1/* 2 * Low-level CPU initialisation 3 * Based on arch/arm/kernel/head.S 4 * 5 * Copyright (C) 1994-2002 Russell King 6 * Copyright (C) 2003-2012 ARM Ltd. 7 * Authors: Catalin Marinas <catalin.marinas@arm.com> 8 * Will Deacon <will.deacon@arm.com> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program. If not, see <http://www.gnu.org/licenses/>. 21 */ 22 23#include <linux/linkage.h> 24#include <linux/init.h> 25#include <linux/irqchip/arm-gic-v3.h> 26 27#include <asm/assembler.h> 28#include <asm/ptrace.h> 29#include <asm/asm-offsets.h> 30#include <asm/cache.h> 31#include <asm/cputype.h> 32#include <asm/memory.h> 33#include <asm/thread_info.h> 34#include <asm/pgtable-hwdef.h> 35#include <asm/pgtable.h> 36#include <asm/page.h> 37#include <asm/virt.h> 38 39#define KERNEL_RAM_VADDR (PAGE_OFFSET + TEXT_OFFSET) 40 41#if (TEXT_OFFSET & 0xfff) != 0 42#error TEXT_OFFSET must be at least 4KB aligned 43#elif (PAGE_OFFSET & 0x1fffff) != 0 44#error PAGE_OFFSET must be at least 2MB aligned 45#elif TEXT_OFFSET > 0x1fffff 46#error TEXT_OFFSET must be less than 2MB 47#endif 48 49 .macro pgtbl, ttb0, ttb1, virt_to_phys 50 ldr \ttb1, =swapper_pg_dir 51 ldr \ttb0, =idmap_pg_dir 52 add \ttb1, \ttb1, \virt_to_phys 53 add \ttb0, \ttb0, \virt_to_phys 54 .endm 55 56#ifdef CONFIG_ARM64_64K_PAGES 57#define BLOCK_SHIFT PAGE_SHIFT 58#define BLOCK_SIZE PAGE_SIZE 59#define TABLE_SHIFT PMD_SHIFT 60#else 61#define BLOCK_SHIFT SECTION_SHIFT 62#define BLOCK_SIZE SECTION_SIZE 63#define TABLE_SHIFT PUD_SHIFT 64#endif 65 66#define KERNEL_START KERNEL_RAM_VADDR 67#define KERNEL_END _end 68 69/* 70 * Initial memory map attributes. 71 */ 72#ifndef CONFIG_SMP 73#define PTE_FLAGS PTE_TYPE_PAGE | PTE_AF 74#define PMD_FLAGS PMD_TYPE_SECT | PMD_SECT_AF 75#else 76#define PTE_FLAGS PTE_TYPE_PAGE | PTE_AF | PTE_SHARED 77#define PMD_FLAGS PMD_TYPE_SECT | PMD_SECT_AF | PMD_SECT_S 78#endif 79 80#ifdef CONFIG_ARM64_64K_PAGES 81#define MM_MMUFLAGS PTE_ATTRINDX(MT_NORMAL) | PTE_FLAGS 82#else 83#define MM_MMUFLAGS PMD_ATTRINDX(MT_NORMAL) | PMD_FLAGS 84#endif 85 86/* 87 * Kernel startup entry point. 88 * --------------------------- 89 * 90 * The requirements are: 91 * MMU = off, D-cache = off, I-cache = on or off, 92 * x0 = physical address to the FDT blob. 93 * 94 * This code is mostly position independent so you call this at 95 * __pa(PAGE_OFFSET + TEXT_OFFSET). 96 * 97 * Note that the callee-saved registers are used for storing variables 98 * that are useful before the MMU is enabled. The allocations are described 99 * in the entry routines. 100 */ 101 __HEAD 102 103 /* 104 * DO NOT MODIFY. Image header expected by Linux boot-loaders. 105 */ 106#ifdef CONFIG_EFI 107efi_head: 108 /* 109 * This add instruction has no meaningful effect except that 110 * its opcode forms the magic "MZ" signature required by UEFI. 111 */ 112 add x13, x18, #0x16 113 b stext 114#else 115 b stext // branch to kernel start, magic 116 .long 0 // reserved 117#endif 118 .quad _kernel_offset_le // Image load offset from start of RAM, little-endian 119 .quad _kernel_size_le // Effective size of kernel image, little-endian 120 .quad _kernel_flags_le // Informative flags, little-endian 121 .quad 0 // reserved 122 .quad 0 // reserved 123 .quad 0 // reserved 124 .byte 0x41 // Magic number, "ARM\x64" 125 .byte 0x52 126 .byte 0x4d 127 .byte 0x64 128#ifdef CONFIG_EFI 129 .long pe_header - efi_head // Offset to the PE header. 130#else 131 .word 0 // reserved 132#endif 133 134#ifdef CONFIG_EFI 135 .align 3 136pe_header: 137 .ascii "PE" 138 .short 0 139coff_header: 140 .short 0xaa64 // AArch64 141 .short 2 // nr_sections 142 .long 0 // TimeDateStamp 143 .long 0 // PointerToSymbolTable 144 .long 1 // NumberOfSymbols 145 .short section_table - optional_header // SizeOfOptionalHeader 146 .short 0x206 // Characteristics. 147 // IMAGE_FILE_DEBUG_STRIPPED | 148 // IMAGE_FILE_EXECUTABLE_IMAGE | 149 // IMAGE_FILE_LINE_NUMS_STRIPPED 150optional_header: 151 .short 0x20b // PE32+ format 152 .byte 0x02 // MajorLinkerVersion 153 .byte 0x14 // MinorLinkerVersion 154 .long _edata - stext // SizeOfCode 155 .long 0 // SizeOfInitializedData 156 .long 0 // SizeOfUninitializedData 157 .long efi_stub_entry - efi_head // AddressOfEntryPoint 158 .long stext - efi_head // BaseOfCode 159 160extra_header_fields: 161 .quad 0 // ImageBase 162 .long 0x20 // SectionAlignment 163 .long 0x8 // FileAlignment 164 .short 0 // MajorOperatingSystemVersion 165 .short 0 // MinorOperatingSystemVersion 166 .short 0 // MajorImageVersion 167 .short 0 // MinorImageVersion 168 .short 0 // MajorSubsystemVersion 169 .short 0 // MinorSubsystemVersion 170 .long 0 // Win32VersionValue 171 172 .long _edata - efi_head // SizeOfImage 173 174 // Everything before the kernel image is considered part of the header 175 .long stext - efi_head // SizeOfHeaders 176 .long 0 // CheckSum 177 .short 0xa // Subsystem (EFI application) 178 .short 0 // DllCharacteristics 179 .quad 0 // SizeOfStackReserve 180 .quad 0 // SizeOfStackCommit 181 .quad 0 // SizeOfHeapReserve 182 .quad 0 // SizeOfHeapCommit 183 .long 0 // LoaderFlags 184 .long 0x6 // NumberOfRvaAndSizes 185 186 .quad 0 // ExportTable 187 .quad 0 // ImportTable 188 .quad 0 // ResourceTable 189 .quad 0 // ExceptionTable 190 .quad 0 // CertificationTable 191 .quad 0 // BaseRelocationTable 192 193 // Section table 194section_table: 195 196 /* 197 * The EFI application loader requires a relocation section 198 * because EFI applications must be relocatable. This is a 199 * dummy section as far as we are concerned. 200 */ 201 .ascii ".reloc" 202 .byte 0 203 .byte 0 // end of 0 padding of section name 204 .long 0 205 .long 0 206 .long 0 // SizeOfRawData 207 .long 0 // PointerToRawData 208 .long 0 // PointerToRelocations 209 .long 0 // PointerToLineNumbers 210 .short 0 // NumberOfRelocations 211 .short 0 // NumberOfLineNumbers 212 .long 0x42100040 // Characteristics (section flags) 213 214 215 .ascii ".text" 216 .byte 0 217 .byte 0 218 .byte 0 // end of 0 padding of section name 219 .long _edata - stext // VirtualSize 220 .long stext - efi_head // VirtualAddress 221 .long _edata - stext // SizeOfRawData 222 .long stext - efi_head // PointerToRawData 223 224 .long 0 // PointerToRelocations (0 for executables) 225 .long 0 // PointerToLineNumbers (0 for executables) 226 .short 0 // NumberOfRelocations (0 for executables) 227 .short 0 // NumberOfLineNumbers (0 for executables) 228 .long 0xe0500020 // Characteristics (section flags) 229 .align 5 230#endif 231 232ENTRY(stext) 233 mov x21, x0 // x21=FDT 234 bl el2_setup // Drop to EL1, w20=cpu_boot_mode 235 bl __calc_phys_offset // x24=PHYS_OFFSET, x28=PHYS_OFFSET-PAGE_OFFSET 236 bl set_cpu_boot_mode_flag 237 mrs x22, midr_el1 // x22=cpuid 238 mov x0, x22 239 bl lookup_processor_type 240 mov x23, x0 // x23=current cpu_table 241 cbz x23, __error_p // invalid processor (x23=0)? 242 bl __vet_fdt 243 bl __create_page_tables // x25=TTBR0, x26=TTBR1 244 /* 245 * The following calls CPU specific code in a position independent 246 * manner. See arch/arm64/mm/proc.S for details. x23 = base of 247 * cpu_info structure selected by lookup_processor_type above. 248 * On return, the CPU will be ready for the MMU to be turned on and 249 * the TCR will have been set. 250 */ 251 ldr x27, __switch_data // address to jump to after 252 // MMU has been enabled 253 adr lr, __enable_mmu // return (PIC) address 254 ldr x12, [x23, #CPU_INFO_SETUP] 255 add x12, x12, x28 // __virt_to_phys 256 br x12 // initialise processor 257ENDPROC(stext) 258 259/* 260 * If we're fortunate enough to boot at EL2, ensure that the world is 261 * sane before dropping to EL1. 262 * 263 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x20 if 264 * booted in EL1 or EL2 respectively. 265 */ 266ENTRY(el2_setup) 267 mrs x0, CurrentEL 268 cmp x0, #CurrentEL_EL2 269 b.ne 1f 270 mrs x0, sctlr_el2 271CPU_BE( orr x0, x0, #(1 << 25) ) // Set the EE bit for EL2 272CPU_LE( bic x0, x0, #(1 << 25) ) // Clear the EE bit for EL2 273 msr sctlr_el2, x0 274 b 2f 2751: mrs x0, sctlr_el1 276CPU_BE( orr x0, x0, #(3 << 24) ) // Set the EE and E0E bits for EL1 277CPU_LE( bic x0, x0, #(3 << 24) ) // Clear the EE and E0E bits for EL1 278 msr sctlr_el1, x0 279 mov w20, #BOOT_CPU_MODE_EL1 // This cpu booted in EL1 280 isb 281 ret 282 283 /* Hyp configuration. */ 2842: mov x0, #(1 << 31) // 64-bit EL1 285 msr hcr_el2, x0 286 287 /* Generic timers. */ 288 mrs x0, cnthctl_el2 289 orr x0, x0, #3 // Enable EL1 physical timers 290 msr cnthctl_el2, x0 291 msr cntvoff_el2, xzr // Clear virtual offset 292 293#ifdef CONFIG_ARM_GIC_V3 294 /* GICv3 system register access */ 295 mrs x0, id_aa64pfr0_el1 296 ubfx x0, x0, #24, #4 297 cmp x0, #1 298 b.ne 3f 299 300 mrs_s x0, ICC_SRE_EL2 301 orr x0, x0, #ICC_SRE_EL2_SRE // Set ICC_SRE_EL2.SRE==1 302 orr x0, x0, #ICC_SRE_EL2_ENABLE // Set ICC_SRE_EL2.Enable==1 303 msr_s ICC_SRE_EL2, x0 304 isb // Make sure SRE is now set 305 msr_s ICH_HCR_EL2, xzr // Reset ICC_HCR_EL2 to defaults 306 3073: 308#endif 309 310 /* Populate ID registers. */ 311 mrs x0, midr_el1 312 mrs x1, mpidr_el1 313 msr vpidr_el2, x0 314 msr vmpidr_el2, x1 315 316 /* sctlr_el1 */ 317 mov x0, #0x0800 // Set/clear RES{1,0} bits 318CPU_BE( movk x0, #0x33d0, lsl #16 ) // Set EE and E0E on BE systems 319CPU_LE( movk x0, #0x30d0, lsl #16 ) // Clear EE and E0E on LE systems 320 msr sctlr_el1, x0 321 322 /* Coprocessor traps. */ 323 mov x0, #0x33ff 324 msr cptr_el2, x0 // Disable copro. traps to EL2 325 326#ifdef CONFIG_COMPAT 327 msr hstr_el2, xzr // Disable CP15 traps to EL2 328#endif 329 330 /* Stage-2 translation */ 331 msr vttbr_el2, xzr 332 333 /* Hypervisor stub */ 334 adr x0, __hyp_stub_vectors 335 msr vbar_el2, x0 336 337 /* spsr */ 338 mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\ 339 PSR_MODE_EL1h) 340 msr spsr_el2, x0 341 msr elr_el2, lr 342 mov w20, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2 343 eret 344ENDPROC(el2_setup) 345 346/* 347 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed 348 * in x20. See arch/arm64/include/asm/virt.h for more info. 349 */ 350ENTRY(set_cpu_boot_mode_flag) 351 ldr x1, =__boot_cpu_mode // Compute __boot_cpu_mode 352 add x1, x1, x28 353 cmp w20, #BOOT_CPU_MODE_EL2 354 b.ne 1f 355 add x1, x1, #4 3561: str w20, [x1] // This CPU has booted in EL1 357 dmb sy 358 dc ivac, x1 // Invalidate potentially stale cache line 359 ret 360ENDPROC(set_cpu_boot_mode_flag) 361 362/* 363 * We need to find out the CPU boot mode long after boot, so we need to 364 * store it in a writable variable. 365 * 366 * This is not in .bss, because we set it sufficiently early that the boot-time 367 * zeroing of .bss would clobber it. 368 */ 369 .pushsection .data..cacheline_aligned 370ENTRY(__boot_cpu_mode) 371 .align L1_CACHE_SHIFT 372 .long BOOT_CPU_MODE_EL2 373 .long 0 374 .popsection 375 376 .align 3 3772: .quad . 378 .quad PAGE_OFFSET 379 380#ifdef CONFIG_SMP 381 .align 3 3821: .quad . 383 .quad secondary_holding_pen_release 384 385 /* 386 * This provides a "holding pen" for platforms to hold all secondary 387 * cores are held until we're ready for them to initialise. 388 */ 389ENTRY(secondary_holding_pen) 390 bl el2_setup // Drop to EL1, w20=cpu_boot_mode 391 bl __calc_phys_offset // x24=PHYS_OFFSET, x28=PHYS_OFFSET-PAGE_OFFSET 392 bl set_cpu_boot_mode_flag 393 mrs x0, mpidr_el1 394 ldr x1, =MPIDR_HWID_BITMASK 395 and x0, x0, x1 396 adr x1, 1b 397 ldp x2, x3, [x1] 398 sub x1, x1, x2 399 add x3, x3, x1 400pen: ldr x4, [x3] 401 cmp x4, x0 402 b.eq secondary_startup 403 wfe 404 b pen 405ENDPROC(secondary_holding_pen) 406 407 /* 408 * Secondary entry point that jumps straight into the kernel. Only to 409 * be used where CPUs are brought online dynamically by the kernel. 410 */ 411ENTRY(secondary_entry) 412 bl el2_setup // Drop to EL1 413 bl __calc_phys_offset // x24=PHYS_OFFSET, x28=PHYS_OFFSET-PAGE_OFFSET 414 bl set_cpu_boot_mode_flag 415 b secondary_startup 416ENDPROC(secondary_entry) 417 418ENTRY(secondary_startup) 419 /* 420 * Common entry point for secondary CPUs. 421 */ 422 mrs x22, midr_el1 // x22=cpuid 423 mov x0, x22 424 bl lookup_processor_type 425 mov x23, x0 // x23=current cpu_table 426 cbz x23, __error_p // invalid processor (x23=0)? 427 428 pgtbl x25, x26, x28 // x25=TTBR0, x26=TTBR1 429 ldr x12, [x23, #CPU_INFO_SETUP] 430 add x12, x12, x28 // __virt_to_phys 431 blr x12 // initialise processor 432 433 ldr x21, =secondary_data 434 ldr x27, =__secondary_switched // address to jump to after enabling the MMU 435 b __enable_mmu 436ENDPROC(secondary_startup) 437 438ENTRY(__secondary_switched) 439 ldr x0, [x21] // get secondary_data.stack 440 mov sp, x0 441 mov x29, #0 442 b secondary_start_kernel 443ENDPROC(__secondary_switched) 444#endif /* CONFIG_SMP */ 445 446/* 447 * Setup common bits before finally enabling the MMU. Essentially this is just 448 * loading the page table pointer and vector base registers. 449 * 450 * On entry to this code, x0 must contain the SCTLR_EL1 value for turning on 451 * the MMU. 452 */ 453__enable_mmu: 454 ldr x5, =vectors 455 msr vbar_el1, x5 456 msr ttbr0_el1, x25 // load TTBR0 457 msr ttbr1_el1, x26 // load TTBR1 458 isb 459 b __turn_mmu_on 460ENDPROC(__enable_mmu) 461 462/* 463 * Enable the MMU. This completely changes the structure of the visible memory 464 * space. You will not be able to trace execution through this. 465 * 466 * x0 = system control register 467 * x27 = *virtual* address to jump to upon completion 468 * 469 * other registers depend on the function called upon completion 470 * 471 * We align the entire function to the smallest power of two larger than it to 472 * ensure it fits within a single block map entry. Otherwise were PHYS_OFFSET 473 * close to the end of a 512MB or 1GB block we might require an additional 474 * table to map the entire function. 475 */ 476 .align 4 477__turn_mmu_on: 478 msr sctlr_el1, x0 479 isb 480 br x27 481ENDPROC(__turn_mmu_on) 482 483/* 484 * Calculate the start of physical memory. 485 */ 486__calc_phys_offset: 487 adr x0, 1f 488 ldp x1, x2, [x0] 489 sub x28, x0, x1 // x28 = PHYS_OFFSET - PAGE_OFFSET 490 add x24, x2, x28 // x24 = PHYS_OFFSET 491 ret 492ENDPROC(__calc_phys_offset) 493 494 .align 3 4951: .quad . 496 .quad PAGE_OFFSET 497 498/* 499 * Macro to create a table entry to the next page. 500 * 501 * tbl: page table address 502 * virt: virtual address 503 * shift: #imm page table shift 504 * ptrs: #imm pointers per table page 505 * 506 * Preserves: virt 507 * Corrupts: tmp1, tmp2 508 * Returns: tbl -> next level table page address 509 */ 510 .macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2 511 lsr \tmp1, \virt, #\shift 512 and \tmp1, \tmp1, #\ptrs - 1 // table index 513 add \tmp2, \tbl, #PAGE_SIZE 514 orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type 515 str \tmp2, [\tbl, \tmp1, lsl #3] 516 add \tbl, \tbl, #PAGE_SIZE // next level table page 517 .endm 518 519/* 520 * Macro to populate the PGD (and possibily PUD) for the corresponding 521 * block entry in the next level (tbl) for the given virtual address. 522 * 523 * Preserves: tbl, next, virt 524 * Corrupts: tmp1, tmp2 525 */ 526 .macro create_pgd_entry, tbl, virt, tmp1, tmp2 527 create_table_entry \tbl, \virt, PGDIR_SHIFT, PTRS_PER_PGD, \tmp1, \tmp2 528#if SWAPPER_PGTABLE_LEVELS == 3 529 create_table_entry \tbl, \virt, TABLE_SHIFT, PTRS_PER_PTE, \tmp1, \tmp2 530#endif 531 .endm 532 533/* 534 * Macro to populate block entries in the page table for the start..end 535 * virtual range (inclusive). 536 * 537 * Preserves: tbl, flags 538 * Corrupts: phys, start, end, pstate 539 */ 540 .macro create_block_map, tbl, flags, phys, start, end 541 lsr \phys, \phys, #BLOCK_SHIFT 542 lsr \start, \start, #BLOCK_SHIFT 543 and \start, \start, #PTRS_PER_PTE - 1 // table index 544 orr \phys, \flags, \phys, lsl #BLOCK_SHIFT // table entry 545 lsr \end, \end, #BLOCK_SHIFT 546 and \end, \end, #PTRS_PER_PTE - 1 // table end index 5479999: str \phys, [\tbl, \start, lsl #3] // store the entry 548 add \start, \start, #1 // next entry 549 add \phys, \phys, #BLOCK_SIZE // next block 550 cmp \start, \end 551 b.ls 9999b 552 .endm 553 554/* 555 * Setup the initial page tables. We only setup the barest amount which is 556 * required to get the kernel running. The following sections are required: 557 * - identity mapping to enable the MMU (low address, TTBR0) 558 * - first few MB of the kernel linear mapping to jump to once the MMU has 559 * been enabled, including the FDT blob (TTBR1) 560 * - pgd entry for fixed mappings (TTBR1) 561 */ 562__create_page_tables: 563 pgtbl x25, x26, x28 // idmap_pg_dir and swapper_pg_dir addresses 564 mov x27, lr 565 566 /* 567 * Invalidate the idmap and swapper page tables to avoid potential 568 * dirty cache lines being evicted. 569 */ 570 mov x0, x25 571 add x1, x26, #SWAPPER_DIR_SIZE 572 bl __inval_cache_range 573 574 /* 575 * Clear the idmap and swapper page tables. 576 */ 577 mov x0, x25 578 add x6, x26, #SWAPPER_DIR_SIZE 5791: stp xzr, xzr, [x0], #16 580 stp xzr, xzr, [x0], #16 581 stp xzr, xzr, [x0], #16 582 stp xzr, xzr, [x0], #16 583 cmp x0, x6 584 b.lo 1b 585 586 ldr x7, =MM_MMUFLAGS 587 588 /* 589 * Create the identity mapping. 590 */ 591 mov x0, x25 // idmap_pg_dir 592 ldr x3, =KERNEL_START 593 add x3, x3, x28 // __pa(KERNEL_START) 594 create_pgd_entry x0, x3, x5, x6 595 ldr x6, =KERNEL_END 596 mov x5, x3 // __pa(KERNEL_START) 597 add x6, x6, x28 // __pa(KERNEL_END) 598 create_block_map x0, x7, x3, x5, x6 599 600 /* 601 * Map the kernel image (starting with PHYS_OFFSET). 602 */ 603 mov x0, x26 // swapper_pg_dir 604 mov x5, #PAGE_OFFSET 605 create_pgd_entry x0, x5, x3, x6 606 ldr x6, =KERNEL_END 607 mov x3, x24 // phys offset 608 create_block_map x0, x7, x3, x5, x6 609 610 /* 611 * Map the FDT blob (maximum 2MB; must be within 512MB of 612 * PHYS_OFFSET). 613 */ 614 mov x3, x21 // FDT phys address 615 and x3, x3, #~((1 << 21) - 1) // 2MB aligned 616 mov x6, #PAGE_OFFSET 617 sub x5, x3, x24 // subtract PHYS_OFFSET 618 tst x5, #~((1 << 29) - 1) // within 512MB? 619 csel x21, xzr, x21, ne // zero the FDT pointer 620 b.ne 1f 621 add x5, x5, x6 // __va(FDT blob) 622 add x6, x5, #1 << 21 // 2MB for the FDT blob 623 sub x6, x6, #1 // inclusive range 624 create_block_map x0, x7, x3, x5, x6 6251: 626 /* 627 * Since the page tables have been populated with non-cacheable 628 * accesses (MMU disabled), invalidate the idmap and swapper page 629 * tables again to remove any speculatively loaded cache lines. 630 */ 631 mov x0, x25 632 add x1, x26, #SWAPPER_DIR_SIZE 633 bl __inval_cache_range 634 635 mov lr, x27 636 ret 637ENDPROC(__create_page_tables) 638 .ltorg 639 640 .align 3 641 .type __switch_data, %object 642__switch_data: 643 .quad __mmap_switched 644 .quad __bss_start // x6 645 .quad __bss_stop // x7 646 .quad processor_id // x4 647 .quad __fdt_pointer // x5 648 .quad memstart_addr // x6 649 .quad init_thread_union + THREAD_START_SP // sp 650 651/* 652 * The following fragment of code is executed with the MMU on in MMU mode, and 653 * uses absolute addresses; this is not position independent. 654 */ 655__mmap_switched: 656 adr x3, __switch_data + 8 657 658 ldp x6, x7, [x3], #16 6591: cmp x6, x7 660 b.hs 2f 661 str xzr, [x6], #8 // Clear BSS 662 b 1b 6632: 664 ldp x4, x5, [x3], #16 665 ldr x6, [x3], #8 666 ldr x16, [x3] 667 mov sp, x16 668 str x22, [x4] // Save processor ID 669 str x21, [x5] // Save FDT pointer 670 str x24, [x6] // Save PHYS_OFFSET 671 mov x29, #0 672 b start_kernel 673ENDPROC(__mmap_switched) 674 675/* 676 * Exception handling. Something went wrong and we can't proceed. We ought to 677 * tell the user, but since we don't have any guarantee that we're even 678 * running on the right architecture, we do virtually nothing. 679 */ 680__error_p: 681ENDPROC(__error_p) 682 683__error: 6841: nop 685 b 1b 686ENDPROC(__error) 687 688/* 689 * This function gets the processor ID in w0 and searches the cpu_table[] for 690 * a match. It returns a pointer to the struct cpu_info it found. The 691 * cpu_table[] must end with an empty (all zeros) structure. 692 * 693 * This routine can be called via C code and it needs to work with the MMU 694 * both disabled and enabled (the offset is calculated automatically). 695 */ 696ENTRY(lookup_processor_type) 697 adr x1, __lookup_processor_type_data 698 ldp x2, x3, [x1] 699 sub x1, x1, x2 // get offset between VA and PA 700 add x3, x3, x1 // convert VA to PA 7011: 702 ldp w5, w6, [x3] // load cpu_id_val and cpu_id_mask 703 cbz w5, 2f // end of list? 704 and w6, w6, w0 705 cmp w5, w6 706 b.eq 3f 707 add x3, x3, #CPU_INFO_SZ 708 b 1b 7092: 710 mov x3, #0 // unknown processor 7113: 712 mov x0, x3 713 ret 714ENDPROC(lookup_processor_type) 715 716 .align 3 717 .type __lookup_processor_type_data, %object 718__lookup_processor_type_data: 719 .quad . 720 .quad cpu_table 721 .size __lookup_processor_type_data, . - __lookup_processor_type_data 722 723/* 724 * Determine validity of the x21 FDT pointer. 725 * The dtb must be 8-byte aligned and live in the first 512M of memory. 726 */ 727__vet_fdt: 728 tst x21, #0x7 729 b.ne 1f 730 cmp x21, x24 731 b.lt 1f 732 mov x0, #(1 << 29) 733 add x0, x0, x24 734 cmp x21, x0 735 b.ge 1f 736 ret 7371: 738 mov x21, #0 739 ret 740ENDPROC(__vet_fdt) 741