xref: /openbmc/linux/arch/arm64/kernel/fpsimd.c (revision f3a8b664)
1 /*
2  * FP/SIMD context switching and fault handling
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/cpu.h>
21 #include <linux/cpu_pm.h>
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/signal.h>
26 #include <linux/hardirq.h>
27 
28 #include <asm/fpsimd.h>
29 #include <asm/cputype.h>
30 
31 #define FPEXC_IOF	(1 << 0)
32 #define FPEXC_DZF	(1 << 1)
33 #define FPEXC_OFF	(1 << 2)
34 #define FPEXC_UFF	(1 << 3)
35 #define FPEXC_IXF	(1 << 4)
36 #define FPEXC_IDF	(1 << 7)
37 
38 /*
39  * In order to reduce the number of times the FPSIMD state is needlessly saved
40  * and restored, we need to keep track of two things:
41  * (a) for each task, we need to remember which CPU was the last one to have
42  *     the task's FPSIMD state loaded into its FPSIMD registers;
43  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
44  *     been loaded into its FPSIMD registers most recently, or whether it has
45  *     been used to perform kernel mode NEON in the meantime.
46  *
47  * For (a), we add a 'cpu' field to struct fpsimd_state, which gets updated to
48  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
49  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
50  * address of the userland FPSIMD state of the task that was loaded onto the CPU
51  * the most recently, or NULL if kernel mode NEON has been performed after that.
52  *
53  * With this in place, we no longer have to restore the next FPSIMD state right
54  * when switching between tasks. Instead, we can defer this check to userland
55  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
56  * task's fpsimd_state.cpu are still mutually in sync. If this is the case, we
57  * can omit the FPSIMD restore.
58  *
59  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
60  * indicate whether or not the userland FPSIMD state of the current task is
61  * present in the registers. The flag is set unless the FPSIMD registers of this
62  * CPU currently contain the most recent userland FPSIMD state of the current
63  * task.
64  *
65  * For a certain task, the sequence may look something like this:
66  * - the task gets scheduled in; if both the task's fpsimd_state.cpu field
67  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
68  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
69  *   cleared, otherwise it is set;
70  *
71  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
72  *   userland FPSIMD state is copied from memory to the registers, the task's
73  *   fpsimd_state.cpu field is set to the id of the current CPU, the current
74  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
75  *   TIF_FOREIGN_FPSTATE flag is cleared;
76  *
77  * - the task executes an ordinary syscall; upon return to userland, the
78  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
79  *   restored;
80  *
81  * - the task executes a syscall which executes some NEON instructions; this is
82  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
83  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
84  *   and sets the TIF_FOREIGN_FPSTATE flag;
85  *
86  * - the task gets preempted after kernel_neon_end() is called; as we have not
87  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
88  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
89  */
90 static DEFINE_PER_CPU(struct fpsimd_state *, fpsimd_last_state);
91 
92 /*
93  * Trapped FP/ASIMD access.
94  */
95 void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
96 {
97 	/* TODO: implement lazy context saving/restoring */
98 	WARN_ON(1);
99 }
100 
101 /*
102  * Raise a SIGFPE for the current process.
103  */
104 void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
105 {
106 	siginfo_t info;
107 	unsigned int si_code = 0;
108 
109 	if (esr & FPEXC_IOF)
110 		si_code = FPE_FLTINV;
111 	else if (esr & FPEXC_DZF)
112 		si_code = FPE_FLTDIV;
113 	else if (esr & FPEXC_OFF)
114 		si_code = FPE_FLTOVF;
115 	else if (esr & FPEXC_UFF)
116 		si_code = FPE_FLTUND;
117 	else if (esr & FPEXC_IXF)
118 		si_code = FPE_FLTRES;
119 
120 	memset(&info, 0, sizeof(info));
121 	info.si_signo = SIGFPE;
122 	info.si_code = si_code;
123 	info.si_addr = (void __user *)instruction_pointer(regs);
124 
125 	send_sig_info(SIGFPE, &info, current);
126 }
127 
128 void fpsimd_thread_switch(struct task_struct *next)
129 {
130 	/*
131 	 * Save the current FPSIMD state to memory, but only if whatever is in
132 	 * the registers is in fact the most recent userland FPSIMD state of
133 	 * 'current'.
134 	 */
135 	if (current->mm && !test_thread_flag(TIF_FOREIGN_FPSTATE))
136 		fpsimd_save_state(&current->thread.fpsimd_state);
137 
138 	if (next->mm) {
139 		/*
140 		 * If we are switching to a task whose most recent userland
141 		 * FPSIMD state is already in the registers of *this* cpu,
142 		 * we can skip loading the state from memory. Otherwise, set
143 		 * the TIF_FOREIGN_FPSTATE flag so the state will be loaded
144 		 * upon the next return to userland.
145 		 */
146 		struct fpsimd_state *st = &next->thread.fpsimd_state;
147 
148 		if (__this_cpu_read(fpsimd_last_state) == st
149 		    && st->cpu == smp_processor_id())
150 			clear_ti_thread_flag(task_thread_info(next),
151 					     TIF_FOREIGN_FPSTATE);
152 		else
153 			set_ti_thread_flag(task_thread_info(next),
154 					   TIF_FOREIGN_FPSTATE);
155 	}
156 }
157 
158 void fpsimd_flush_thread(void)
159 {
160 	memset(&current->thread.fpsimd_state, 0, sizeof(struct fpsimd_state));
161 	fpsimd_flush_task_state(current);
162 	set_thread_flag(TIF_FOREIGN_FPSTATE);
163 }
164 
165 /*
166  * Save the userland FPSIMD state of 'current' to memory, but only if the state
167  * currently held in the registers does in fact belong to 'current'
168  */
169 void fpsimd_preserve_current_state(void)
170 {
171 	preempt_disable();
172 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE))
173 		fpsimd_save_state(&current->thread.fpsimd_state);
174 	preempt_enable();
175 }
176 
177 /*
178  * Load the userland FPSIMD state of 'current' from memory, but only if the
179  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
180  * state of 'current'
181  */
182 void fpsimd_restore_current_state(void)
183 {
184 	preempt_disable();
185 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
186 		struct fpsimd_state *st = &current->thread.fpsimd_state;
187 
188 		fpsimd_load_state(st);
189 		this_cpu_write(fpsimd_last_state, st);
190 		st->cpu = smp_processor_id();
191 	}
192 	preempt_enable();
193 }
194 
195 /*
196  * Load an updated userland FPSIMD state for 'current' from memory and set the
197  * flag that indicates that the FPSIMD register contents are the most recent
198  * FPSIMD state of 'current'
199  */
200 void fpsimd_update_current_state(struct fpsimd_state *state)
201 {
202 	preempt_disable();
203 	fpsimd_load_state(state);
204 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
205 		struct fpsimd_state *st = &current->thread.fpsimd_state;
206 
207 		this_cpu_write(fpsimd_last_state, st);
208 		st->cpu = smp_processor_id();
209 	}
210 	preempt_enable();
211 }
212 
213 /*
214  * Invalidate live CPU copies of task t's FPSIMD state
215  */
216 void fpsimd_flush_task_state(struct task_struct *t)
217 {
218 	t->thread.fpsimd_state.cpu = NR_CPUS;
219 }
220 
221 #ifdef CONFIG_KERNEL_MODE_NEON
222 
223 static DEFINE_PER_CPU(struct fpsimd_partial_state, hardirq_fpsimdstate);
224 static DEFINE_PER_CPU(struct fpsimd_partial_state, softirq_fpsimdstate);
225 
226 /*
227  * Kernel-side NEON support functions
228  */
229 void kernel_neon_begin_partial(u32 num_regs)
230 {
231 	if (in_interrupt()) {
232 		struct fpsimd_partial_state *s = this_cpu_ptr(
233 			in_irq() ? &hardirq_fpsimdstate : &softirq_fpsimdstate);
234 
235 		BUG_ON(num_regs > 32);
236 		fpsimd_save_partial_state(s, roundup(num_regs, 2));
237 	} else {
238 		/*
239 		 * Save the userland FPSIMD state if we have one and if we
240 		 * haven't done so already. Clear fpsimd_last_state to indicate
241 		 * that there is no longer userland FPSIMD state in the
242 		 * registers.
243 		 */
244 		preempt_disable();
245 		if (current->mm &&
246 		    !test_and_set_thread_flag(TIF_FOREIGN_FPSTATE))
247 			fpsimd_save_state(&current->thread.fpsimd_state);
248 		this_cpu_write(fpsimd_last_state, NULL);
249 	}
250 }
251 EXPORT_SYMBOL(kernel_neon_begin_partial);
252 
253 void kernel_neon_end(void)
254 {
255 	if (in_interrupt()) {
256 		struct fpsimd_partial_state *s = this_cpu_ptr(
257 			in_irq() ? &hardirq_fpsimdstate : &softirq_fpsimdstate);
258 		fpsimd_load_partial_state(s);
259 	} else {
260 		preempt_enable();
261 	}
262 }
263 EXPORT_SYMBOL(kernel_neon_end);
264 
265 #endif /* CONFIG_KERNEL_MODE_NEON */
266 
267 #ifdef CONFIG_CPU_PM
268 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
269 				  unsigned long cmd, void *v)
270 {
271 	switch (cmd) {
272 	case CPU_PM_ENTER:
273 		if (current->mm && !test_thread_flag(TIF_FOREIGN_FPSTATE))
274 			fpsimd_save_state(&current->thread.fpsimd_state);
275 		this_cpu_write(fpsimd_last_state, NULL);
276 		break;
277 	case CPU_PM_EXIT:
278 		if (current->mm)
279 			set_thread_flag(TIF_FOREIGN_FPSTATE);
280 		break;
281 	case CPU_PM_ENTER_FAILED:
282 	default:
283 		return NOTIFY_DONE;
284 	}
285 	return NOTIFY_OK;
286 }
287 
288 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
289 	.notifier_call = fpsimd_cpu_pm_notifier,
290 };
291 
292 static void __init fpsimd_pm_init(void)
293 {
294 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
295 }
296 
297 #else
298 static inline void fpsimd_pm_init(void) { }
299 #endif /* CONFIG_CPU_PM */
300 
301 #ifdef CONFIG_HOTPLUG_CPU
302 static int fpsimd_cpu_dead(unsigned int cpu)
303 {
304 	per_cpu(fpsimd_last_state, cpu) = NULL;
305 	return 0;
306 }
307 
308 static inline void fpsimd_hotplug_init(void)
309 {
310 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
311 				  NULL, fpsimd_cpu_dead);
312 }
313 
314 #else
315 static inline void fpsimd_hotplug_init(void) { }
316 #endif
317 
318 /*
319  * FP/SIMD support code initialisation.
320  */
321 static int __init fpsimd_init(void)
322 {
323 	if (elf_hwcap & HWCAP_FP) {
324 		fpsimd_pm_init();
325 		fpsimd_hotplug_init();
326 	} else {
327 		pr_notice("Floating-point is not implemented\n");
328 	}
329 
330 	if (!(elf_hwcap & HWCAP_ASIMD))
331 		pr_notice("Advanced SIMD is not implemented\n");
332 
333 	return 0;
334 }
335 late_initcall(fpsimd_init);
336