xref: /openbmc/linux/arch/arm64/kernel/fpsimd.c (revision eb9fe179)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FP/SIMD context switching and fault handling
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  * Author: Catalin Marinas <catalin.marinas@arm.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34 
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47 
48 #define FPEXC_IOF	(1 << 0)
49 #define FPEXC_DZF	(1 << 1)
50 #define FPEXC_OFF	(1 << 2)
51 #define FPEXC_UFF	(1 << 3)
52 #define FPEXC_IXF	(1 << 4)
53 #define FPEXC_IDF	(1 << 7)
54 
55 /*
56  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57  *
58  * In order to reduce the number of times the FPSIMD state is needlessly saved
59  * and restored, we need to keep track of two things:
60  * (a) for each task, we need to remember which CPU was the last one to have
61  *     the task's FPSIMD state loaded into its FPSIMD registers;
62  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63  *     been loaded into its FPSIMD registers most recently, or whether it has
64  *     been used to perform kernel mode NEON in the meantime.
65  *
66  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69  * address of the userland FPSIMD state of the task that was loaded onto the CPU
70  * the most recently, or NULL if kernel mode NEON has been performed after that.
71  *
72  * With this in place, we no longer have to restore the next FPSIMD state right
73  * when switching between tasks. Instead, we can defer this check to userland
74  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76  * can omit the FPSIMD restore.
77  *
78  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79  * indicate whether or not the userland FPSIMD state of the current task is
80  * present in the registers. The flag is set unless the FPSIMD registers of this
81  * CPU currently contain the most recent userland FPSIMD state of the current
82  * task. If the task is behaving as a VMM, then this is will be managed by
83  * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84  * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85  * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86  * flag the register state as invalid.
87  *
88  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
89  * save the task's FPSIMD context back to task_struct from softirq context.
90  * To prevent this from racing with the manipulation of the task's FPSIMD state
91  * from task context and thereby corrupting the state, it is necessary to
92  * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
93  * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
94  * run but prevent them to use FPSIMD.
95  *
96  * For a certain task, the sequence may look something like this:
97  * - the task gets scheduled in; if both the task's fpsimd_cpu field
98  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100  *   cleared, otherwise it is set;
101  *
102  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103  *   userland FPSIMD state is copied from memory to the registers, the task's
104  *   fpsimd_cpu field is set to the id of the current CPU, the current
105  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106  *   TIF_FOREIGN_FPSTATE flag is cleared;
107  *
108  * - the task executes an ordinary syscall; upon return to userland, the
109  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110  *   restored;
111  *
112  * - the task executes a syscall which executes some NEON instructions; this is
113  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
115  *   and sets the TIF_FOREIGN_FPSTATE flag;
116  *
117  * - the task gets preempted after kernel_neon_end() is called; as we have not
118  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
120  */
121 
122 static DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
123 
124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
125 #ifdef CONFIG_ARM64_SVE
126 	[ARM64_VEC_SVE] = {
127 		.type			= ARM64_VEC_SVE,
128 		.name			= "SVE",
129 		.min_vl			= SVE_VL_MIN,
130 		.max_vl			= SVE_VL_MIN,
131 		.max_virtualisable_vl	= SVE_VL_MIN,
132 	},
133 #endif
134 #ifdef CONFIG_ARM64_SME
135 	[ARM64_VEC_SME] = {
136 		.type			= ARM64_VEC_SME,
137 		.name			= "SME",
138 	},
139 #endif
140 };
141 
142 static unsigned int vec_vl_inherit_flag(enum vec_type type)
143 {
144 	switch (type) {
145 	case ARM64_VEC_SVE:
146 		return TIF_SVE_VL_INHERIT;
147 	case ARM64_VEC_SME:
148 		return TIF_SME_VL_INHERIT;
149 	default:
150 		WARN_ON_ONCE(1);
151 		return 0;
152 	}
153 }
154 
155 struct vl_config {
156 	int __default_vl;		/* Default VL for tasks */
157 };
158 
159 static struct vl_config vl_config[ARM64_VEC_MAX];
160 
161 static inline int get_default_vl(enum vec_type type)
162 {
163 	return READ_ONCE(vl_config[type].__default_vl);
164 }
165 
166 #ifdef CONFIG_ARM64_SVE
167 
168 static inline int get_sve_default_vl(void)
169 {
170 	return get_default_vl(ARM64_VEC_SVE);
171 }
172 
173 static inline void set_default_vl(enum vec_type type, int val)
174 {
175 	WRITE_ONCE(vl_config[type].__default_vl, val);
176 }
177 
178 static inline void set_sve_default_vl(int val)
179 {
180 	set_default_vl(ARM64_VEC_SVE, val);
181 }
182 
183 static void __percpu *efi_sve_state;
184 
185 #else /* ! CONFIG_ARM64_SVE */
186 
187 /* Dummy declaration for code that will be optimised out: */
188 extern void __percpu *efi_sve_state;
189 
190 #endif /* ! CONFIG_ARM64_SVE */
191 
192 #ifdef CONFIG_ARM64_SME
193 
194 static int get_sme_default_vl(void)
195 {
196 	return get_default_vl(ARM64_VEC_SME);
197 }
198 
199 static void set_sme_default_vl(int val)
200 {
201 	set_default_vl(ARM64_VEC_SME, val);
202 }
203 
204 static void sme_free(struct task_struct *);
205 
206 #else
207 
208 static inline void sme_free(struct task_struct *t) { }
209 
210 #endif
211 
212 DEFINE_PER_CPU(bool, fpsimd_context_busy);
213 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
214 
215 static void fpsimd_bind_task_to_cpu(void);
216 
217 static void __get_cpu_fpsimd_context(void)
218 {
219 	bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
220 
221 	WARN_ON(busy);
222 }
223 
224 /*
225  * Claim ownership of the CPU FPSIMD context for use by the calling context.
226  *
227  * The caller may freely manipulate the FPSIMD context metadata until
228  * put_cpu_fpsimd_context() is called.
229  *
230  * The double-underscore version must only be called if you know the task
231  * can't be preempted.
232  *
233  * On RT kernels local_bh_disable() is not sufficient because it only
234  * serializes soft interrupt related sections via a local lock, but stays
235  * preemptible. Disabling preemption is the right choice here as bottom
236  * half processing is always in thread context on RT kernels so it
237  * implicitly prevents bottom half processing as well.
238  */
239 static void get_cpu_fpsimd_context(void)
240 {
241 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 		local_bh_disable();
243 	else
244 		preempt_disable();
245 	__get_cpu_fpsimd_context();
246 }
247 
248 static void __put_cpu_fpsimd_context(void)
249 {
250 	bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
251 
252 	WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
253 }
254 
255 /*
256  * Release the CPU FPSIMD context.
257  *
258  * Must be called from a context in which get_cpu_fpsimd_context() was
259  * previously called, with no call to put_cpu_fpsimd_context() in the
260  * meantime.
261  */
262 static void put_cpu_fpsimd_context(void)
263 {
264 	__put_cpu_fpsimd_context();
265 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
266 		local_bh_enable();
267 	else
268 		preempt_enable();
269 }
270 
271 static bool have_cpu_fpsimd_context(void)
272 {
273 	return !preemptible() && __this_cpu_read(fpsimd_context_busy);
274 }
275 
276 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
277 {
278 	return task->thread.vl[type];
279 }
280 
281 void task_set_vl(struct task_struct *task, enum vec_type type,
282 		 unsigned long vl)
283 {
284 	task->thread.vl[type] = vl;
285 }
286 
287 unsigned int task_get_vl_onexec(const struct task_struct *task,
288 				enum vec_type type)
289 {
290 	return task->thread.vl_onexec[type];
291 }
292 
293 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
294 			unsigned long vl)
295 {
296 	task->thread.vl_onexec[type] = vl;
297 }
298 
299 /*
300  * TIF_SME controls whether a task can use SME without trapping while
301  * in userspace, when TIF_SME is set then we must have storage
302  * allocated in sve_state and sme_state to store the contents of both ZA
303  * and the SVE registers for both streaming and non-streaming modes.
304  *
305  * If both SVCR.ZA and SVCR.SM are disabled then at any point we
306  * may disable TIF_SME and reenable traps.
307  */
308 
309 
310 /*
311  * TIF_SVE controls whether a task can use SVE without trapping while
312  * in userspace, and also (together with TIF_SME) the way a task's
313  * FPSIMD/SVE state is stored in thread_struct.
314  *
315  * The kernel uses this flag to track whether a user task is actively
316  * using SVE, and therefore whether full SVE register state needs to
317  * be tracked.  If not, the cheaper FPSIMD context handling code can
318  * be used instead of the more costly SVE equivalents.
319  *
320  *  * TIF_SVE or SVCR.SM set:
321  *
322  *    The task can execute SVE instructions while in userspace without
323  *    trapping to the kernel.
324  *
325  *    During any syscall, the kernel may optionally clear TIF_SVE and
326  *    discard the vector state except for the FPSIMD subset.
327  *
328  *  * TIF_SVE clear:
329  *
330  *    An attempt by the user task to execute an SVE instruction causes
331  *    do_sve_acc() to be called, which does some preparation and then
332  *    sets TIF_SVE.
333  *
334  * During any syscall, the kernel may optionally clear TIF_SVE and
335  * discard the vector state except for the FPSIMD subset.
336  *
337  * The data will be stored in one of two formats:
338  *
339  *  * FPSIMD only - FP_STATE_FPSIMD:
340  *
341  *    When the FPSIMD only state stored task->thread.fp_type is set to
342  *    FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
343  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
344  *    logically zero but not stored anywhere; P0-P15 and FFR are not
345  *    stored and have unspecified values from userspace's point of
346  *    view.  For hygiene purposes, the kernel zeroes them on next use,
347  *    but userspace is discouraged from relying on this.
348  *
349  *    task->thread.sve_state does not need to be non-NULL, valid or any
350  *    particular size: it must not be dereferenced and any data stored
351  *    there should be considered stale and not referenced.
352  *
353  *  * SVE state - FP_STATE_SVE:
354  *
355  *    When the full SVE state is stored task->thread.fp_type is set to
356  *    FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
357  *    corresponding Zn), P0-P15 and FFR are encoded in in
358  *    task->thread.sve_state, formatted appropriately for vector
359  *    length task->thread.sve_vl or, if SVCR.SM is set,
360  *    task->thread.sme_vl. The storage for the vector registers in
361  *    task->thread.uw.fpsimd_state should be ignored.
362  *
363  *    task->thread.sve_state must point to a valid buffer at least
364  *    sve_state_size(task) bytes in size. The data stored in
365  *    task->thread.uw.fpsimd_state.vregs should be considered stale
366  *    and not referenced.
367  *
368  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
369  *    irrespective of whether TIF_SVE is clear or set, since these are
370  *    not vector length dependent.
371  */
372 
373 /*
374  * Update current's FPSIMD/SVE registers from thread_struct.
375  *
376  * This function should be called only when the FPSIMD/SVE state in
377  * thread_struct is known to be up to date, when preparing to enter
378  * userspace.
379  */
380 static void task_fpsimd_load(void)
381 {
382 	bool restore_sve_regs = false;
383 	bool restore_ffr;
384 
385 	WARN_ON(!system_supports_fpsimd());
386 	WARN_ON(!have_cpu_fpsimd_context());
387 
388 	if (system_supports_sve() || system_supports_sme()) {
389 		switch (current->thread.fp_type) {
390 		case FP_STATE_FPSIMD:
391 			/* Stop tracking SVE for this task until next use. */
392 			if (test_and_clear_thread_flag(TIF_SVE))
393 				sve_user_disable();
394 			break;
395 		case FP_STATE_SVE:
396 			if (!thread_sm_enabled(&current->thread) &&
397 			    !WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE)))
398 				sve_user_enable();
399 
400 			if (test_thread_flag(TIF_SVE))
401 				sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
402 
403 			restore_sve_regs = true;
404 			restore_ffr = true;
405 			break;
406 		default:
407 			/*
408 			 * This indicates either a bug in
409 			 * fpsimd_save() or memory corruption, we
410 			 * should always record an explicit format
411 			 * when we save. We always at least have the
412 			 * memory allocated for FPSMID registers so
413 			 * try that and hope for the best.
414 			 */
415 			WARN_ON_ONCE(1);
416 			clear_thread_flag(TIF_SVE);
417 			break;
418 		}
419 	}
420 
421 	/* Restore SME, override SVE register configuration if needed */
422 	if (system_supports_sme()) {
423 		unsigned long sme_vl = task_get_sme_vl(current);
424 
425 		/* Ensure VL is set up for restoring data */
426 		if (test_thread_flag(TIF_SME))
427 			sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
428 
429 		write_sysreg_s(current->thread.svcr, SYS_SVCR);
430 
431 		if (thread_za_enabled(&current->thread))
432 			sme_load_state(current->thread.sme_state,
433 				       system_supports_sme2());
434 
435 		if (thread_sm_enabled(&current->thread))
436 			restore_ffr = system_supports_fa64();
437 	}
438 
439 	if (restore_sve_regs) {
440 		WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
441 		sve_load_state(sve_pffr(&current->thread),
442 			       &current->thread.uw.fpsimd_state.fpsr,
443 			       restore_ffr);
444 	} else {
445 		WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
446 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
447 	}
448 }
449 
450 /*
451  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
452  * date with respect to the CPU registers. Note carefully that the
453  * current context is the context last bound to the CPU stored in
454  * last, if KVM is involved this may be the guest VM context rather
455  * than the host thread for the VM pointed to by current. This means
456  * that we must always reference the state storage via last rather
457  * than via current, if we are saving KVM state then it will have
458  * ensured that the type of registers to save is set in last->to_save.
459  */
460 static void fpsimd_save(void)
461 {
462 	struct cpu_fp_state const *last =
463 		this_cpu_ptr(&fpsimd_last_state);
464 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
465 	bool save_sve_regs = false;
466 	bool save_ffr;
467 	unsigned int vl;
468 
469 	WARN_ON(!system_supports_fpsimd());
470 	WARN_ON(!have_cpu_fpsimd_context());
471 
472 	if (test_thread_flag(TIF_FOREIGN_FPSTATE))
473 		return;
474 
475 	/*
476 	 * If a task is in a syscall the ABI allows us to only
477 	 * preserve the state shared with FPSIMD so don't bother
478 	 * saving the full SVE state in that case.
479 	 */
480 	if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE) &&
481 	     !in_syscall(current_pt_regs())) ||
482 	    last->to_save == FP_STATE_SVE) {
483 		save_sve_regs = true;
484 		save_ffr = true;
485 		vl = last->sve_vl;
486 	}
487 
488 	if (system_supports_sme()) {
489 		u64 *svcr = last->svcr;
490 
491 		*svcr = read_sysreg_s(SYS_SVCR);
492 
493 		if (*svcr & SVCR_ZA_MASK)
494 			sme_save_state(last->sme_state,
495 				       system_supports_sme2());
496 
497 		/* If we are in streaming mode override regular SVE. */
498 		if (*svcr & SVCR_SM_MASK) {
499 			save_sve_regs = true;
500 			save_ffr = system_supports_fa64();
501 			vl = last->sme_vl;
502 		}
503 	}
504 
505 	if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
506 		/* Get the configured VL from RDVL, will account for SM */
507 		if (WARN_ON(sve_get_vl() != vl)) {
508 			/*
509 			 * Can't save the user regs, so current would
510 			 * re-enter user with corrupt state.
511 			 * There's no way to recover, so kill it:
512 			 */
513 			force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
514 			return;
515 		}
516 
517 		sve_save_state((char *)last->sve_state +
518 					sve_ffr_offset(vl),
519 			       &last->st->fpsr, save_ffr);
520 		*last->fp_type = FP_STATE_SVE;
521 	} else {
522 		fpsimd_save_state(last->st);
523 		*last->fp_type = FP_STATE_FPSIMD;
524 	}
525 }
526 
527 /*
528  * All vector length selection from userspace comes through here.
529  * We're on a slow path, so some sanity-checks are included.
530  * If things go wrong there's a bug somewhere, but try to fall back to a
531  * safe choice.
532  */
533 static unsigned int find_supported_vector_length(enum vec_type type,
534 						 unsigned int vl)
535 {
536 	struct vl_info *info = &vl_info[type];
537 	int bit;
538 	int max_vl = info->max_vl;
539 
540 	if (WARN_ON(!sve_vl_valid(vl)))
541 		vl = info->min_vl;
542 
543 	if (WARN_ON(!sve_vl_valid(max_vl)))
544 		max_vl = info->min_vl;
545 
546 	if (vl > max_vl)
547 		vl = max_vl;
548 	if (vl < info->min_vl)
549 		vl = info->min_vl;
550 
551 	bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
552 			    __vq_to_bit(sve_vq_from_vl(vl)));
553 	return sve_vl_from_vq(__bit_to_vq(bit));
554 }
555 
556 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
557 
558 static int vec_proc_do_default_vl(struct ctl_table *table, int write,
559 				  void *buffer, size_t *lenp, loff_t *ppos)
560 {
561 	struct vl_info *info = table->extra1;
562 	enum vec_type type = info->type;
563 	int ret;
564 	int vl = get_default_vl(type);
565 	struct ctl_table tmp_table = {
566 		.data = &vl,
567 		.maxlen = sizeof(vl),
568 	};
569 
570 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
571 	if (ret || !write)
572 		return ret;
573 
574 	/* Writing -1 has the special meaning "set to max": */
575 	if (vl == -1)
576 		vl = info->max_vl;
577 
578 	if (!sve_vl_valid(vl))
579 		return -EINVAL;
580 
581 	set_default_vl(type, find_supported_vector_length(type, vl));
582 	return 0;
583 }
584 
585 static struct ctl_table sve_default_vl_table[] = {
586 	{
587 		.procname	= "sve_default_vector_length",
588 		.mode		= 0644,
589 		.proc_handler	= vec_proc_do_default_vl,
590 		.extra1		= &vl_info[ARM64_VEC_SVE],
591 	},
592 	{ }
593 };
594 
595 static int __init sve_sysctl_init(void)
596 {
597 	if (system_supports_sve())
598 		if (!register_sysctl("abi", sve_default_vl_table))
599 			return -EINVAL;
600 
601 	return 0;
602 }
603 
604 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
605 static int __init sve_sysctl_init(void) { return 0; }
606 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
607 
608 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
609 static struct ctl_table sme_default_vl_table[] = {
610 	{
611 		.procname	= "sme_default_vector_length",
612 		.mode		= 0644,
613 		.proc_handler	= vec_proc_do_default_vl,
614 		.extra1		= &vl_info[ARM64_VEC_SME],
615 	},
616 	{ }
617 };
618 
619 static int __init sme_sysctl_init(void)
620 {
621 	if (system_supports_sme())
622 		if (!register_sysctl("abi", sme_default_vl_table))
623 			return -EINVAL;
624 
625 	return 0;
626 }
627 
628 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
629 static int __init sme_sysctl_init(void) { return 0; }
630 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
631 
632 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
633 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
634 
635 #ifdef CONFIG_CPU_BIG_ENDIAN
636 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
637 {
638 	u64 a = swab64(x);
639 	u64 b = swab64(x >> 64);
640 
641 	return ((__uint128_t)a << 64) | b;
642 }
643 #else
644 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
645 {
646 	return x;
647 }
648 #endif
649 
650 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
651 
652 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
653 			    unsigned int vq)
654 {
655 	unsigned int i;
656 	__uint128_t *p;
657 
658 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
659 		p = (__uint128_t *)ZREG(sst, vq, i);
660 		*p = arm64_cpu_to_le128(fst->vregs[i]);
661 	}
662 }
663 
664 /*
665  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
666  * task->thread.sve_state.
667  *
668  * Task can be a non-runnable task, or current.  In the latter case,
669  * the caller must have ownership of the cpu FPSIMD context before calling
670  * this function.
671  * task->thread.sve_state must point to at least sve_state_size(task)
672  * bytes of allocated kernel memory.
673  * task->thread.uw.fpsimd_state must be up to date before calling this
674  * function.
675  */
676 static void fpsimd_to_sve(struct task_struct *task)
677 {
678 	unsigned int vq;
679 	void *sst = task->thread.sve_state;
680 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
681 
682 	if (!system_supports_sve())
683 		return;
684 
685 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
686 	__fpsimd_to_sve(sst, fst, vq);
687 }
688 
689 /*
690  * Transfer the SVE state in task->thread.sve_state to
691  * task->thread.uw.fpsimd_state.
692  *
693  * Task can be a non-runnable task, or current.  In the latter case,
694  * the caller must have ownership of the cpu FPSIMD context before calling
695  * this function.
696  * task->thread.sve_state must point to at least sve_state_size(task)
697  * bytes of allocated kernel memory.
698  * task->thread.sve_state must be up to date before calling this function.
699  */
700 static void sve_to_fpsimd(struct task_struct *task)
701 {
702 	unsigned int vq, vl;
703 	void const *sst = task->thread.sve_state;
704 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
705 	unsigned int i;
706 	__uint128_t const *p;
707 
708 	if (!system_supports_sve())
709 		return;
710 
711 	vl = thread_get_cur_vl(&task->thread);
712 	vq = sve_vq_from_vl(vl);
713 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
714 		p = (__uint128_t const *)ZREG(sst, vq, i);
715 		fst->vregs[i] = arm64_le128_to_cpu(*p);
716 	}
717 }
718 
719 #ifdef CONFIG_ARM64_SVE
720 /*
721  * Call __sve_free() directly only if you know task can't be scheduled
722  * or preempted.
723  */
724 static void __sve_free(struct task_struct *task)
725 {
726 	kfree(task->thread.sve_state);
727 	task->thread.sve_state = NULL;
728 }
729 
730 static void sve_free(struct task_struct *task)
731 {
732 	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
733 
734 	__sve_free(task);
735 }
736 
737 /*
738  * Return how many bytes of memory are required to store the full SVE
739  * state for task, given task's currently configured vector length.
740  */
741 size_t sve_state_size(struct task_struct const *task)
742 {
743 	unsigned int vl = 0;
744 
745 	if (system_supports_sve())
746 		vl = task_get_sve_vl(task);
747 	if (system_supports_sme())
748 		vl = max(vl, task_get_sme_vl(task));
749 
750 	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
751 }
752 
753 /*
754  * Ensure that task->thread.sve_state is allocated and sufficiently large.
755  *
756  * This function should be used only in preparation for replacing
757  * task->thread.sve_state with new data.  The memory is always zeroed
758  * here to prevent stale data from showing through: this is done in
759  * the interest of testability and predictability: except in the
760  * do_sve_acc() case, there is no ABI requirement to hide stale data
761  * written previously be task.
762  */
763 void sve_alloc(struct task_struct *task, bool flush)
764 {
765 	if (task->thread.sve_state) {
766 		if (flush)
767 			memset(task->thread.sve_state, 0,
768 			       sve_state_size(task));
769 		return;
770 	}
771 
772 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
773 	task->thread.sve_state =
774 		kzalloc(sve_state_size(task), GFP_KERNEL);
775 }
776 
777 
778 /*
779  * Force the FPSIMD state shared with SVE to be updated in the SVE state
780  * even if the SVE state is the current active state.
781  *
782  * This should only be called by ptrace.  task must be non-runnable.
783  * task->thread.sve_state must point to at least sve_state_size(task)
784  * bytes of allocated kernel memory.
785  */
786 void fpsimd_force_sync_to_sve(struct task_struct *task)
787 {
788 	fpsimd_to_sve(task);
789 }
790 
791 /*
792  * Ensure that task->thread.sve_state is up to date with respect to
793  * the user task, irrespective of when SVE is in use or not.
794  *
795  * This should only be called by ptrace.  task must be non-runnable.
796  * task->thread.sve_state must point to at least sve_state_size(task)
797  * bytes of allocated kernel memory.
798  */
799 void fpsimd_sync_to_sve(struct task_struct *task)
800 {
801 	if (!test_tsk_thread_flag(task, TIF_SVE) &&
802 	    !thread_sm_enabled(&task->thread))
803 		fpsimd_to_sve(task);
804 }
805 
806 /*
807  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
808  * the user task, irrespective of whether SVE is in use or not.
809  *
810  * This should only be called by ptrace.  task must be non-runnable.
811  * task->thread.sve_state must point to at least sve_state_size(task)
812  * bytes of allocated kernel memory.
813  */
814 void sve_sync_to_fpsimd(struct task_struct *task)
815 {
816 	if (task->thread.fp_type == FP_STATE_SVE)
817 		sve_to_fpsimd(task);
818 }
819 
820 /*
821  * Ensure that task->thread.sve_state is up to date with respect to
822  * the task->thread.uw.fpsimd_state.
823  *
824  * This should only be called by ptrace to merge new FPSIMD register
825  * values into a task for which SVE is currently active.
826  * task must be non-runnable.
827  * task->thread.sve_state must point to at least sve_state_size(task)
828  * bytes of allocated kernel memory.
829  * task->thread.uw.fpsimd_state must already have been initialised with
830  * the new FPSIMD register values to be merged in.
831  */
832 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
833 {
834 	unsigned int vq;
835 	void *sst = task->thread.sve_state;
836 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
837 
838 	if (!test_tsk_thread_flag(task, TIF_SVE))
839 		return;
840 
841 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
842 
843 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
844 	__fpsimd_to_sve(sst, fst, vq);
845 }
846 
847 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
848 			  unsigned long vl, unsigned long flags)
849 {
850 	bool free_sme = false;
851 
852 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
853 				     PR_SVE_SET_VL_ONEXEC))
854 		return -EINVAL;
855 
856 	if (!sve_vl_valid(vl))
857 		return -EINVAL;
858 
859 	/*
860 	 * Clamp to the maximum vector length that VL-agnostic code
861 	 * can work with.  A flag may be assigned in the future to
862 	 * allow setting of larger vector lengths without confusing
863 	 * older software.
864 	 */
865 	if (vl > VL_ARCH_MAX)
866 		vl = VL_ARCH_MAX;
867 
868 	vl = find_supported_vector_length(type, vl);
869 
870 	if (flags & (PR_SVE_VL_INHERIT |
871 		     PR_SVE_SET_VL_ONEXEC))
872 		task_set_vl_onexec(task, type, vl);
873 	else
874 		/* Reset VL to system default on next exec: */
875 		task_set_vl_onexec(task, type, 0);
876 
877 	/* Only actually set the VL if not deferred: */
878 	if (flags & PR_SVE_SET_VL_ONEXEC)
879 		goto out;
880 
881 	if (vl == task_get_vl(task, type))
882 		goto out;
883 
884 	/*
885 	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
886 	 * write any live register state back to task_struct, and convert to a
887 	 * regular FPSIMD thread.
888 	 */
889 	if (task == current) {
890 		get_cpu_fpsimd_context();
891 
892 		fpsimd_save();
893 	}
894 
895 	fpsimd_flush_task_state(task);
896 	if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
897 	    thread_sm_enabled(&task->thread)) {
898 		sve_to_fpsimd(task);
899 		task->thread.fp_type = FP_STATE_FPSIMD;
900 	}
901 
902 	if (system_supports_sme()) {
903 		if (type == ARM64_VEC_SME ||
904 		    !(task->thread.svcr & (SVCR_SM_MASK | SVCR_ZA_MASK))) {
905 			/*
906 			 * We are changing the SME VL or weren't using
907 			 * SME anyway, discard the state and force a
908 			 * reallocation.
909 			 */
910 			task->thread.svcr &= ~(SVCR_SM_MASK |
911 					       SVCR_ZA_MASK);
912 			clear_thread_flag(TIF_SME);
913 			free_sme = true;
914 		}
915 	}
916 
917 	if (task == current)
918 		put_cpu_fpsimd_context();
919 
920 	task_set_vl(task, type, vl);
921 
922 	/*
923 	 * Free the changed states if they are not in use, SME will be
924 	 * reallocated to the correct size on next use and we just
925 	 * allocate SVE now in case it is needed for use in streaming
926 	 * mode.
927 	 */
928 	if (system_supports_sve()) {
929 		sve_free(task);
930 		sve_alloc(task, true);
931 	}
932 
933 	if (free_sme)
934 		sme_free(task);
935 
936 out:
937 	update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
938 			       flags & PR_SVE_VL_INHERIT);
939 
940 	return 0;
941 }
942 
943 /*
944  * Encode the current vector length and flags for return.
945  * This is only required for prctl(): ptrace has separate fields.
946  * SVE and SME use the same bits for _ONEXEC and _INHERIT.
947  *
948  * flags are as for vec_set_vector_length().
949  */
950 static int vec_prctl_status(enum vec_type type, unsigned long flags)
951 {
952 	int ret;
953 
954 	if (flags & PR_SVE_SET_VL_ONEXEC)
955 		ret = task_get_vl_onexec(current, type);
956 	else
957 		ret = task_get_vl(current, type);
958 
959 	if (test_thread_flag(vec_vl_inherit_flag(type)))
960 		ret |= PR_SVE_VL_INHERIT;
961 
962 	return ret;
963 }
964 
965 /* PR_SVE_SET_VL */
966 int sve_set_current_vl(unsigned long arg)
967 {
968 	unsigned long vl, flags;
969 	int ret;
970 
971 	vl = arg & PR_SVE_VL_LEN_MASK;
972 	flags = arg & ~vl;
973 
974 	if (!system_supports_sve() || is_compat_task())
975 		return -EINVAL;
976 
977 	ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
978 	if (ret)
979 		return ret;
980 
981 	return vec_prctl_status(ARM64_VEC_SVE, flags);
982 }
983 
984 /* PR_SVE_GET_VL */
985 int sve_get_current_vl(void)
986 {
987 	if (!system_supports_sve() || is_compat_task())
988 		return -EINVAL;
989 
990 	return vec_prctl_status(ARM64_VEC_SVE, 0);
991 }
992 
993 #ifdef CONFIG_ARM64_SME
994 /* PR_SME_SET_VL */
995 int sme_set_current_vl(unsigned long arg)
996 {
997 	unsigned long vl, flags;
998 	int ret;
999 
1000 	vl = arg & PR_SME_VL_LEN_MASK;
1001 	flags = arg & ~vl;
1002 
1003 	if (!system_supports_sme() || is_compat_task())
1004 		return -EINVAL;
1005 
1006 	ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
1007 	if (ret)
1008 		return ret;
1009 
1010 	return vec_prctl_status(ARM64_VEC_SME, flags);
1011 }
1012 
1013 /* PR_SME_GET_VL */
1014 int sme_get_current_vl(void)
1015 {
1016 	if (!system_supports_sme() || is_compat_task())
1017 		return -EINVAL;
1018 
1019 	return vec_prctl_status(ARM64_VEC_SME, 0);
1020 }
1021 #endif /* CONFIG_ARM64_SME */
1022 
1023 static void vec_probe_vqs(struct vl_info *info,
1024 			  DECLARE_BITMAP(map, SVE_VQ_MAX))
1025 {
1026 	unsigned int vq, vl;
1027 
1028 	bitmap_zero(map, SVE_VQ_MAX);
1029 
1030 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
1031 		write_vl(info->type, vq - 1); /* self-syncing */
1032 
1033 		switch (info->type) {
1034 		case ARM64_VEC_SVE:
1035 			vl = sve_get_vl();
1036 			break;
1037 		case ARM64_VEC_SME:
1038 			vl = sme_get_vl();
1039 			break;
1040 		default:
1041 			vl = 0;
1042 			break;
1043 		}
1044 
1045 		/* Minimum VL identified? */
1046 		if (sve_vq_from_vl(vl) > vq)
1047 			break;
1048 
1049 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
1050 		set_bit(__vq_to_bit(vq), map);
1051 	}
1052 }
1053 
1054 /*
1055  * Initialise the set of known supported VQs for the boot CPU.
1056  * This is called during kernel boot, before secondary CPUs are brought up.
1057  */
1058 void __init vec_init_vq_map(enum vec_type type)
1059 {
1060 	struct vl_info *info = &vl_info[type];
1061 	vec_probe_vqs(info, info->vq_map);
1062 	bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1063 }
1064 
1065 /*
1066  * If we haven't committed to the set of supported VQs yet, filter out
1067  * those not supported by the current CPU.
1068  * This function is called during the bring-up of early secondary CPUs only.
1069  */
1070 void vec_update_vq_map(enum vec_type type)
1071 {
1072 	struct vl_info *info = &vl_info[type];
1073 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1074 
1075 	vec_probe_vqs(info, tmp_map);
1076 	bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1077 	bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1078 		  SVE_VQ_MAX);
1079 }
1080 
1081 /*
1082  * Check whether the current CPU supports all VQs in the committed set.
1083  * This function is called during the bring-up of late secondary CPUs only.
1084  */
1085 int vec_verify_vq_map(enum vec_type type)
1086 {
1087 	struct vl_info *info = &vl_info[type];
1088 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1089 	unsigned long b;
1090 
1091 	vec_probe_vqs(info, tmp_map);
1092 
1093 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1094 	if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1095 		pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1096 			info->name, smp_processor_id());
1097 		return -EINVAL;
1098 	}
1099 
1100 	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1101 		return 0;
1102 
1103 	/*
1104 	 * For KVM, it is necessary to ensure that this CPU doesn't
1105 	 * support any vector length that guests may have probed as
1106 	 * unsupported.
1107 	 */
1108 
1109 	/* Recover the set of supported VQs: */
1110 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1111 	/* Find VQs supported that are not globally supported: */
1112 	bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1113 
1114 	/* Find the lowest such VQ, if any: */
1115 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1116 	if (b >= SVE_VQ_MAX)
1117 		return 0; /* no mismatches */
1118 
1119 	/*
1120 	 * Mismatches above sve_max_virtualisable_vl are fine, since
1121 	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1122 	 */
1123 	if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1124 		pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1125 			info->name, smp_processor_id());
1126 		return -EINVAL;
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 static void __init sve_efi_setup(void)
1133 {
1134 	int max_vl = 0;
1135 	int i;
1136 
1137 	if (!IS_ENABLED(CONFIG_EFI))
1138 		return;
1139 
1140 	for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1141 		max_vl = max(vl_info[i].max_vl, max_vl);
1142 
1143 	/*
1144 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1145 	 * This is evidence of a crippled system and we are returning void,
1146 	 * so no attempt is made to handle this situation here.
1147 	 */
1148 	if (!sve_vl_valid(max_vl))
1149 		goto fail;
1150 
1151 	efi_sve_state = __alloc_percpu(
1152 		SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
1153 	if (!efi_sve_state)
1154 		goto fail;
1155 
1156 	return;
1157 
1158 fail:
1159 	panic("Cannot allocate percpu memory for EFI SVE save/restore");
1160 }
1161 
1162 /*
1163  * Enable SVE for EL1.
1164  * Intended for use by the cpufeatures code during CPU boot.
1165  */
1166 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1167 {
1168 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1169 	isb();
1170 }
1171 
1172 /*
1173  * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
1174  * vector length.
1175  *
1176  * Use only if SVE is present.
1177  * This function clobbers the SVE vector length.
1178  */
1179 u64 read_zcr_features(void)
1180 {
1181 	u64 zcr;
1182 	unsigned int vq_max;
1183 
1184 	/*
1185 	 * Set the maximum possible VL, and write zeroes to all other
1186 	 * bits to see if they stick.
1187 	 */
1188 	sve_kernel_enable(NULL);
1189 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
1190 
1191 	zcr = read_sysreg_s(SYS_ZCR_EL1);
1192 	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
1193 	vq_max = sve_vq_from_vl(sve_get_vl());
1194 	zcr |= vq_max - 1; /* set LEN field to maximum effective value */
1195 
1196 	return zcr;
1197 }
1198 
1199 void __init sve_setup(void)
1200 {
1201 	struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1202 	u64 zcr;
1203 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1204 	unsigned long b;
1205 
1206 	if (!system_supports_sve())
1207 		return;
1208 
1209 	/*
1210 	 * The SVE architecture mandates support for 128-bit vectors,
1211 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
1212 	 * If something went wrong, at least try to patch it up:
1213 	 */
1214 	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1215 		set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1216 
1217 	zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1218 	info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
1219 
1220 	/*
1221 	 * Sanity-check that the max VL we determined through CPU features
1222 	 * corresponds properly to sve_vq_map.  If not, do our best:
1223 	 */
1224 	if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
1225 								 info->max_vl)))
1226 		info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
1227 							    info->max_vl);
1228 
1229 	/*
1230 	 * For the default VL, pick the maximum supported value <= 64.
1231 	 * VL == 64 is guaranteed not to grow the signal frame.
1232 	 */
1233 	set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1234 
1235 	bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1236 		      SVE_VQ_MAX);
1237 
1238 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1239 	if (b >= SVE_VQ_MAX)
1240 		/* No non-virtualisable VLs found */
1241 		info->max_virtualisable_vl = SVE_VQ_MAX;
1242 	else if (WARN_ON(b == SVE_VQ_MAX - 1))
1243 		/* No virtualisable VLs?  This is architecturally forbidden. */
1244 		info->max_virtualisable_vl = SVE_VQ_MIN;
1245 	else /* b + 1 < SVE_VQ_MAX */
1246 		info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1247 
1248 	if (info->max_virtualisable_vl > info->max_vl)
1249 		info->max_virtualisable_vl = info->max_vl;
1250 
1251 	pr_info("%s: maximum available vector length %u bytes per vector\n",
1252 		info->name, info->max_vl);
1253 	pr_info("%s: default vector length %u bytes per vector\n",
1254 		info->name, get_sve_default_vl());
1255 
1256 	/* KVM decides whether to support mismatched systems. Just warn here: */
1257 	if (sve_max_virtualisable_vl() < sve_max_vl())
1258 		pr_warn("%s: unvirtualisable vector lengths present\n",
1259 			info->name);
1260 
1261 	sve_efi_setup();
1262 }
1263 
1264 /*
1265  * Called from the put_task_struct() path, which cannot get here
1266  * unless dead_task is really dead and not schedulable.
1267  */
1268 void fpsimd_release_task(struct task_struct *dead_task)
1269 {
1270 	__sve_free(dead_task);
1271 	sme_free(dead_task);
1272 }
1273 
1274 #endif /* CONFIG_ARM64_SVE */
1275 
1276 #ifdef CONFIG_ARM64_SME
1277 
1278 /*
1279  * Ensure that task->thread.sme_state is allocated and sufficiently large.
1280  *
1281  * This function should be used only in preparation for replacing
1282  * task->thread.sme_state with new data.  The memory is always zeroed
1283  * here to prevent stale data from showing through: this is done in
1284  * the interest of testability and predictability, the architecture
1285  * guarantees that when ZA is enabled it will be zeroed.
1286  */
1287 void sme_alloc(struct task_struct *task)
1288 {
1289 	if (task->thread.sme_state) {
1290 		memset(task->thread.sme_state, 0, sme_state_size(task));
1291 		return;
1292 	}
1293 
1294 	/* This could potentially be up to 64K. */
1295 	task->thread.sme_state =
1296 		kzalloc(sme_state_size(task), GFP_KERNEL);
1297 }
1298 
1299 static void sme_free(struct task_struct *task)
1300 {
1301 	kfree(task->thread.sme_state);
1302 	task->thread.sme_state = NULL;
1303 }
1304 
1305 void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1306 {
1307 	/* Set priority for all PEs to architecturally defined minimum */
1308 	write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1309 		       SYS_SMPRI_EL1);
1310 
1311 	/* Allow SME in kernel */
1312 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1313 	isb();
1314 
1315 	/* Allow EL0 to access TPIDR2 */
1316 	write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1317 	isb();
1318 }
1319 
1320 /*
1321  * This must be called after sme_kernel_enable(), we rely on the
1322  * feature table being sorted to ensure this.
1323  */
1324 void sme2_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1325 {
1326 	/* Allow use of ZT0 */
1327 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK,
1328 		       SYS_SMCR_EL1);
1329 }
1330 
1331 /*
1332  * This must be called after sme_kernel_enable(), we rely on the
1333  * feature table being sorted to ensure this.
1334  */
1335 void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1336 {
1337 	/* Allow use of FA64 */
1338 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1339 		       SYS_SMCR_EL1);
1340 }
1341 
1342 /*
1343  * Read the pseudo-SMCR used by cpufeatures to identify the supported
1344  * vector length.
1345  *
1346  * Use only if SME is present.
1347  * This function clobbers the SME vector length.
1348  */
1349 u64 read_smcr_features(void)
1350 {
1351 	u64 smcr;
1352 	unsigned int vq_max;
1353 
1354 	sme_kernel_enable(NULL);
1355 
1356 	/*
1357 	 * Set the maximum possible VL.
1358 	 */
1359 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
1360 		       SYS_SMCR_EL1);
1361 
1362 	smcr = read_sysreg_s(SYS_SMCR_EL1);
1363 	smcr &= ~(u64)SMCR_ELx_LEN_MASK; /* Only the LEN field */
1364 	vq_max = sve_vq_from_vl(sme_get_vl());
1365 	smcr |= vq_max - 1; /* set LEN field to maximum effective value */
1366 
1367 	return smcr;
1368 }
1369 
1370 void __init sme_setup(void)
1371 {
1372 	struct vl_info *info = &vl_info[ARM64_VEC_SME];
1373 	u64 smcr;
1374 	int min_bit;
1375 
1376 	if (!system_supports_sme())
1377 		return;
1378 
1379 	/*
1380 	 * SME doesn't require any particular vector length be
1381 	 * supported but it does require at least one.  We should have
1382 	 * disabled the feature entirely while bringing up CPUs but
1383 	 * let's double check here.
1384 	 */
1385 	WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1386 
1387 	min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1388 	info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1389 
1390 	smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
1391 	info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
1392 
1393 	/*
1394 	 * Sanity-check that the max VL we determined through CPU features
1395 	 * corresponds properly to sme_vq_map.  If not, do our best:
1396 	 */
1397 	if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
1398 								 info->max_vl)))
1399 		info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
1400 							    info->max_vl);
1401 
1402 	WARN_ON(info->min_vl > info->max_vl);
1403 
1404 	/*
1405 	 * For the default VL, pick the maximum supported value <= 32
1406 	 * (256 bits) if there is one since this is guaranteed not to
1407 	 * grow the signal frame when in streaming mode, otherwise the
1408 	 * minimum available VL will be used.
1409 	 */
1410 	set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1411 
1412 	pr_info("SME: minimum available vector length %u bytes per vector\n",
1413 		info->min_vl);
1414 	pr_info("SME: maximum available vector length %u bytes per vector\n",
1415 		info->max_vl);
1416 	pr_info("SME: default vector length %u bytes per vector\n",
1417 		get_sme_default_vl());
1418 }
1419 
1420 #endif /* CONFIG_ARM64_SME */
1421 
1422 static void sve_init_regs(void)
1423 {
1424 	/*
1425 	 * Convert the FPSIMD state to SVE, zeroing all the state that
1426 	 * is not shared with FPSIMD. If (as is likely) the current
1427 	 * state is live in the registers then do this there and
1428 	 * update our metadata for the current task including
1429 	 * disabling the trap, otherwise update our in-memory copy.
1430 	 * We are guaranteed to not be in streaming mode, we can only
1431 	 * take a SVE trap when not in streaming mode and we can't be
1432 	 * in streaming mode when taking a SME trap.
1433 	 */
1434 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1435 		unsigned long vq_minus_one =
1436 			sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1437 		sve_set_vq(vq_minus_one);
1438 		sve_flush_live(true, vq_minus_one);
1439 		fpsimd_bind_task_to_cpu();
1440 	} else {
1441 		fpsimd_to_sve(current);
1442 		current->thread.fp_type = FP_STATE_SVE;
1443 	}
1444 }
1445 
1446 /*
1447  * Trapped SVE access
1448  *
1449  * Storage is allocated for the full SVE state, the current FPSIMD
1450  * register contents are migrated across, and the access trap is
1451  * disabled.
1452  *
1453  * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1454  * would have disabled the SVE access trap for userspace during
1455  * ret_to_user, making an SVE access trap impossible in that case.
1456  */
1457 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1458 {
1459 	/* Even if we chose not to use SVE, the hardware could still trap: */
1460 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1461 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1462 		return;
1463 	}
1464 
1465 	sve_alloc(current, true);
1466 	if (!current->thread.sve_state) {
1467 		force_sig(SIGKILL);
1468 		return;
1469 	}
1470 
1471 	get_cpu_fpsimd_context();
1472 
1473 	if (test_and_set_thread_flag(TIF_SVE))
1474 		WARN_ON(1); /* SVE access shouldn't have trapped */
1475 
1476 	/*
1477 	 * Even if the task can have used streaming mode we can only
1478 	 * generate SVE access traps in normal SVE mode and
1479 	 * transitioning out of streaming mode may discard any
1480 	 * streaming mode state.  Always clear the high bits to avoid
1481 	 * any potential errors tracking what is properly initialised.
1482 	 */
1483 	sve_init_regs();
1484 
1485 	put_cpu_fpsimd_context();
1486 }
1487 
1488 /*
1489  * Trapped SME access
1490  *
1491  * Storage is allocated for the full SVE and SME state, the current
1492  * FPSIMD register contents are migrated to SVE if SVE is not already
1493  * active, and the access trap is disabled.
1494  *
1495  * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1496  * would have disabled the SME access trap for userspace during
1497  * ret_to_user, making an SME access trap impossible in that case.
1498  */
1499 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1500 {
1501 	/* Even if we chose not to use SME, the hardware could still trap: */
1502 	if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1503 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1504 		return;
1505 	}
1506 
1507 	/*
1508 	 * If this not a trap due to SME being disabled then something
1509 	 * is being used in the wrong mode, report as SIGILL.
1510 	 */
1511 	if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
1512 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1513 		return;
1514 	}
1515 
1516 	sve_alloc(current, false);
1517 	sme_alloc(current);
1518 	if (!current->thread.sve_state || !current->thread.sme_state) {
1519 		force_sig(SIGKILL);
1520 		return;
1521 	}
1522 
1523 	get_cpu_fpsimd_context();
1524 
1525 	/* With TIF_SME userspace shouldn't generate any traps */
1526 	if (test_and_set_thread_flag(TIF_SME))
1527 		WARN_ON(1);
1528 
1529 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1530 		unsigned long vq_minus_one =
1531 			sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1532 		sme_set_vq(vq_minus_one);
1533 
1534 		fpsimd_bind_task_to_cpu();
1535 	}
1536 
1537 	put_cpu_fpsimd_context();
1538 }
1539 
1540 /*
1541  * Trapped FP/ASIMD access.
1542  */
1543 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1544 {
1545 	/* TODO: implement lazy context saving/restoring */
1546 	WARN_ON(1);
1547 }
1548 
1549 /*
1550  * Raise a SIGFPE for the current process.
1551  */
1552 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1553 {
1554 	unsigned int si_code = FPE_FLTUNK;
1555 
1556 	if (esr & ESR_ELx_FP_EXC_TFV) {
1557 		if (esr & FPEXC_IOF)
1558 			si_code = FPE_FLTINV;
1559 		else if (esr & FPEXC_DZF)
1560 			si_code = FPE_FLTDIV;
1561 		else if (esr & FPEXC_OFF)
1562 			si_code = FPE_FLTOVF;
1563 		else if (esr & FPEXC_UFF)
1564 			si_code = FPE_FLTUND;
1565 		else if (esr & FPEXC_IXF)
1566 			si_code = FPE_FLTRES;
1567 	}
1568 
1569 	send_sig_fault(SIGFPE, si_code,
1570 		       (void __user *)instruction_pointer(regs),
1571 		       current);
1572 }
1573 
1574 void fpsimd_thread_switch(struct task_struct *next)
1575 {
1576 	bool wrong_task, wrong_cpu;
1577 
1578 	if (!system_supports_fpsimd())
1579 		return;
1580 
1581 	__get_cpu_fpsimd_context();
1582 
1583 	/* Save unsaved fpsimd state, if any: */
1584 	fpsimd_save();
1585 
1586 	/*
1587 	 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1588 	 * state.  For kernel threads, FPSIMD registers are never loaded
1589 	 * and wrong_task and wrong_cpu will always be true.
1590 	 */
1591 	wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1592 					&next->thread.uw.fpsimd_state;
1593 	wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1594 
1595 	update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1596 			       wrong_task || wrong_cpu);
1597 
1598 	__put_cpu_fpsimd_context();
1599 }
1600 
1601 static void fpsimd_flush_thread_vl(enum vec_type type)
1602 {
1603 	int vl, supported_vl;
1604 
1605 	/*
1606 	 * Reset the task vector length as required.  This is where we
1607 	 * ensure that all user tasks have a valid vector length
1608 	 * configured: no kernel task can become a user task without
1609 	 * an exec and hence a call to this function.  By the time the
1610 	 * first call to this function is made, all early hardware
1611 	 * probing is complete, so __sve_default_vl should be valid.
1612 	 * If a bug causes this to go wrong, we make some noise and
1613 	 * try to fudge thread.sve_vl to a safe value here.
1614 	 */
1615 	vl = task_get_vl_onexec(current, type);
1616 	if (!vl)
1617 		vl = get_default_vl(type);
1618 
1619 	if (WARN_ON(!sve_vl_valid(vl)))
1620 		vl = vl_info[type].min_vl;
1621 
1622 	supported_vl = find_supported_vector_length(type, vl);
1623 	if (WARN_ON(supported_vl != vl))
1624 		vl = supported_vl;
1625 
1626 	task_set_vl(current, type, vl);
1627 
1628 	/*
1629 	 * If the task is not set to inherit, ensure that the vector
1630 	 * length will be reset by a subsequent exec:
1631 	 */
1632 	if (!test_thread_flag(vec_vl_inherit_flag(type)))
1633 		task_set_vl_onexec(current, type, 0);
1634 }
1635 
1636 void fpsimd_flush_thread(void)
1637 {
1638 	void *sve_state = NULL;
1639 	void *sme_state = NULL;
1640 
1641 	if (!system_supports_fpsimd())
1642 		return;
1643 
1644 	get_cpu_fpsimd_context();
1645 
1646 	fpsimd_flush_task_state(current);
1647 	memset(&current->thread.uw.fpsimd_state, 0,
1648 	       sizeof(current->thread.uw.fpsimd_state));
1649 
1650 	if (system_supports_sve()) {
1651 		clear_thread_flag(TIF_SVE);
1652 
1653 		/* Defer kfree() while in atomic context */
1654 		sve_state = current->thread.sve_state;
1655 		current->thread.sve_state = NULL;
1656 
1657 		fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1658 	}
1659 
1660 	if (system_supports_sme()) {
1661 		clear_thread_flag(TIF_SME);
1662 
1663 		/* Defer kfree() while in atomic context */
1664 		sme_state = current->thread.sme_state;
1665 		current->thread.sme_state = NULL;
1666 
1667 		fpsimd_flush_thread_vl(ARM64_VEC_SME);
1668 		current->thread.svcr = 0;
1669 	}
1670 
1671 	current->thread.fp_type = FP_STATE_FPSIMD;
1672 
1673 	put_cpu_fpsimd_context();
1674 	kfree(sve_state);
1675 	kfree(sme_state);
1676 }
1677 
1678 /*
1679  * Save the userland FPSIMD state of 'current' to memory, but only if the state
1680  * currently held in the registers does in fact belong to 'current'
1681  */
1682 void fpsimd_preserve_current_state(void)
1683 {
1684 	if (!system_supports_fpsimd())
1685 		return;
1686 
1687 	get_cpu_fpsimd_context();
1688 	fpsimd_save();
1689 	put_cpu_fpsimd_context();
1690 }
1691 
1692 /*
1693  * Like fpsimd_preserve_current_state(), but ensure that
1694  * current->thread.uw.fpsimd_state is updated so that it can be copied to
1695  * the signal frame.
1696  */
1697 void fpsimd_signal_preserve_current_state(void)
1698 {
1699 	fpsimd_preserve_current_state();
1700 	if (test_thread_flag(TIF_SVE))
1701 		sve_to_fpsimd(current);
1702 }
1703 
1704 /*
1705  * Called by KVM when entering the guest.
1706  */
1707 void fpsimd_kvm_prepare(void)
1708 {
1709 	if (!system_supports_sve())
1710 		return;
1711 
1712 	/*
1713 	 * KVM does not save host SVE state since we can only enter
1714 	 * the guest from a syscall so the ABI means that only the
1715 	 * non-saved SVE state needs to be saved.  If we have left
1716 	 * SVE enabled for performance reasons then update the task
1717 	 * state to be FPSIMD only.
1718 	 */
1719 	get_cpu_fpsimd_context();
1720 
1721 	if (test_and_clear_thread_flag(TIF_SVE)) {
1722 		sve_to_fpsimd(current);
1723 		current->thread.fp_type = FP_STATE_FPSIMD;
1724 	}
1725 
1726 	put_cpu_fpsimd_context();
1727 }
1728 
1729 /*
1730  * Associate current's FPSIMD context with this cpu
1731  * The caller must have ownership of the cpu FPSIMD context before calling
1732  * this function.
1733  */
1734 static void fpsimd_bind_task_to_cpu(void)
1735 {
1736 	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1737 
1738 	WARN_ON(!system_supports_fpsimd());
1739 	last->st = &current->thread.uw.fpsimd_state;
1740 	last->sve_state = current->thread.sve_state;
1741 	last->sme_state = current->thread.sme_state;
1742 	last->sve_vl = task_get_sve_vl(current);
1743 	last->sme_vl = task_get_sme_vl(current);
1744 	last->svcr = &current->thread.svcr;
1745 	last->fp_type = &current->thread.fp_type;
1746 	last->to_save = FP_STATE_CURRENT;
1747 	current->thread.fpsimd_cpu = smp_processor_id();
1748 
1749 	/*
1750 	 * Toggle SVE and SME trapping for userspace if needed, these
1751 	 * are serialsied by ret_to_user().
1752 	 */
1753 	if (system_supports_sme()) {
1754 		if (test_thread_flag(TIF_SME))
1755 			sme_user_enable();
1756 		else
1757 			sme_user_disable();
1758 	}
1759 
1760 	if (system_supports_sve()) {
1761 		if (test_thread_flag(TIF_SVE))
1762 			sve_user_enable();
1763 		else
1764 			sve_user_disable();
1765 	}
1766 }
1767 
1768 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
1769 {
1770 	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1771 
1772 	WARN_ON(!system_supports_fpsimd());
1773 	WARN_ON(!in_softirq() && !irqs_disabled());
1774 
1775 	*last = *state;
1776 }
1777 
1778 /*
1779  * Load the userland FPSIMD state of 'current' from memory, but only if the
1780  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1781  * state of 'current'.  This is called when we are preparing to return to
1782  * userspace to ensure that userspace sees a good register state.
1783  */
1784 void fpsimd_restore_current_state(void)
1785 {
1786 	/*
1787 	 * For the tasks that were created before we detected the absence of
1788 	 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1789 	 * e.g, init. This could be then inherited by the children processes.
1790 	 * If we later detect that the system doesn't support FP/SIMD,
1791 	 * we must clear the flag for  all the tasks to indicate that the
1792 	 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1793 	 * do_notify_resume().
1794 	 */
1795 	if (!system_supports_fpsimd()) {
1796 		clear_thread_flag(TIF_FOREIGN_FPSTATE);
1797 		return;
1798 	}
1799 
1800 	get_cpu_fpsimd_context();
1801 
1802 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1803 		task_fpsimd_load();
1804 		fpsimd_bind_task_to_cpu();
1805 	}
1806 
1807 	put_cpu_fpsimd_context();
1808 }
1809 
1810 /*
1811  * Load an updated userland FPSIMD state for 'current' from memory and set the
1812  * flag that indicates that the FPSIMD register contents are the most recent
1813  * FPSIMD state of 'current'. This is used by the signal code to restore the
1814  * register state when returning from a signal handler in FPSIMD only cases,
1815  * any SVE context will be discarded.
1816  */
1817 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1818 {
1819 	if (WARN_ON(!system_supports_fpsimd()))
1820 		return;
1821 
1822 	get_cpu_fpsimd_context();
1823 
1824 	current->thread.uw.fpsimd_state = *state;
1825 	if (test_thread_flag(TIF_SVE))
1826 		fpsimd_to_sve(current);
1827 
1828 	task_fpsimd_load();
1829 	fpsimd_bind_task_to_cpu();
1830 
1831 	clear_thread_flag(TIF_FOREIGN_FPSTATE);
1832 
1833 	put_cpu_fpsimd_context();
1834 }
1835 
1836 /*
1837  * Invalidate live CPU copies of task t's FPSIMD state
1838  *
1839  * This function may be called with preemption enabled.  The barrier()
1840  * ensures that the assignment to fpsimd_cpu is visible to any
1841  * preemption/softirq that could race with set_tsk_thread_flag(), so
1842  * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1843  *
1844  * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1845  * subsequent code.
1846  */
1847 void fpsimd_flush_task_state(struct task_struct *t)
1848 {
1849 	t->thread.fpsimd_cpu = NR_CPUS;
1850 	/*
1851 	 * If we don't support fpsimd, bail out after we have
1852 	 * reset the fpsimd_cpu for this task and clear the
1853 	 * FPSTATE.
1854 	 */
1855 	if (!system_supports_fpsimd())
1856 		return;
1857 	barrier();
1858 	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1859 
1860 	barrier();
1861 }
1862 
1863 /*
1864  * Invalidate any task's FPSIMD state that is present on this cpu.
1865  * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1866  * before calling this function.
1867  */
1868 static void fpsimd_flush_cpu_state(void)
1869 {
1870 	WARN_ON(!system_supports_fpsimd());
1871 	__this_cpu_write(fpsimd_last_state.st, NULL);
1872 
1873 	/*
1874 	 * Leaving streaming mode enabled will cause issues for any kernel
1875 	 * NEON and leaving streaming mode or ZA enabled may increase power
1876 	 * consumption.
1877 	 */
1878 	if (system_supports_sme())
1879 		sme_smstop();
1880 
1881 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1882 }
1883 
1884 /*
1885  * Save the FPSIMD state to memory and invalidate cpu view.
1886  * This function must be called with preemption disabled.
1887  */
1888 void fpsimd_save_and_flush_cpu_state(void)
1889 {
1890 	if (!system_supports_fpsimd())
1891 		return;
1892 	WARN_ON(preemptible());
1893 	__get_cpu_fpsimd_context();
1894 	fpsimd_save();
1895 	fpsimd_flush_cpu_state();
1896 	__put_cpu_fpsimd_context();
1897 }
1898 
1899 #ifdef CONFIG_KERNEL_MODE_NEON
1900 
1901 /*
1902  * Kernel-side NEON support functions
1903  */
1904 
1905 /*
1906  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1907  * context
1908  *
1909  * Must not be called unless may_use_simd() returns true.
1910  * Task context in the FPSIMD registers is saved back to memory as necessary.
1911  *
1912  * A matching call to kernel_neon_end() must be made before returning from the
1913  * calling context.
1914  *
1915  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1916  * called.
1917  */
1918 void kernel_neon_begin(void)
1919 {
1920 	if (WARN_ON(!system_supports_fpsimd()))
1921 		return;
1922 
1923 	BUG_ON(!may_use_simd());
1924 
1925 	get_cpu_fpsimd_context();
1926 
1927 	/* Save unsaved fpsimd state, if any: */
1928 	fpsimd_save();
1929 
1930 	/* Invalidate any task state remaining in the fpsimd regs: */
1931 	fpsimd_flush_cpu_state();
1932 }
1933 EXPORT_SYMBOL_GPL(kernel_neon_begin);
1934 
1935 /*
1936  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1937  *
1938  * Must be called from a context in which kernel_neon_begin() was previously
1939  * called, with no call to kernel_neon_end() in the meantime.
1940  *
1941  * The caller must not use the FPSIMD registers after this function is called,
1942  * unless kernel_neon_begin() is called again in the meantime.
1943  */
1944 void kernel_neon_end(void)
1945 {
1946 	if (!system_supports_fpsimd())
1947 		return;
1948 
1949 	put_cpu_fpsimd_context();
1950 }
1951 EXPORT_SYMBOL_GPL(kernel_neon_end);
1952 
1953 #ifdef CONFIG_EFI
1954 
1955 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1956 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1957 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1958 static DEFINE_PER_CPU(bool, efi_sm_state);
1959 
1960 /*
1961  * EFI runtime services support functions
1962  *
1963  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1964  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1965  * is always used rather than being an optional accelerator.
1966  *
1967  * These functions provide the necessary support for ensuring FPSIMD
1968  * save/restore in the contexts from which EFI is used.
1969  *
1970  * Do not use them for any other purpose -- if tempted to do so, you are
1971  * either doing something wrong or you need to propose some refactoring.
1972  */
1973 
1974 /*
1975  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1976  */
1977 void __efi_fpsimd_begin(void)
1978 {
1979 	if (!system_supports_fpsimd())
1980 		return;
1981 
1982 	WARN_ON(preemptible());
1983 
1984 	if (may_use_simd()) {
1985 		kernel_neon_begin();
1986 	} else {
1987 		/*
1988 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1989 		 * preserving:
1990 		 */
1991 		if (system_supports_sve() && likely(efi_sve_state)) {
1992 			char *sve_state = this_cpu_ptr(efi_sve_state);
1993 			bool ffr = true;
1994 			u64 svcr;
1995 
1996 			__this_cpu_write(efi_sve_state_used, true);
1997 
1998 			if (system_supports_sme()) {
1999 				svcr = read_sysreg_s(SYS_SVCR);
2000 
2001 				__this_cpu_write(efi_sm_state,
2002 						 svcr & SVCR_SM_MASK);
2003 
2004 				/*
2005 				 * Unless we have FA64 FFR does not
2006 				 * exist in streaming mode.
2007 				 */
2008 				if (!system_supports_fa64())
2009 					ffr = !(svcr & SVCR_SM_MASK);
2010 			}
2011 
2012 			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
2013 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2014 				       ffr);
2015 
2016 			if (system_supports_sme())
2017 				sysreg_clear_set_s(SYS_SVCR,
2018 						   SVCR_SM_MASK, 0);
2019 
2020 		} else {
2021 			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
2022 		}
2023 
2024 		__this_cpu_write(efi_fpsimd_state_used, true);
2025 	}
2026 }
2027 
2028 /*
2029  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
2030  */
2031 void __efi_fpsimd_end(void)
2032 {
2033 	if (!system_supports_fpsimd())
2034 		return;
2035 
2036 	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
2037 		kernel_neon_end();
2038 	} else {
2039 		if (system_supports_sve() &&
2040 		    likely(__this_cpu_read(efi_sve_state_used))) {
2041 			char const *sve_state = this_cpu_ptr(efi_sve_state);
2042 			bool ffr = true;
2043 
2044 			/*
2045 			 * Restore streaming mode; EFI calls are
2046 			 * normal function calls so should not return in
2047 			 * streaming mode.
2048 			 */
2049 			if (system_supports_sme()) {
2050 				if (__this_cpu_read(efi_sm_state)) {
2051 					sysreg_clear_set_s(SYS_SVCR,
2052 							   0,
2053 							   SVCR_SM_MASK);
2054 
2055 					/*
2056 					 * Unless we have FA64 FFR does not
2057 					 * exist in streaming mode.
2058 					 */
2059 					if (!system_supports_fa64())
2060 						ffr = false;
2061 				}
2062 			}
2063 
2064 			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
2065 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2066 				       ffr);
2067 
2068 			__this_cpu_write(efi_sve_state_used, false);
2069 		} else {
2070 			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
2071 		}
2072 	}
2073 }
2074 
2075 #endif /* CONFIG_EFI */
2076 
2077 #endif /* CONFIG_KERNEL_MODE_NEON */
2078 
2079 #ifdef CONFIG_CPU_PM
2080 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
2081 				  unsigned long cmd, void *v)
2082 {
2083 	switch (cmd) {
2084 	case CPU_PM_ENTER:
2085 		fpsimd_save_and_flush_cpu_state();
2086 		break;
2087 	case CPU_PM_EXIT:
2088 		break;
2089 	case CPU_PM_ENTER_FAILED:
2090 	default:
2091 		return NOTIFY_DONE;
2092 	}
2093 	return NOTIFY_OK;
2094 }
2095 
2096 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2097 	.notifier_call = fpsimd_cpu_pm_notifier,
2098 };
2099 
2100 static void __init fpsimd_pm_init(void)
2101 {
2102 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2103 }
2104 
2105 #else
2106 static inline void fpsimd_pm_init(void) { }
2107 #endif /* CONFIG_CPU_PM */
2108 
2109 #ifdef CONFIG_HOTPLUG_CPU
2110 static int fpsimd_cpu_dead(unsigned int cpu)
2111 {
2112 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
2113 	return 0;
2114 }
2115 
2116 static inline void fpsimd_hotplug_init(void)
2117 {
2118 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2119 				  NULL, fpsimd_cpu_dead);
2120 }
2121 
2122 #else
2123 static inline void fpsimd_hotplug_init(void) { }
2124 #endif
2125 
2126 /*
2127  * FP/SIMD support code initialisation.
2128  */
2129 static int __init fpsimd_init(void)
2130 {
2131 	if (cpu_have_named_feature(FP)) {
2132 		fpsimd_pm_init();
2133 		fpsimd_hotplug_init();
2134 	} else {
2135 		pr_notice("Floating-point is not implemented\n");
2136 	}
2137 
2138 	if (!cpu_have_named_feature(ASIMD))
2139 		pr_notice("Advanced SIMD is not implemented\n");
2140 
2141 
2142 	sve_sysctl_init();
2143 	sme_sysctl_init();
2144 
2145 	return 0;
2146 }
2147 core_initcall(fpsimd_init);
2148