1/* 2 * Low-level CPU initialisation 3 * Based on arch/arm/kernel/head.S 4 * 5 * Copyright (C) 1994-2002 Russell King 6 * Copyright (C) 2003-2012 ARM Ltd. 7 * Authors: Catalin Marinas <catalin.marinas@arm.com> 8 * Will Deacon <will.deacon@arm.com> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program. If not, see <http://www.gnu.org/licenses/>. 21 */ 22 23#include <linux/linkage.h> 24#include <linux/init.h> 25#include <linux/irqchip/arm-gic-v3.h> 26 27#include <asm/assembler.h> 28#include <asm/ptrace.h> 29#include <asm/asm-offsets.h> 30#include <asm/cache.h> 31#include <asm/cputype.h> 32#include <asm/kernel-pgtable.h> 33#include <asm/memory.h> 34#include <asm/pgtable-hwdef.h> 35#include <asm/pgtable.h> 36#include <asm/page.h> 37#include <asm/sysreg.h> 38#include <asm/thread_info.h> 39#include <asm/virt.h> 40 41#define __PHYS_OFFSET (KERNEL_START - TEXT_OFFSET) 42 43#if (TEXT_OFFSET & 0xfff) != 0 44#error TEXT_OFFSET must be at least 4KB aligned 45#elif (PAGE_OFFSET & 0x1fffff) != 0 46#error PAGE_OFFSET must be at least 2MB aligned 47#elif TEXT_OFFSET > 0x1fffff 48#error TEXT_OFFSET must be less than 2MB 49#endif 50 51#define KERNEL_START _text 52#define KERNEL_END _end 53 54/* 55 * Kernel startup entry point. 56 * --------------------------- 57 * 58 * The requirements are: 59 * MMU = off, D-cache = off, I-cache = on or off, 60 * x0 = physical address to the FDT blob. 61 * 62 * This code is mostly position independent so you call this at 63 * __pa(PAGE_OFFSET + TEXT_OFFSET). 64 * 65 * Note that the callee-saved registers are used for storing variables 66 * that are useful before the MMU is enabled. The allocations are described 67 * in the entry routines. 68 */ 69 __HEAD 70 71 /* 72 * DO NOT MODIFY. Image header expected by Linux boot-loaders. 73 */ 74#ifdef CONFIG_EFI 75efi_head: 76 /* 77 * This add instruction has no meaningful effect except that 78 * its opcode forms the magic "MZ" signature required by UEFI. 79 */ 80 add x13, x18, #0x16 81 b stext 82#else 83 b stext // branch to kernel start, magic 84 .long 0 // reserved 85#endif 86 .quad _kernel_offset_le // Image load offset from start of RAM, little-endian 87 .quad _kernel_size_le // Effective size of kernel image, little-endian 88 .quad _kernel_flags_le // Informative flags, little-endian 89 .quad 0 // reserved 90 .quad 0 // reserved 91 .quad 0 // reserved 92 .byte 0x41 // Magic number, "ARM\x64" 93 .byte 0x52 94 .byte 0x4d 95 .byte 0x64 96#ifdef CONFIG_EFI 97 .long pe_header - efi_head // Offset to the PE header. 98#else 99 .word 0 // reserved 100#endif 101 102#ifdef CONFIG_EFI 103 .globl __efistub_stext_offset 104 .set __efistub_stext_offset, stext - efi_head 105 .align 3 106pe_header: 107 .ascii "PE" 108 .short 0 109coff_header: 110 .short 0xaa64 // AArch64 111 .short 2 // nr_sections 112 .long 0 // TimeDateStamp 113 .long 0 // PointerToSymbolTable 114 .long 1 // NumberOfSymbols 115 .short section_table - optional_header // SizeOfOptionalHeader 116 .short 0x206 // Characteristics. 117 // IMAGE_FILE_DEBUG_STRIPPED | 118 // IMAGE_FILE_EXECUTABLE_IMAGE | 119 // IMAGE_FILE_LINE_NUMS_STRIPPED 120optional_header: 121 .short 0x20b // PE32+ format 122 .byte 0x02 // MajorLinkerVersion 123 .byte 0x14 // MinorLinkerVersion 124 .long _end - stext // SizeOfCode 125 .long 0 // SizeOfInitializedData 126 .long 0 // SizeOfUninitializedData 127 .long __efistub_entry - efi_head // AddressOfEntryPoint 128 .long __efistub_stext_offset // BaseOfCode 129 130extra_header_fields: 131 .quad 0 // ImageBase 132 .long 0x1000 // SectionAlignment 133 .long PECOFF_FILE_ALIGNMENT // FileAlignment 134 .short 0 // MajorOperatingSystemVersion 135 .short 0 // MinorOperatingSystemVersion 136 .short 0 // MajorImageVersion 137 .short 0 // MinorImageVersion 138 .short 0 // MajorSubsystemVersion 139 .short 0 // MinorSubsystemVersion 140 .long 0 // Win32VersionValue 141 142 .long _end - efi_head // SizeOfImage 143 144 // Everything before the kernel image is considered part of the header 145 .long __efistub_stext_offset // SizeOfHeaders 146 .long 0 // CheckSum 147 .short 0xa // Subsystem (EFI application) 148 .short 0 // DllCharacteristics 149 .quad 0 // SizeOfStackReserve 150 .quad 0 // SizeOfStackCommit 151 .quad 0 // SizeOfHeapReserve 152 .quad 0 // SizeOfHeapCommit 153 .long 0 // LoaderFlags 154 .long 0x6 // NumberOfRvaAndSizes 155 156 .quad 0 // ExportTable 157 .quad 0 // ImportTable 158 .quad 0 // ResourceTable 159 .quad 0 // ExceptionTable 160 .quad 0 // CertificationTable 161 .quad 0 // BaseRelocationTable 162 163 // Section table 164section_table: 165 166 /* 167 * The EFI application loader requires a relocation section 168 * because EFI applications must be relocatable. This is a 169 * dummy section as far as we are concerned. 170 */ 171 .ascii ".reloc" 172 .byte 0 173 .byte 0 // end of 0 padding of section name 174 .long 0 175 .long 0 176 .long 0 // SizeOfRawData 177 .long 0 // PointerToRawData 178 .long 0 // PointerToRelocations 179 .long 0 // PointerToLineNumbers 180 .short 0 // NumberOfRelocations 181 .short 0 // NumberOfLineNumbers 182 .long 0x42100040 // Characteristics (section flags) 183 184 185 .ascii ".text" 186 .byte 0 187 .byte 0 188 .byte 0 // end of 0 padding of section name 189 .long _end - stext // VirtualSize 190 .long __efistub_stext_offset // VirtualAddress 191 .long _edata - stext // SizeOfRawData 192 .long __efistub_stext_offset // PointerToRawData 193 194 .long 0 // PointerToRelocations (0 for executables) 195 .long 0 // PointerToLineNumbers (0 for executables) 196 .short 0 // NumberOfRelocations (0 for executables) 197 .short 0 // NumberOfLineNumbers (0 for executables) 198 .long 0xe0500020 // Characteristics (section flags) 199 200 /* 201 * EFI will load stext onwards at the 4k section alignment 202 * described in the PE/COFF header. To ensure that instruction 203 * sequences using an adrp and a :lo12: immediate will function 204 * correctly at this alignment, we must ensure that stext is 205 * placed at a 4k boundary in the Image to begin with. 206 */ 207 .align 12 208#endif 209 210ENTRY(stext) 211 bl preserve_boot_args 212 bl el2_setup // Drop to EL1, w20=cpu_boot_mode 213 adrp x24, __PHYS_OFFSET 214 bl set_cpu_boot_mode_flag 215 bl __create_page_tables // x25=TTBR0, x26=TTBR1 216 /* 217 * The following calls CPU setup code, see arch/arm64/mm/proc.S for 218 * details. 219 * On return, the CPU will be ready for the MMU to be turned on and 220 * the TCR will have been set. 221 */ 222 ldr x27, =__mmap_switched // address to jump to after 223 // MMU has been enabled 224 adr_l lr, __enable_mmu // return (PIC) address 225 b __cpu_setup // initialise processor 226ENDPROC(stext) 227 228/* 229 * Preserve the arguments passed by the bootloader in x0 .. x3 230 */ 231preserve_boot_args: 232 mov x21, x0 // x21=FDT 233 234 adr_l x0, boot_args // record the contents of 235 stp x21, x1, [x0] // x0 .. x3 at kernel entry 236 stp x2, x3, [x0, #16] 237 238 dmb sy // needed before dc ivac with 239 // MMU off 240 241 add x1, x0, #0x20 // 4 x 8 bytes 242 b __inval_cache_range // tail call 243ENDPROC(preserve_boot_args) 244 245/* 246 * Macro to create a table entry to the next page. 247 * 248 * tbl: page table address 249 * virt: virtual address 250 * shift: #imm page table shift 251 * ptrs: #imm pointers per table page 252 * 253 * Preserves: virt 254 * Corrupts: tmp1, tmp2 255 * Returns: tbl -> next level table page address 256 */ 257 .macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2 258 lsr \tmp1, \virt, #\shift 259 and \tmp1, \tmp1, #\ptrs - 1 // table index 260 add \tmp2, \tbl, #PAGE_SIZE 261 orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type 262 str \tmp2, [\tbl, \tmp1, lsl #3] 263 add \tbl, \tbl, #PAGE_SIZE // next level table page 264 .endm 265 266/* 267 * Macro to populate the PGD (and possibily PUD) for the corresponding 268 * block entry in the next level (tbl) for the given virtual address. 269 * 270 * Preserves: tbl, next, virt 271 * Corrupts: tmp1, tmp2 272 */ 273 .macro create_pgd_entry, tbl, virt, tmp1, tmp2 274 create_table_entry \tbl, \virt, PGDIR_SHIFT, PTRS_PER_PGD, \tmp1, \tmp2 275#if SWAPPER_PGTABLE_LEVELS > 3 276 create_table_entry \tbl, \virt, PUD_SHIFT, PTRS_PER_PUD, \tmp1, \tmp2 277#endif 278#if SWAPPER_PGTABLE_LEVELS > 2 279 create_table_entry \tbl, \virt, SWAPPER_TABLE_SHIFT, PTRS_PER_PTE, \tmp1, \tmp2 280#endif 281 .endm 282 283/* 284 * Macro to populate block entries in the page table for the start..end 285 * virtual range (inclusive). 286 * 287 * Preserves: tbl, flags 288 * Corrupts: phys, start, end, pstate 289 */ 290 .macro create_block_map, tbl, flags, phys, start, end 291 lsr \phys, \phys, #SWAPPER_BLOCK_SHIFT 292 lsr \start, \start, #SWAPPER_BLOCK_SHIFT 293 and \start, \start, #PTRS_PER_PTE - 1 // table index 294 orr \phys, \flags, \phys, lsl #SWAPPER_BLOCK_SHIFT // table entry 295 lsr \end, \end, #SWAPPER_BLOCK_SHIFT 296 and \end, \end, #PTRS_PER_PTE - 1 // table end index 2979999: str \phys, [\tbl, \start, lsl #3] // store the entry 298 add \start, \start, #1 // next entry 299 add \phys, \phys, #SWAPPER_BLOCK_SIZE // next block 300 cmp \start, \end 301 b.ls 9999b 302 .endm 303 304/* 305 * Setup the initial page tables. We only setup the barest amount which is 306 * required to get the kernel running. The following sections are required: 307 * - identity mapping to enable the MMU (low address, TTBR0) 308 * - first few MB of the kernel linear mapping to jump to once the MMU has 309 * been enabled 310 */ 311__create_page_tables: 312 adrp x25, idmap_pg_dir 313 adrp x26, swapper_pg_dir 314 mov x27, lr 315 316 /* 317 * Invalidate the idmap and swapper page tables to avoid potential 318 * dirty cache lines being evicted. 319 */ 320 mov x0, x25 321 add x1, x26, #SWAPPER_DIR_SIZE 322 bl __inval_cache_range 323 324 /* 325 * Clear the idmap and swapper page tables. 326 */ 327 mov x0, x25 328 add x6, x26, #SWAPPER_DIR_SIZE 3291: stp xzr, xzr, [x0], #16 330 stp xzr, xzr, [x0], #16 331 stp xzr, xzr, [x0], #16 332 stp xzr, xzr, [x0], #16 333 cmp x0, x6 334 b.lo 1b 335 336 ldr x7, =SWAPPER_MM_MMUFLAGS 337 338 /* 339 * Create the identity mapping. 340 */ 341 mov x0, x25 // idmap_pg_dir 342 adrp x3, __idmap_text_start // __pa(__idmap_text_start) 343 344#ifndef CONFIG_ARM64_VA_BITS_48 345#define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3) 346#define EXTRA_PTRS (1 << (48 - EXTRA_SHIFT)) 347 348 /* 349 * If VA_BITS < 48, it may be too small to allow for an ID mapping to be 350 * created that covers system RAM if that is located sufficiently high 351 * in the physical address space. So for the ID map, use an extended 352 * virtual range in that case, by configuring an additional translation 353 * level. 354 * First, we have to verify our assumption that the current value of 355 * VA_BITS was chosen such that all translation levels are fully 356 * utilised, and that lowering T0SZ will always result in an additional 357 * translation level to be configured. 358 */ 359#if VA_BITS != EXTRA_SHIFT 360#error "Mismatch between VA_BITS and page size/number of translation levels" 361#endif 362 363 /* 364 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the 365 * entire ID map region can be mapped. As T0SZ == (64 - #bits used), 366 * this number conveniently equals the number of leading zeroes in 367 * the physical address of __idmap_text_end. 368 */ 369 adrp x5, __idmap_text_end 370 clz x5, x5 371 cmp x5, TCR_T0SZ(VA_BITS) // default T0SZ small enough? 372 b.ge 1f // .. then skip additional level 373 374 adr_l x6, idmap_t0sz 375 str x5, [x6] 376 dmb sy 377 dc ivac, x6 // Invalidate potentially stale cache line 378 379 create_table_entry x0, x3, EXTRA_SHIFT, EXTRA_PTRS, x5, x6 3801: 381#endif 382 383 create_pgd_entry x0, x3, x5, x6 384 mov x5, x3 // __pa(__idmap_text_start) 385 adr_l x6, __idmap_text_end // __pa(__idmap_text_end) 386 create_block_map x0, x7, x3, x5, x6 387 388 /* 389 * Map the kernel image (starting with PHYS_OFFSET). 390 */ 391 mov x0, x26 // swapper_pg_dir 392 mov x5, #PAGE_OFFSET 393 create_pgd_entry x0, x5, x3, x6 394 ldr x6, =KERNEL_END // __va(KERNEL_END) 395 mov x3, x24 // phys offset 396 create_block_map x0, x7, x3, x5, x6 397 398 /* 399 * Since the page tables have been populated with non-cacheable 400 * accesses (MMU disabled), invalidate the idmap and swapper page 401 * tables again to remove any speculatively loaded cache lines. 402 */ 403 mov x0, x25 404 add x1, x26, #SWAPPER_DIR_SIZE 405 dmb sy 406 bl __inval_cache_range 407 408 mov lr, x27 409 ret 410ENDPROC(__create_page_tables) 411 .ltorg 412 413/* 414 * The following fragment of code is executed with the MMU enabled. 415 */ 416 .set initial_sp, init_thread_union + THREAD_START_SP 417__mmap_switched: 418 adr_l x6, __bss_start 419 adr_l x7, __bss_stop 420 4211: cmp x6, x7 422 b.hs 2f 423 str xzr, [x6], #8 // Clear BSS 424 b 1b 4252: 426 adr_l sp, initial_sp, x4 427 str_l x21, __fdt_pointer, x5 // Save FDT pointer 428 str_l x24, memstart_addr, x6 // Save PHYS_OFFSET 429 mov x29, #0 430#ifdef CONFIG_KASAN 431 bl kasan_early_init 432#endif 433 b start_kernel 434ENDPROC(__mmap_switched) 435 436/* 437 * end early head section, begin head code that is also used for 438 * hotplug and needs to have the same protections as the text region 439 */ 440 .section ".text","ax" 441/* 442 * If we're fortunate enough to boot at EL2, ensure that the world is 443 * sane before dropping to EL1. 444 * 445 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x20 if 446 * booted in EL1 or EL2 respectively. 447 */ 448ENTRY(el2_setup) 449 mrs x0, CurrentEL 450 cmp x0, #CurrentEL_EL2 451 b.ne 1f 452 mrs x0, sctlr_el2 453CPU_BE( orr x0, x0, #(1 << 25) ) // Set the EE bit for EL2 454CPU_LE( bic x0, x0, #(1 << 25) ) // Clear the EE bit for EL2 455 msr sctlr_el2, x0 456 b 2f 4571: mrs x0, sctlr_el1 458CPU_BE( orr x0, x0, #(3 << 24) ) // Set the EE and E0E bits for EL1 459CPU_LE( bic x0, x0, #(3 << 24) ) // Clear the EE and E0E bits for EL1 460 msr sctlr_el1, x0 461 mov w20, #BOOT_CPU_MODE_EL1 // This cpu booted in EL1 462 isb 463 ret 464 465 /* Hyp configuration. */ 4662: mov x0, #(1 << 31) // 64-bit EL1 467 msr hcr_el2, x0 468 469 /* Generic timers. */ 470 mrs x0, cnthctl_el2 471 orr x0, x0, #3 // Enable EL1 physical timers 472 msr cnthctl_el2, x0 473 msr cntvoff_el2, xzr // Clear virtual offset 474 475#ifdef CONFIG_ARM_GIC_V3 476 /* GICv3 system register access */ 477 mrs x0, id_aa64pfr0_el1 478 ubfx x0, x0, #24, #4 479 cmp x0, #1 480 b.ne 3f 481 482 mrs_s x0, ICC_SRE_EL2 483 orr x0, x0, #ICC_SRE_EL2_SRE // Set ICC_SRE_EL2.SRE==1 484 orr x0, x0, #ICC_SRE_EL2_ENABLE // Set ICC_SRE_EL2.Enable==1 485 msr_s ICC_SRE_EL2, x0 486 isb // Make sure SRE is now set 487 mrs_s x0, ICC_SRE_EL2 // Read SRE back, 488 tbz x0, #0, 3f // and check that it sticks 489 msr_s ICH_HCR_EL2, xzr // Reset ICC_HCR_EL2 to defaults 490 4913: 492#endif 493 494 /* Populate ID registers. */ 495 mrs x0, midr_el1 496 mrs x1, mpidr_el1 497 msr vpidr_el2, x0 498 msr vmpidr_el2, x1 499 500 /* sctlr_el1 */ 501 mov x0, #0x0800 // Set/clear RES{1,0} bits 502CPU_BE( movk x0, #0x33d0, lsl #16 ) // Set EE and E0E on BE systems 503CPU_LE( movk x0, #0x30d0, lsl #16 ) // Clear EE and E0E on LE systems 504 msr sctlr_el1, x0 505 506 /* Coprocessor traps. */ 507 mov x0, #0x33ff 508 msr cptr_el2, x0 // Disable copro. traps to EL2 509 510#ifdef CONFIG_COMPAT 511 msr hstr_el2, xzr // Disable CP15 traps to EL2 512#endif 513 514 /* EL2 debug */ 515 mrs x0, pmcr_el0 // Disable debug access traps 516 ubfx x0, x0, #11, #5 // to EL2 and allow access to 517 msr mdcr_el2, x0 // all PMU counters from EL1 518 519 /* Stage-2 translation */ 520 msr vttbr_el2, xzr 521 522 /* Hypervisor stub */ 523 adrp x0, __hyp_stub_vectors 524 add x0, x0, #:lo12:__hyp_stub_vectors 525 msr vbar_el2, x0 526 527 /* spsr */ 528 mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\ 529 PSR_MODE_EL1h) 530 msr spsr_el2, x0 531 msr elr_el2, lr 532 mov w20, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2 533 eret 534ENDPROC(el2_setup) 535 536/* 537 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed 538 * in x20. See arch/arm64/include/asm/virt.h for more info. 539 */ 540ENTRY(set_cpu_boot_mode_flag) 541 adr_l x1, __boot_cpu_mode 542 cmp w20, #BOOT_CPU_MODE_EL2 543 b.ne 1f 544 add x1, x1, #4 5451: str w20, [x1] // This CPU has booted in EL1 546 dmb sy 547 dc ivac, x1 // Invalidate potentially stale cache line 548 ret 549ENDPROC(set_cpu_boot_mode_flag) 550 551/* 552 * We need to find out the CPU boot mode long after boot, so we need to 553 * store it in a writable variable. 554 * 555 * This is not in .bss, because we set it sufficiently early that the boot-time 556 * zeroing of .bss would clobber it. 557 */ 558 .pushsection .data..cacheline_aligned 559 .align L1_CACHE_SHIFT 560ENTRY(__boot_cpu_mode) 561 .long BOOT_CPU_MODE_EL2 562 .long BOOT_CPU_MODE_EL1 563 .popsection 564 565 /* 566 * This provides a "holding pen" for platforms to hold all secondary 567 * cores are held until we're ready for them to initialise. 568 */ 569ENTRY(secondary_holding_pen) 570 bl el2_setup // Drop to EL1, w20=cpu_boot_mode 571 bl set_cpu_boot_mode_flag 572 mrs x0, mpidr_el1 573 ldr x1, =MPIDR_HWID_BITMASK 574 and x0, x0, x1 575 adr_l x3, secondary_holding_pen_release 576pen: ldr x4, [x3] 577 cmp x4, x0 578 b.eq secondary_startup 579 wfe 580 b pen 581ENDPROC(secondary_holding_pen) 582 583 /* 584 * Secondary entry point that jumps straight into the kernel. Only to 585 * be used where CPUs are brought online dynamically by the kernel. 586 */ 587ENTRY(secondary_entry) 588 bl el2_setup // Drop to EL1 589 bl set_cpu_boot_mode_flag 590 b secondary_startup 591ENDPROC(secondary_entry) 592 593ENTRY(secondary_startup) 594 /* 595 * Common entry point for secondary CPUs. 596 */ 597 adrp x25, idmap_pg_dir 598 adrp x26, swapper_pg_dir 599 bl __cpu_setup // initialise processor 600 601 ldr x21, =secondary_data 602 ldr x27, =__secondary_switched // address to jump to after enabling the MMU 603 b __enable_mmu 604ENDPROC(secondary_startup) 605 606ENTRY(__secondary_switched) 607 ldr x0, [x21] // get secondary_data.stack 608 mov sp, x0 609 mov x29, #0 610 b secondary_start_kernel 611ENDPROC(__secondary_switched) 612 613/* 614 * Enable the MMU. 615 * 616 * x0 = SCTLR_EL1 value for turning on the MMU. 617 * x27 = *virtual* address to jump to upon completion 618 * 619 * Other registers depend on the function called upon completion. 620 * 621 * Checks if the selected granule size is supported by the CPU. 622 * If it isn't, park the CPU 623 */ 624 .section ".idmap.text", "ax" 625__enable_mmu: 626 mrs x1, ID_AA64MMFR0_EL1 627 ubfx x2, x1, #ID_AA64MMFR0_TGRAN_SHIFT, 4 628 cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED 629 b.ne __no_granule_support 630 ldr x5, =vectors 631 msr vbar_el1, x5 632 msr ttbr0_el1, x25 // load TTBR0 633 msr ttbr1_el1, x26 // load TTBR1 634 isb 635 msr sctlr_el1, x0 636 isb 637 /* 638 * Invalidate the local I-cache so that any instructions fetched 639 * speculatively from the PoC are discarded, since they may have 640 * been dynamically patched at the PoU. 641 */ 642 ic iallu 643 dsb nsh 644 isb 645 br x27 646ENDPROC(__enable_mmu) 647 648__no_granule_support: 649 wfe 650 b __no_granule_support 651ENDPROC(__no_granule_support) 652