EL1.
446 *
447 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x20 if
448 * booted in EL1 or EL2 respectively.
449 */
450ENTRY(el2_setup)
451	mrs	x0, CurrentEL
452	cmp	x0, #CurrentEL_EL2
453	b.ne	1f
454	mrs	x0, sctlr_el2
455CPU_BE(	orr	x0, x0, #(1 << 25)	)	// Set the EE bit for EL2
456CPU_LE(	bic	x0, x0, #(1 << 25)	)	// Clear the EE bit for EL2
457	msr	sctlr_el2, x0
458	b	2f
4591:	mrs	x0, sctlr_el1
460CPU_BE(	orr	x0, x0, #(3 << 24)	)	// Set the EE and E0E bits for EL1
461CPU_LE(	bic	x0, x0, #(3 << 24)	)	// Clear the EE and E0E bits for EL1
462	msr	sctlr_el1, x0
463	mov	w20, #BOOT_CPU_MODE_EL1		// This cpu booted in EL1
464	isb
465	ret
466
467	/* Hyp configuration. */
4682:	mov	x0, #(1 << 31)			// 64-bit EL1
469	msr	hcr_el2, x0
470
471	/* Generic timers. */
472	mrs	x0, cnthctl_el2
473	orr	x0, x0, #3			// Enable EL1 physical timers
474	msr	cnthctl_el2, x0
475	msr	cntvoff_el2, xzr		// Clear virtual offset
476
477#ifdef CONFIG_ARM_GIC_V3
478	/* GICv3 system register access */
479	mrs	x0, id_aa64pfr0_el1
480	ubfx	x0, x0, #24, #4
481	cmp	x0, #1
482	b.ne	3f
483
484	mrs_s	x0, ICC_SRE_EL2
485	orr	x0, x0, #ICC_SRE_EL2_SRE	// Set ICC_SRE_EL2.SRE==1
486	orr	x0, x0, #ICC_SRE_EL2_ENABLE	// Set ICC_SRE_EL2.Enable==1
487	msr_s	ICC_SRE_EL2, x0
488	isb					// Make sure SRE is now set
489	mrs_s	x0, ICC_SRE_EL2			// Read SRE back,
490	tbz	x0, #0, 3f			// and check that it sticks
491	msr_s	ICH_HCR_EL2, xzr		// Reset ICC_HCR_EL2 to defaults
492
4933:
494#endif
495
496	/* Populate ID registers. */
497	mrs	x0, midr_el1
498	mrs	x1, mpidr_el1
499	msr	vpidr_el2, x0
500	msr	vmpidr_el2, x1
501
502	/* sctlr_el1 */
503	mov	x0, #0x0800			// Set/clear RES{1,0} bits
504CPU_BE(	movk	x0, #0x33d0, lsl #16	)	// Set EE and E0E on BE systems
505CPU_LE(	movk	x0, #0x30d0, lsl #16	)	// Clear EE and E0E on LE systems
506	msr	sctlr_el1, x0
507
508	/* Coprocessor traps. */
509	mov	x0, #0x33ff
510	msr	cptr_el2, x0			// Disable copro. traps to EL2
511
512#ifdef CONFIG_COMPAT
513	msr	hstr_el2, xzr			// Disable CP15 traps to EL2
514#endif
515
516	/* EL2 debug */
517	mrs	x0, pmcr_el0			// Disable debug access traps
518	ubfx	x0, x0, #11, #5			// to EL2 and allow access to
519	msr	mdcr_el2, x0			// all PMU counters from EL1
520
521	/* Stage-2 translation */
522	msr	vttbr_el2, xzr
523
524	/* Hypervisor stub */
525	adrp	x0, __hyp_stub_vectors
526	add	x0, x0, #:lo12:__hyp_stub_vectors
527	msr	vbar_el2, x0
528
529	/* spsr */
530	mov	x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
531		      PSR_MODE_EL1h)
532	msr	spsr_el2, x0
533	msr	elr_el2, lr
534	mov	w20, #BOOT_CPU_MODE_EL2		// This CPU booted in EL2
535	eret
536ENDPROC(el2_setup)
537
538/*
539 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
540 * in x20. See arch/arm64/include/asm/virt.h for more info.
541 */
542ENTRY(set_cpu_boot_mode_flag)
543	adr_l	x1, __boot_cpu_mode
544	cmp	w20, #BOOT_CPU_MODE_EL2
545	b.ne	1f
546	add	x1, x1, #4
5471:	str	w20, [x1]			// This CPU has booted in EL1
548	dmb	sy
549	dc	ivac, x1			// Invalidate potentially stale cache line
550	ret
551ENDPROC(set_cpu_boot_mode_flag)
552
553/*
554 * We need to find out the CPU boot mode long after boot, so we need to
555 * store it in a writable variable.
556 *
557 * This is not in .bss, because we set it sufficiently early that the boot-time
558 * zeroing of .bss would clobber it.
559 */
560	.pushsection	.data..cacheline_aligned
561	.align	L1_CACHE_SHIFT
562ENTRY(__boot_cpu_mode)
563	.long	BOOT_CPU_MODE_EL2
564	.long	BOOT_CPU_MODE_EL1
565	.popsection
566
567	/*
568	 * This provides a "holding pen" for platforms to hold all secondary
569	 * cores are held until we're ready for them to initialise.
570	 */
571ENTRY(secondary_holding_pen)
572	bl	el2_setup			// Drop to EL1, w20=cpu_boot_mode
573	bl	set_cpu_boot_mode_flag
574	mrs	x0, mpidr_el1
575	ldr     x1, =MPIDR_HWID_BITMASK
576	and	x0, x0, x1
577	adr_l	x3, secondary_holding_pen_release
578pen:	ldr	x4, [x3]
579	cmp	x4, x0
580	b.eq	secondary_startup
581	wfe
582	b	pen
583ENDPROC(secondary_holding_pen)
584
585	/*
586	 * Secondary entry point that jumps straight into the kernel. Only to
587	 * be used where CPUs are brought online dynamically by the kernel.
588	 */
589ENTRY(secondary_entry)
590	bl	el2_setup			// Drop to EL1
591	bl	set_cpu_boot_mode_flag
592	b	secondary_startup
593ENDPROC(secondary_entry)
594
595ENTRY(secondary_startup)
596	/*
597	 * Common entry point for secondary CPUs.
598	 */
599	adrp	x25, idmap_pg_dir
600	adrp	x26, swapper_pg_dir
601	bl	__cpu_setup			// initialise processor
602
603	ldr	x21, =secondary_data
604	ldr	x27, =__secondary_switched	// address to jump to after enabling the MMU
605	b	__enable_mmu
606ENDPROC(secondary_startup)
607
608ENTRY(__secondary_switched)
609	ldr	x0, [x21]			// get secondary_data.stack
610	mov	sp, x0
611	and	x0, x0, #~(THREAD_SIZE - 1)
612	msr	sp_el0, x0			// save thread_info
613	mov	x29, #0
614	b	secondary_start_kernel
615ENDPROC(__secondary_switched)
616
617/*
618 * Enable the MMU.
619 *
620 *  x0  = SCTLR_EL1 value for turning on the MMU.
621 *  x27 = *virtual* address to jump to upon completion
622 *
623 * Other registers depend on the function called upon completion.
624 *
625 * Checks if the selected granule size is supported by the CPU.
626 * If it isn't, park the CPU
627 */
628	.section	".idmap.text", "ax"
629__enable_mmu:
630	mrs	x1, ID_AA64MMFR0_EL1
631	ubfx	x2, x1, #ID_AA64MMFR0_TGRAN_SHIFT, 4
632	cmp	x2, #ID_AA64MMFR0_TGRAN_SUPPORTED
633	b.ne	__no_granule_support
634	ldr	x5, =vectors
635	msr	vbar_el1, x5
636	msr	ttbr0_el1, x25			// load TTBR0
637	msr	ttbr1_el1, x26			// load TTBR1
638	isb
639	msr	sctlr_el1, x0
640	isb
641	/*
642	 * Invalidate the local I-cache so that any instructions fetched
643	 * speculatively from the PoC are discarded, since they may have
644	 * been dynamically patched at the PoU.
645	 */
646	ic	iallu
647	dsb	nsh
648	isb
649	br	x27
650ENDPROC(__enable_mmu)
651
652__no_granule_support:
653	wfe
654	b __no_granule_support
655ENDPROC(__no_granule_support)
656