1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Low-level CPU initialisation 4 * Based on arch/arm/kernel/head.S 5 * 6 * Copyright (C) 1994-2002 Russell King 7 * Copyright (C) 2003-2012 ARM Ltd. 8 * Authors: Catalin Marinas <catalin.marinas@arm.com> 9 * Will Deacon <will.deacon@arm.com> 10 */ 11 12#include <linux/linkage.h> 13#include <linux/init.h> 14#include <linux/pgtable.h> 15 16#include <asm/asm_pointer_auth.h> 17#include <asm/assembler.h> 18#include <asm/boot.h> 19#include <asm/bug.h> 20#include <asm/ptrace.h> 21#include <asm/asm-offsets.h> 22#include <asm/cache.h> 23#include <asm/cputype.h> 24#include <asm/el2_setup.h> 25#include <asm/elf.h> 26#include <asm/image.h> 27#include <asm/kernel-pgtable.h> 28#include <asm/kvm_arm.h> 29#include <asm/memory.h> 30#include <asm/pgtable-hwdef.h> 31#include <asm/page.h> 32#include <asm/scs.h> 33#include <asm/smp.h> 34#include <asm/sysreg.h> 35#include <asm/thread_info.h> 36#include <asm/virt.h> 37 38#include "efi-header.S" 39 40#define __PHYS_OFFSET KERNEL_START 41 42#if (PAGE_OFFSET & 0x1fffff) != 0 43#error PAGE_OFFSET must be at least 2MB aligned 44#endif 45 46/* 47 * Kernel startup entry point. 48 * --------------------------- 49 * 50 * The requirements are: 51 * MMU = off, D-cache = off, I-cache = on or off, 52 * x0 = physical address to the FDT blob. 53 * 54 * This code is mostly position independent so you call this at 55 * __pa(PAGE_OFFSET). 56 * 57 * Note that the callee-saved registers are used for storing variables 58 * that are useful before the MMU is enabled. The allocations are described 59 * in the entry routines. 60 */ 61 __HEAD 62 /* 63 * DO NOT MODIFY. Image header expected by Linux boot-loaders. 64 */ 65 efi_signature_nop // special NOP to identity as PE/COFF executable 66 b primary_entry // branch to kernel start, magic 67 .quad 0 // Image load offset from start of RAM, little-endian 68 le64sym _kernel_size_le // Effective size of kernel image, little-endian 69 le64sym _kernel_flags_le // Informative flags, little-endian 70 .quad 0 // reserved 71 .quad 0 // reserved 72 .quad 0 // reserved 73 .ascii ARM64_IMAGE_MAGIC // Magic number 74 .long .Lpe_header_offset // Offset to the PE header. 75 76 __EFI_PE_HEADER 77 78 __INIT 79 80 /* 81 * The following callee saved general purpose registers are used on the 82 * primary lowlevel boot path: 83 * 84 * Register Scope Purpose 85 * x21 primary_entry() .. start_kernel() FDT pointer passed at boot in x0 86 * x23 primary_entry() .. start_kernel() physical misalignment/KASLR offset 87 * x28 __create_page_tables() callee preserved temp register 88 * x19/x20 __primary_switch() callee preserved temp registers 89 * x24 __primary_switch() .. relocate_kernel() current RELR displacement 90 */ 91SYM_CODE_START(primary_entry) 92 bl preserve_boot_args 93 bl init_kernel_el // w0=cpu_boot_mode 94 adrp x23, __PHYS_OFFSET 95 and x23, x23, MIN_KIMG_ALIGN - 1 // KASLR offset, defaults to 0 96 bl set_cpu_boot_mode_flag 97 bl __create_page_tables 98 /* 99 * The following calls CPU setup code, see arch/arm64/mm/proc.S for 100 * details. 101 * On return, the CPU will be ready for the MMU to be turned on and 102 * the TCR will have been set. 103 */ 104 bl __cpu_setup // initialise processor 105 b __primary_switch 106SYM_CODE_END(primary_entry) 107 108/* 109 * Preserve the arguments passed by the bootloader in x0 .. x3 110 */ 111SYM_CODE_START_LOCAL(preserve_boot_args) 112 mov x21, x0 // x21=FDT 113 114 adr_l x0, boot_args // record the contents of 115 stp x21, x1, [x0] // x0 .. x3 at kernel entry 116 stp x2, x3, [x0, #16] 117 118 dmb sy // needed before dc ivac with 119 // MMU off 120 121 add x1, x0, #0x20 // 4 x 8 bytes 122 b dcache_inval_poc // tail call 123SYM_CODE_END(preserve_boot_args) 124 125/* 126 * Macro to create a table entry to the next page. 127 * 128 * tbl: page table address 129 * virt: virtual address 130 * shift: #imm page table shift 131 * ptrs: #imm pointers per table page 132 * 133 * Preserves: virt 134 * Corrupts: ptrs, tmp1, tmp2 135 * Returns: tbl -> next level table page address 136 */ 137 .macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2 138 add \tmp1, \tbl, #PAGE_SIZE 139 phys_to_pte \tmp2, \tmp1 140 orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type 141 lsr \tmp1, \virt, #\shift 142 sub \ptrs, \ptrs, #1 143 and \tmp1, \tmp1, \ptrs // table index 144 str \tmp2, [\tbl, \tmp1, lsl #3] 145 add \tbl, \tbl, #PAGE_SIZE // next level table page 146 .endm 147 148/* 149 * Macro to populate page table entries, these entries can be pointers to the next level 150 * or last level entries pointing to physical memory. 151 * 152 * tbl: page table address 153 * rtbl: pointer to page table or physical memory 154 * index: start index to write 155 * eindex: end index to write - [index, eindex] written to 156 * flags: flags for pagetable entry to or in 157 * inc: increment to rtbl between each entry 158 * tmp1: temporary variable 159 * 160 * Preserves: tbl, eindex, flags, inc 161 * Corrupts: index, tmp1 162 * Returns: rtbl 163 */ 164 .macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1 165.Lpe\@: phys_to_pte \tmp1, \rtbl 166 orr \tmp1, \tmp1, \flags // tmp1 = table entry 167 str \tmp1, [\tbl, \index, lsl #3] 168 add \rtbl, \rtbl, \inc // rtbl = pa next level 169 add \index, \index, #1 170 cmp \index, \eindex 171 b.ls .Lpe\@ 172 .endm 173 174/* 175 * Compute indices of table entries from virtual address range. If multiple entries 176 * were needed in the previous page table level then the next page table level is assumed 177 * to be composed of multiple pages. (This effectively scales the end index). 178 * 179 * vstart: virtual address of start of range 180 * vend: virtual address of end of range - we map [vstart, vend] 181 * shift: shift used to transform virtual address into index 182 * ptrs: number of entries in page table 183 * istart: index in table corresponding to vstart 184 * iend: index in table corresponding to vend 185 * count: On entry: how many extra entries were required in previous level, scales 186 * our end index. 187 * On exit: returns how many extra entries required for next page table level 188 * 189 * Preserves: vstart, vend, shift, ptrs 190 * Returns: istart, iend, count 191 */ 192 .macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count 193 lsr \iend, \vend, \shift 194 mov \istart, \ptrs 195 sub \istart, \istart, #1 196 and \iend, \iend, \istart // iend = (vend >> shift) & (ptrs - 1) 197 mov \istart, \ptrs 198 mul \istart, \istart, \count 199 add \iend, \iend, \istart // iend += count * ptrs 200 // our entries span multiple tables 201 202 lsr \istart, \vstart, \shift 203 mov \count, \ptrs 204 sub \count, \count, #1 205 and \istart, \istart, \count 206 207 sub \count, \iend, \istart 208 .endm 209 210/* 211 * Map memory for specified virtual address range. Each level of page table needed supports 212 * multiple entries. If a level requires n entries the next page table level is assumed to be 213 * formed from n pages. 214 * 215 * tbl: location of page table 216 * rtbl: address to be used for first level page table entry (typically tbl + PAGE_SIZE) 217 * vstart: virtual address of start of range 218 * vend: virtual address of end of range - we map [vstart, vend - 1] 219 * flags: flags to use to map last level entries 220 * phys: physical address corresponding to vstart - physical memory is contiguous 221 * pgds: the number of pgd entries 222 * 223 * Temporaries: istart, iend, tmp, count, sv - these need to be different registers 224 * Preserves: vstart, flags 225 * Corrupts: tbl, rtbl, vend, istart, iend, tmp, count, sv 226 */ 227 .macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv 228 sub \vend, \vend, #1 229 add \rtbl, \tbl, #PAGE_SIZE 230 mov \sv, \rtbl 231 mov \count, #0 232 compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count 233 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp 234 mov \tbl, \sv 235 mov \sv, \rtbl 236 237#if SWAPPER_PGTABLE_LEVELS > 3 238 compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count 239 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp 240 mov \tbl, \sv 241 mov \sv, \rtbl 242#endif 243 244#if SWAPPER_PGTABLE_LEVELS > 2 245 compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count 246 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp 247 mov \tbl, \sv 248#endif 249 250 compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count 251 bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1 252 populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp 253 .endm 254 255/* 256 * Setup the initial page tables. We only setup the barest amount which is 257 * required to get the kernel running. The following sections are required: 258 * - identity mapping to enable the MMU (low address, TTBR0) 259 * - first few MB of the kernel linear mapping to jump to once the MMU has 260 * been enabled 261 */ 262SYM_FUNC_START_LOCAL(__create_page_tables) 263 mov x28, lr 264 265 /* 266 * Invalidate the init page tables to avoid potential dirty cache lines 267 * being evicted. Other page tables are allocated in rodata as part of 268 * the kernel image, and thus are clean to the PoC per the boot 269 * protocol. 270 */ 271 adrp x0, init_pg_dir 272 adrp x1, init_pg_end 273 bl dcache_inval_poc 274 275 /* 276 * Clear the init page tables. 277 */ 278 adrp x0, init_pg_dir 279 adrp x1, init_pg_end 280 sub x1, x1, x0 2811: stp xzr, xzr, [x0], #16 282 stp xzr, xzr, [x0], #16 283 stp xzr, xzr, [x0], #16 284 stp xzr, xzr, [x0], #16 285 subs x1, x1, #64 286 b.ne 1b 287 288 mov x7, SWAPPER_MM_MMUFLAGS 289 290 /* 291 * Create the identity mapping. 292 */ 293 adrp x0, idmap_pg_dir 294 adrp x3, __idmap_text_start // __pa(__idmap_text_start) 295 296#ifdef CONFIG_ARM64_VA_BITS_52 297 mrs_s x6, SYS_ID_AA64MMFR2_EL1 298 and x6, x6, #(0xf << ID_AA64MMFR2_LVA_SHIFT) 299 mov x5, #52 300 cbnz x6, 1f 301#endif 302 mov x5, #VA_BITS_MIN 3031: 304 adr_l x6, vabits_actual 305 str x5, [x6] 306 dmb sy 307 dc ivac, x6 // Invalidate potentially stale cache line 308 309 /* 310 * VA_BITS may be too small to allow for an ID mapping to be created 311 * that covers system RAM if that is located sufficiently high in the 312 * physical address space. So for the ID map, use an extended virtual 313 * range in that case, and configure an additional translation level 314 * if needed. 315 * 316 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the 317 * entire ID map region can be mapped. As T0SZ == (64 - #bits used), 318 * this number conveniently equals the number of leading zeroes in 319 * the physical address of __idmap_text_end. 320 */ 321 adrp x5, __idmap_text_end 322 clz x5, x5 323 cmp x5, TCR_T0SZ(VA_BITS_MIN) // default T0SZ small enough? 324 b.ge 1f // .. then skip VA range extension 325 326 adr_l x6, idmap_t0sz 327 str x5, [x6] 328 dmb sy 329 dc ivac, x6 // Invalidate potentially stale cache line 330 331#if (VA_BITS < 48) 332#define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3) 333#define EXTRA_PTRS (1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT)) 334 335 /* 336 * If VA_BITS < 48, we have to configure an additional table level. 337 * First, we have to verify our assumption that the current value of 338 * VA_BITS was chosen such that all translation levels are fully 339 * utilised, and that lowering T0SZ will always result in an additional 340 * translation level to be configured. 341 */ 342#if VA_BITS != EXTRA_SHIFT 343#error "Mismatch between VA_BITS and page size/number of translation levels" 344#endif 345 346 mov x4, EXTRA_PTRS 347 create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6 348#else 349 /* 350 * If VA_BITS == 48, we don't have to configure an additional 351 * translation level, but the top-level table has more entries. 352 */ 353 mov x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT) 354 str_l x4, idmap_ptrs_per_pgd, x5 355#endif 3561: 357 ldr_l x4, idmap_ptrs_per_pgd 358 adr_l x6, __idmap_text_end // __pa(__idmap_text_end) 359 360 map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14 361 362 /* 363 * Map the kernel image (starting with PHYS_OFFSET). 364 */ 365 adrp x0, init_pg_dir 366 mov_q x5, KIMAGE_VADDR // compile time __va(_text) 367 add x5, x5, x23 // add KASLR displacement 368 mov x4, PTRS_PER_PGD 369 adrp x6, _end // runtime __pa(_end) 370 adrp x3, _text // runtime __pa(_text) 371 sub x6, x6, x3 // _end - _text 372 add x6, x6, x5 // runtime __va(_end) 373 374 map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14 375 376 /* 377 * Since the page tables have been populated with non-cacheable 378 * accesses (MMU disabled), invalidate those tables again to 379 * remove any speculatively loaded cache lines. 380 */ 381 dmb sy 382 383 adrp x0, idmap_pg_dir 384 adrp x1, idmap_pg_end 385 bl dcache_inval_poc 386 387 adrp x0, init_pg_dir 388 adrp x1, init_pg_end 389 bl dcache_inval_poc 390 391 ret x28 392SYM_FUNC_END(__create_page_tables) 393 394 /* 395 * Initialize CPU registers with task-specific and cpu-specific context. 396 * 397 * Create a final frame record at task_pt_regs(current)->stackframe, so 398 * that the unwinder can identify the final frame record of any task by 399 * its location in the task stack. We reserve the entire pt_regs space 400 * for consistency with user tasks and kthreads. 401 */ 402 .macro init_cpu_task tsk, tmp1, tmp2 403 msr sp_el0, \tsk 404 405 ldr \tmp1, [\tsk, #TSK_STACK] 406 add sp, \tmp1, #THREAD_SIZE 407 sub sp, sp, #PT_REGS_SIZE 408 409 stp xzr, xzr, [sp, #S_STACKFRAME] 410 add x29, sp, #S_STACKFRAME 411 412 scs_load \tsk 413 414 adr_l \tmp1, __per_cpu_offset 415 ldr w\tmp2, [\tsk, #TSK_TI_CPU] 416 ldr \tmp1, [\tmp1, \tmp2, lsl #3] 417 set_this_cpu_offset \tmp1 418 .endm 419 420/* 421 * The following fragment of code is executed with the MMU enabled. 422 * 423 * x0 = __PHYS_OFFSET 424 */ 425SYM_FUNC_START_LOCAL(__primary_switched) 426 adr_l x4, init_task 427 init_cpu_task x4, x5, x6 428 429 adr_l x8, vectors // load VBAR_EL1 with virtual 430 msr vbar_el1, x8 // vector table address 431 isb 432 433 stp x29, x30, [sp, #-16]! 434 mov x29, sp 435 436 str_l x21, __fdt_pointer, x5 // Save FDT pointer 437 438 ldr_l x4, kimage_vaddr // Save the offset between 439 sub x4, x4, x0 // the kernel virtual and 440 str_l x4, kimage_voffset, x5 // physical mappings 441 442 // Clear BSS 443 adr_l x0, __bss_start 444 mov x1, xzr 445 adr_l x2, __bss_stop 446 sub x2, x2, x0 447 bl __pi_memset 448 dsb ishst // Make zero page visible to PTW 449 450#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 451 bl kasan_early_init 452#endif 453 mov x0, x21 // pass FDT address in x0 454 bl early_fdt_map // Try mapping the FDT early 455 bl init_feature_override // Parse cpu feature overrides 456#ifdef CONFIG_RANDOMIZE_BASE 457 tst x23, ~(MIN_KIMG_ALIGN - 1) // already running randomized? 458 b.ne 0f 459 bl kaslr_early_init // parse FDT for KASLR options 460 cbz x0, 0f // KASLR disabled? just proceed 461 orr x23, x23, x0 // record KASLR offset 462 ldp x29, x30, [sp], #16 // we must enable KASLR, return 463 ret // to __primary_switch() 4640: 465#endif 466 bl switch_to_vhe // Prefer VHE if possible 467 ldp x29, x30, [sp], #16 468 bl start_kernel 469 ASM_BUG() 470SYM_FUNC_END(__primary_switched) 471 472 .pushsection ".rodata", "a" 473SYM_DATA_START(kimage_vaddr) 474 .quad _text 475SYM_DATA_END(kimage_vaddr) 476EXPORT_SYMBOL(kimage_vaddr) 477 .popsection 478 479/* 480 * end early head section, begin head code that is also used for 481 * hotplug and needs to have the same protections as the text region 482 */ 483 .section ".idmap.text","awx" 484 485/* 486 * Starting from EL2 or EL1, configure the CPU to execute at the highest 487 * reachable EL supported by the kernel in a chosen default state. If dropping 488 * from EL2 to EL1, configure EL2 before configuring EL1. 489 * 490 * Since we cannot always rely on ERET synchronizing writes to sysregs (e.g. if 491 * SCTLR_ELx.EOS is clear), we place an ISB prior to ERET. 492 * 493 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if 494 * booted in EL1 or EL2 respectively. 495 */ 496SYM_FUNC_START(init_kernel_el) 497 mrs x0, CurrentEL 498 cmp x0, #CurrentEL_EL2 499 b.eq init_el2 500 501SYM_INNER_LABEL(init_el1, SYM_L_LOCAL) 502 mov_q x0, INIT_SCTLR_EL1_MMU_OFF 503 msr sctlr_el1, x0 504 isb 505 mov_q x0, INIT_PSTATE_EL1 506 msr spsr_el1, x0 507 msr elr_el1, lr 508 mov w0, #BOOT_CPU_MODE_EL1 509 eret 510 511SYM_INNER_LABEL(init_el2, SYM_L_LOCAL) 512 mov_q x0, HCR_HOST_NVHE_FLAGS 513 msr hcr_el2, x0 514 isb 515 516 init_el2_state 517 518 /* Hypervisor stub */ 519 adr_l x0, __hyp_stub_vectors 520 msr vbar_el2, x0 521 isb 522 523 /* 524 * Fruity CPUs seem to have HCR_EL2.E2H set to RES1, 525 * making it impossible to start in nVHE mode. Is that 526 * compliant with the architecture? Absolutely not! 527 */ 528 mrs x0, hcr_el2 529 and x0, x0, #HCR_E2H 530 cbz x0, 1f 531 532 /* Switching to VHE requires a sane SCTLR_EL1 as a start */ 533 mov_q x0, INIT_SCTLR_EL1_MMU_OFF 534 msr_s SYS_SCTLR_EL12, x0 535 536 /* 537 * Force an eret into a helper "function", and let it return 538 * to our original caller... This makes sure that we have 539 * initialised the basic PSTATE state. 540 */ 541 mov x0, #INIT_PSTATE_EL2 542 msr spsr_el1, x0 543 adr x0, __cpu_stick_to_vhe 544 msr elr_el1, x0 545 eret 546 5471: 548 mov_q x0, INIT_SCTLR_EL1_MMU_OFF 549 msr sctlr_el1, x0 550 551 msr elr_el2, lr 552 mov w0, #BOOT_CPU_MODE_EL2 553 eret 554 555__cpu_stick_to_vhe: 556 mov x0, #HVC_VHE_RESTART 557 hvc #0 558 mov x0, #BOOT_CPU_MODE_EL2 559 ret 560SYM_FUNC_END(init_kernel_el) 561 562/* 563 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed 564 * in w0. See arch/arm64/include/asm/virt.h for more info. 565 */ 566SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag) 567 adr_l x1, __boot_cpu_mode 568 cmp w0, #BOOT_CPU_MODE_EL2 569 b.ne 1f 570 add x1, x1, #4 5711: str w0, [x1] // Save CPU boot mode 572 dmb sy 573 dc ivac, x1 // Invalidate potentially stale cache line 574 ret 575SYM_FUNC_END(set_cpu_boot_mode_flag) 576 577/* 578 * These values are written with the MMU off, but read with the MMU on. 579 * Writers will invalidate the corresponding address, discarding up to a 580 * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures 581 * sufficient alignment that the CWG doesn't overlap another section. 582 */ 583 .pushsection ".mmuoff.data.write", "aw" 584/* 585 * We need to find out the CPU boot mode long after boot, so we need to 586 * store it in a writable variable. 587 * 588 * This is not in .bss, because we set it sufficiently early that the boot-time 589 * zeroing of .bss would clobber it. 590 */ 591SYM_DATA_START(__boot_cpu_mode) 592 .long BOOT_CPU_MODE_EL2 593 .long BOOT_CPU_MODE_EL1 594SYM_DATA_END(__boot_cpu_mode) 595/* 596 * The booting CPU updates the failed status @__early_cpu_boot_status, 597 * with MMU turned off. 598 */ 599SYM_DATA_START(__early_cpu_boot_status) 600 .quad 0 601SYM_DATA_END(__early_cpu_boot_status) 602 603 .popsection 604 605 /* 606 * This provides a "holding pen" for platforms to hold all secondary 607 * cores are held until we're ready for them to initialise. 608 */ 609SYM_FUNC_START(secondary_holding_pen) 610 bl init_kernel_el // w0=cpu_boot_mode 611 bl set_cpu_boot_mode_flag 612 mrs x0, mpidr_el1 613 mov_q x1, MPIDR_HWID_BITMASK 614 and x0, x0, x1 615 adr_l x3, secondary_holding_pen_release 616pen: ldr x4, [x3] 617 cmp x4, x0 618 b.eq secondary_startup 619 wfe 620 b pen 621SYM_FUNC_END(secondary_holding_pen) 622 623 /* 624 * Secondary entry point that jumps straight into the kernel. Only to 625 * be used where CPUs are brought online dynamically by the kernel. 626 */ 627SYM_FUNC_START(secondary_entry) 628 bl init_kernel_el // w0=cpu_boot_mode 629 bl set_cpu_boot_mode_flag 630 b secondary_startup 631SYM_FUNC_END(secondary_entry) 632 633SYM_FUNC_START_LOCAL(secondary_startup) 634 /* 635 * Common entry point for secondary CPUs. 636 */ 637 bl switch_to_vhe 638 bl __cpu_secondary_check52bitva 639 bl __cpu_setup // initialise processor 640 adrp x1, swapper_pg_dir 641 bl __enable_mmu 642 ldr x8, =__secondary_switched 643 br x8 644SYM_FUNC_END(secondary_startup) 645 646SYM_FUNC_START_LOCAL(__secondary_switched) 647 adr_l x5, vectors 648 msr vbar_el1, x5 649 isb 650 651 adr_l x0, secondary_data 652 ldr x2, [x0, #CPU_BOOT_TASK] 653 cbz x2, __secondary_too_slow 654 655 init_cpu_task x2, x1, x3 656 657#ifdef CONFIG_ARM64_PTR_AUTH 658 ptrauth_keys_init_cpu x2, x3, x4, x5 659#endif 660 661 bl secondary_start_kernel 662 ASM_BUG() 663SYM_FUNC_END(__secondary_switched) 664 665SYM_FUNC_START_LOCAL(__secondary_too_slow) 666 wfe 667 wfi 668 b __secondary_too_slow 669SYM_FUNC_END(__secondary_too_slow) 670 671/* 672 * The booting CPU updates the failed status @__early_cpu_boot_status, 673 * with MMU turned off. 674 * 675 * update_early_cpu_boot_status tmp, status 676 * - Corrupts tmp1, tmp2 677 * - Writes 'status' to __early_cpu_boot_status and makes sure 678 * it is committed to memory. 679 */ 680 681 .macro update_early_cpu_boot_status status, tmp1, tmp2 682 mov \tmp2, #\status 683 adr_l \tmp1, __early_cpu_boot_status 684 str \tmp2, [\tmp1] 685 dmb sy 686 dc ivac, \tmp1 // Invalidate potentially stale cache line 687 .endm 688 689/* 690 * Enable the MMU. 691 * 692 * x0 = SCTLR_EL1 value for turning on the MMU. 693 * x1 = TTBR1_EL1 value 694 * 695 * Returns to the caller via x30/lr. This requires the caller to be covered 696 * by the .idmap.text section. 697 * 698 * Checks if the selected granule size is supported by the CPU. 699 * If it isn't, park the CPU 700 */ 701SYM_FUNC_START(__enable_mmu) 702 mrs x2, ID_AA64MMFR0_EL1 703 ubfx x2, x2, #ID_AA64MMFR0_TGRAN_SHIFT, 4 704 cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED_MIN 705 b.lt __no_granule_support 706 cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED_MAX 707 b.gt __no_granule_support 708 update_early_cpu_boot_status 0, x2, x3 709 adrp x2, idmap_pg_dir 710 phys_to_ttbr x1, x1 711 phys_to_ttbr x2, x2 712 msr ttbr0_el1, x2 // load TTBR0 713 offset_ttbr1 x1, x3 714 msr ttbr1_el1, x1 // load TTBR1 715 isb 716 717 set_sctlr_el1 x0 718 719 ret 720SYM_FUNC_END(__enable_mmu) 721 722SYM_FUNC_START(__cpu_secondary_check52bitva) 723#ifdef CONFIG_ARM64_VA_BITS_52 724 ldr_l x0, vabits_actual 725 cmp x0, #52 726 b.ne 2f 727 728 mrs_s x0, SYS_ID_AA64MMFR2_EL1 729 and x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT) 730 cbnz x0, 2f 731 732 update_early_cpu_boot_status \ 733 CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1 7341: wfe 735 wfi 736 b 1b 737 738#endif 7392: ret 740SYM_FUNC_END(__cpu_secondary_check52bitva) 741 742SYM_FUNC_START_LOCAL(__no_granule_support) 743 /* Indicate that this CPU can't boot and is stuck in the kernel */ 744 update_early_cpu_boot_status \ 745 CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2 7461: 747 wfe 748 wfi 749 b 1b 750SYM_FUNC_END(__no_granule_support) 751 752#ifdef CONFIG_RELOCATABLE 753SYM_FUNC_START_LOCAL(__relocate_kernel) 754 /* 755 * Iterate over each entry in the relocation table, and apply the 756 * relocations in place. 757 */ 758 ldr w9, =__rela_offset // offset to reloc table 759 ldr w10, =__rela_size // size of reloc table 760 761 mov_q x11, KIMAGE_VADDR // default virtual offset 762 add x11, x11, x23 // actual virtual offset 763 add x9, x9, x11 // __va(.rela) 764 add x10, x9, x10 // __va(.rela) + sizeof(.rela) 765 7660: cmp x9, x10 767 b.hs 1f 768 ldp x12, x13, [x9], #24 769 ldr x14, [x9, #-8] 770 cmp w13, #R_AARCH64_RELATIVE 771 b.ne 0b 772 add x14, x14, x23 // relocate 773 str x14, [x12, x23] 774 b 0b 775 7761: 777#ifdef CONFIG_RELR 778 /* 779 * Apply RELR relocations. 780 * 781 * RELR is a compressed format for storing relative relocations. The 782 * encoded sequence of entries looks like: 783 * [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] 784 * 785 * i.e. start with an address, followed by any number of bitmaps. The 786 * address entry encodes 1 relocation. The subsequent bitmap entries 787 * encode up to 63 relocations each, at subsequent offsets following 788 * the last address entry. 789 * 790 * The bitmap entries must have 1 in the least significant bit. The 791 * assumption here is that an address cannot have 1 in lsb. Odd 792 * addresses are not supported. Any odd addresses are stored in the RELA 793 * section, which is handled above. 794 * 795 * Excluding the least significant bit in the bitmap, each non-zero 796 * bit in the bitmap represents a relocation to be applied to 797 * a corresponding machine word that follows the base address 798 * word. The second least significant bit represents the machine 799 * word immediately following the initial address, and each bit 800 * that follows represents the next word, in linear order. As such, 801 * a single bitmap can encode up to 63 relocations in a 64-bit object. 802 * 803 * In this implementation we store the address of the next RELR table 804 * entry in x9, the address being relocated by the current address or 805 * bitmap entry in x13 and the address being relocated by the current 806 * bit in x14. 807 * 808 * Because addends are stored in place in the binary, RELR relocations 809 * cannot be applied idempotently. We use x24 to keep track of the 810 * currently applied displacement so that we can correctly relocate if 811 * __relocate_kernel is called twice with non-zero displacements (i.e. 812 * if there is both a physical misalignment and a KASLR displacement). 813 */ 814 ldr w9, =__relr_offset // offset to reloc table 815 ldr w10, =__relr_size // size of reloc table 816 add x9, x9, x11 // __va(.relr) 817 add x10, x9, x10 // __va(.relr) + sizeof(.relr) 818 819 sub x15, x23, x24 // delta from previous offset 820 cbz x15, 7f // nothing to do if unchanged 821 mov x24, x23 // save new offset 822 8232: cmp x9, x10 824 b.hs 7f 825 ldr x11, [x9], #8 826 tbnz x11, #0, 3f // branch to handle bitmaps 827 add x13, x11, x23 828 ldr x12, [x13] // relocate address entry 829 add x12, x12, x15 830 str x12, [x13], #8 // adjust to start of bitmap 831 b 2b 832 8333: mov x14, x13 8344: lsr x11, x11, #1 835 cbz x11, 6f 836 tbz x11, #0, 5f // skip bit if not set 837 ldr x12, [x14] // relocate bit 838 add x12, x12, x15 839 str x12, [x14] 840 8415: add x14, x14, #8 // move to next bit's address 842 b 4b 843 8446: /* 845 * Move to the next bitmap's address. 8 is the word size, and 63 is the 846 * number of significant bits in a bitmap entry. 847 */ 848 add x13, x13, #(8 * 63) 849 b 2b 850 8517: 852#endif 853 ret 854 855SYM_FUNC_END(__relocate_kernel) 856#endif 857 858SYM_FUNC_START_LOCAL(__primary_switch) 859#ifdef CONFIG_RANDOMIZE_BASE 860 mov x19, x0 // preserve new SCTLR_EL1 value 861 mrs x20, sctlr_el1 // preserve old SCTLR_EL1 value 862#endif 863 864 adrp x1, init_pg_dir 865 bl __enable_mmu 866#ifdef CONFIG_RELOCATABLE 867#ifdef CONFIG_RELR 868 mov x24, #0 // no RELR displacement yet 869#endif 870 bl __relocate_kernel 871#ifdef CONFIG_RANDOMIZE_BASE 872 ldr x8, =__primary_switched 873 adrp x0, __PHYS_OFFSET 874 blr x8 875 876 /* 877 * If we return here, we have a KASLR displacement in x23 which we need 878 * to take into account by discarding the current kernel mapping and 879 * creating a new one. 880 */ 881 pre_disable_mmu_workaround 882 msr sctlr_el1, x20 // disable the MMU 883 isb 884 bl __create_page_tables // recreate kernel mapping 885 886 tlbi vmalle1 // Remove any stale TLB entries 887 dsb nsh 888 isb 889 890 set_sctlr_el1 x19 // re-enable the MMU 891 892 bl __relocate_kernel 893#endif 894#endif 895 ldr x8, =__primary_switched 896 adrp x0, __PHYS_OFFSET 897 br x8 898SYM_FUNC_END(__primary_switch) 899