1 /* 2 * FP/SIMD context switching and fault handling 3 * 4 * Copyright (C) 2012 ARM Ltd. 5 * Author: Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/bitmap.h> 21 #include <linux/bottom_half.h> 22 #include <linux/bug.h> 23 #include <linux/cache.h> 24 #include <linux/compat.h> 25 #include <linux/cpu.h> 26 #include <linux/cpu_pm.h> 27 #include <linux/kernel.h> 28 #include <linux/linkage.h> 29 #include <linux/irqflags.h> 30 #include <linux/init.h> 31 #include <linux/percpu.h> 32 #include <linux/prctl.h> 33 #include <linux/preempt.h> 34 #include <linux/prctl.h> 35 #include <linux/ptrace.h> 36 #include <linux/sched/signal.h> 37 #include <linux/sched/task_stack.h> 38 #include <linux/signal.h> 39 #include <linux/slab.h> 40 #include <linux/sysctl.h> 41 42 #include <asm/fpsimd.h> 43 #include <asm/cputype.h> 44 #include <asm/simd.h> 45 #include <asm/sigcontext.h> 46 #include <asm/sysreg.h> 47 #include <asm/traps.h> 48 49 #define FPEXC_IOF (1 << 0) 50 #define FPEXC_DZF (1 << 1) 51 #define FPEXC_OFF (1 << 2) 52 #define FPEXC_UFF (1 << 3) 53 #define FPEXC_IXF (1 << 4) 54 #define FPEXC_IDF (1 << 7) 55 56 /* 57 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.) 58 * 59 * In order to reduce the number of times the FPSIMD state is needlessly saved 60 * and restored, we need to keep track of two things: 61 * (a) for each task, we need to remember which CPU was the last one to have 62 * the task's FPSIMD state loaded into its FPSIMD registers; 63 * (b) for each CPU, we need to remember which task's userland FPSIMD state has 64 * been loaded into its FPSIMD registers most recently, or whether it has 65 * been used to perform kernel mode NEON in the meantime. 66 * 67 * For (a), we add a 'cpu' field to struct fpsimd_state, which gets updated to 68 * the id of the current CPU every time the state is loaded onto a CPU. For (b), 69 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the 70 * address of the userland FPSIMD state of the task that was loaded onto the CPU 71 * the most recently, or NULL if kernel mode NEON has been performed after that. 72 * 73 * With this in place, we no longer have to restore the next FPSIMD state right 74 * when switching between tasks. Instead, we can defer this check to userland 75 * resume, at which time we verify whether the CPU's fpsimd_last_state and the 76 * task's fpsimd_state.cpu are still mutually in sync. If this is the case, we 77 * can omit the FPSIMD restore. 78 * 79 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to 80 * indicate whether or not the userland FPSIMD state of the current task is 81 * present in the registers. The flag is set unless the FPSIMD registers of this 82 * CPU currently contain the most recent userland FPSIMD state of the current 83 * task. 84 * 85 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may 86 * save the task's FPSIMD context back to task_struct from softirq context. 87 * To prevent this from racing with the manipulation of the task's FPSIMD state 88 * from task context and thereby corrupting the state, it is necessary to 89 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE 90 * flag with local_bh_disable() unless softirqs are already masked. 91 * 92 * For a certain task, the sequence may look something like this: 93 * - the task gets scheduled in; if both the task's fpsimd_state.cpu field 94 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu 95 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is 96 * cleared, otherwise it is set; 97 * 98 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's 99 * userland FPSIMD state is copied from memory to the registers, the task's 100 * fpsimd_state.cpu field is set to the id of the current CPU, the current 101 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the 102 * TIF_FOREIGN_FPSTATE flag is cleared; 103 * 104 * - the task executes an ordinary syscall; upon return to userland, the 105 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is 106 * restored; 107 * 108 * - the task executes a syscall which executes some NEON instructions; this is 109 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD 110 * register contents to memory, clears the fpsimd_last_state per-cpu variable 111 * and sets the TIF_FOREIGN_FPSTATE flag; 112 * 113 * - the task gets preempted after kernel_neon_end() is called; as we have not 114 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so 115 * whatever is in the FPSIMD registers is not saved to memory, but discarded. 116 */ 117 struct fpsimd_last_state_struct { 118 struct fpsimd_state *st; 119 bool sve_in_use; 120 }; 121 122 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state); 123 124 /* Default VL for tasks that don't set it explicitly: */ 125 static int sve_default_vl = -1; 126 127 #ifdef CONFIG_ARM64_SVE 128 129 /* Maximum supported vector length across all CPUs (initially poisoned) */ 130 int __ro_after_init sve_max_vl = -1; 131 /* Set of available vector lengths, as vq_to_bit(vq): */ 132 static __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX); 133 static void __percpu *efi_sve_state; 134 135 #else /* ! CONFIG_ARM64_SVE */ 136 137 /* Dummy declaration for code that will be optimised out: */ 138 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX); 139 extern void __percpu *efi_sve_state; 140 141 #endif /* ! CONFIG_ARM64_SVE */ 142 143 /* 144 * Call __sve_free() directly only if you know task can't be scheduled 145 * or preempted. 146 */ 147 static void __sve_free(struct task_struct *task) 148 { 149 kfree(task->thread.sve_state); 150 task->thread.sve_state = NULL; 151 } 152 153 static void sve_free(struct task_struct *task) 154 { 155 WARN_ON(test_tsk_thread_flag(task, TIF_SVE)); 156 157 __sve_free(task); 158 } 159 160 161 /* Offset of FFR in the SVE register dump */ 162 static size_t sve_ffr_offset(int vl) 163 { 164 return SVE_SIG_FFR_OFFSET(sve_vq_from_vl(vl)) - SVE_SIG_REGS_OFFSET; 165 } 166 167 static void *sve_pffr(struct task_struct *task) 168 { 169 return (char *)task->thread.sve_state + 170 sve_ffr_offset(task->thread.sve_vl); 171 } 172 173 static void change_cpacr(u64 val, u64 mask) 174 { 175 u64 cpacr = read_sysreg(CPACR_EL1); 176 u64 new = (cpacr & ~mask) | val; 177 178 if (new != cpacr) 179 write_sysreg(new, CPACR_EL1); 180 } 181 182 static void sve_user_disable(void) 183 { 184 change_cpacr(0, CPACR_EL1_ZEN_EL0EN); 185 } 186 187 static void sve_user_enable(void) 188 { 189 change_cpacr(CPACR_EL1_ZEN_EL0EN, CPACR_EL1_ZEN_EL0EN); 190 } 191 192 /* 193 * TIF_SVE controls whether a task can use SVE without trapping while 194 * in userspace, and also the way a task's FPSIMD/SVE state is stored 195 * in thread_struct. 196 * 197 * The kernel uses this flag to track whether a user task is actively 198 * using SVE, and therefore whether full SVE register state needs to 199 * be tracked. If not, the cheaper FPSIMD context handling code can 200 * be used instead of the more costly SVE equivalents. 201 * 202 * * TIF_SVE set: 203 * 204 * The task can execute SVE instructions while in userspace without 205 * trapping to the kernel. 206 * 207 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the 208 * corresponding Zn), P0-P15 and FFR are encoded in in 209 * task->thread.sve_state, formatted appropriately for vector 210 * length task->thread.sve_vl. 211 * 212 * task->thread.sve_state must point to a valid buffer at least 213 * sve_state_size(task) bytes in size. 214 * 215 * During any syscall, the kernel may optionally clear TIF_SVE and 216 * discard the vector state except for the FPSIMD subset. 217 * 218 * * TIF_SVE clear: 219 * 220 * An attempt by the user task to execute an SVE instruction causes 221 * do_sve_acc() to be called, which does some preparation and then 222 * sets TIF_SVE. 223 * 224 * When stored, FPSIMD registers V0-V31 are encoded in 225 * task->fpsimd_state; bits [max : 128] for each of Z0-Z31 are 226 * logically zero but not stored anywhere; P0-P15 and FFR are not 227 * stored and have unspecified values from userspace's point of 228 * view. For hygiene purposes, the kernel zeroes them on next use, 229 * but userspace is discouraged from relying on this. 230 * 231 * task->thread.sve_state does not need to be non-NULL, valid or any 232 * particular size: it must not be dereferenced. 233 * 234 * * FPSR and FPCR are always stored in task->fpsimd_state irrespctive of 235 * whether TIF_SVE is clear or set, since these are not vector length 236 * dependent. 237 */ 238 239 /* 240 * Update current's FPSIMD/SVE registers from thread_struct. 241 * 242 * This function should be called only when the FPSIMD/SVE state in 243 * thread_struct is known to be up to date, when preparing to enter 244 * userspace. 245 * 246 * Softirqs (and preemption) must be disabled. 247 */ 248 static void task_fpsimd_load(void) 249 { 250 WARN_ON(!in_softirq() && !irqs_disabled()); 251 252 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 253 sve_load_state(sve_pffr(current), 254 ¤t->thread.fpsimd_state.fpsr, 255 sve_vq_from_vl(current->thread.sve_vl) - 1); 256 else 257 fpsimd_load_state(¤t->thread.fpsimd_state); 258 259 if (system_supports_sve()) { 260 /* Toggle SVE trapping for userspace if needed */ 261 if (test_thread_flag(TIF_SVE)) 262 sve_user_enable(); 263 else 264 sve_user_disable(); 265 266 /* Serialised by exception return to user */ 267 } 268 } 269 270 /* 271 * Ensure current's FPSIMD/SVE storage in thread_struct is up to date 272 * with respect to the CPU registers. 273 * 274 * Softirqs (and preemption) must be disabled. 275 */ 276 static void task_fpsimd_save(void) 277 { 278 WARN_ON(!in_softirq() && !irqs_disabled()); 279 280 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 281 if (system_supports_sve() && test_thread_flag(TIF_SVE)) { 282 if (WARN_ON(sve_get_vl() != current->thread.sve_vl)) { 283 /* 284 * Can't save the user regs, so current would 285 * re-enter user with corrupt state. 286 * There's no way to recover, so kill it: 287 */ 288 force_signal_inject( 289 SIGKILL, 0, current_pt_regs(), 0); 290 return; 291 } 292 293 sve_save_state(sve_pffr(current), 294 ¤t->thread.fpsimd_state.fpsr); 295 } else 296 fpsimd_save_state(¤t->thread.fpsimd_state); 297 } 298 } 299 300 /* 301 * Helpers to translate bit indices in sve_vq_map to VQ values (and 302 * vice versa). This allows find_next_bit() to be used to find the 303 * _maximum_ VQ not exceeding a certain value. 304 */ 305 306 static unsigned int vq_to_bit(unsigned int vq) 307 { 308 return SVE_VQ_MAX - vq; 309 } 310 311 static unsigned int bit_to_vq(unsigned int bit) 312 { 313 if (WARN_ON(bit >= SVE_VQ_MAX)) 314 bit = SVE_VQ_MAX - 1; 315 316 return SVE_VQ_MAX - bit; 317 } 318 319 /* 320 * All vector length selection from userspace comes through here. 321 * We're on a slow path, so some sanity-checks are included. 322 * If things go wrong there's a bug somewhere, but try to fall back to a 323 * safe choice. 324 */ 325 static unsigned int find_supported_vector_length(unsigned int vl) 326 { 327 int bit; 328 int max_vl = sve_max_vl; 329 330 if (WARN_ON(!sve_vl_valid(vl))) 331 vl = SVE_VL_MIN; 332 333 if (WARN_ON(!sve_vl_valid(max_vl))) 334 max_vl = SVE_VL_MIN; 335 336 if (vl > max_vl) 337 vl = max_vl; 338 339 bit = find_next_bit(sve_vq_map, SVE_VQ_MAX, 340 vq_to_bit(sve_vq_from_vl(vl))); 341 return sve_vl_from_vq(bit_to_vq(bit)); 342 } 343 344 #ifdef CONFIG_SYSCTL 345 346 static int sve_proc_do_default_vl(struct ctl_table *table, int write, 347 void __user *buffer, size_t *lenp, 348 loff_t *ppos) 349 { 350 int ret; 351 int vl = sve_default_vl; 352 struct ctl_table tmp_table = { 353 .data = &vl, 354 .maxlen = sizeof(vl), 355 }; 356 357 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); 358 if (ret || !write) 359 return ret; 360 361 /* Writing -1 has the special meaning "set to max": */ 362 if (vl == -1) { 363 /* Fail safe if sve_max_vl wasn't initialised */ 364 if (WARN_ON(!sve_vl_valid(sve_max_vl))) 365 vl = SVE_VL_MIN; 366 else 367 vl = sve_max_vl; 368 369 goto chosen; 370 } 371 372 if (!sve_vl_valid(vl)) 373 return -EINVAL; 374 375 vl = find_supported_vector_length(vl); 376 chosen: 377 sve_default_vl = vl; 378 return 0; 379 } 380 381 static struct ctl_table sve_default_vl_table[] = { 382 { 383 .procname = "sve_default_vector_length", 384 .mode = 0644, 385 .proc_handler = sve_proc_do_default_vl, 386 }, 387 { } 388 }; 389 390 static int __init sve_sysctl_init(void) 391 { 392 if (system_supports_sve()) 393 if (!register_sysctl("abi", sve_default_vl_table)) 394 return -EINVAL; 395 396 return 0; 397 } 398 399 #else /* ! CONFIG_SYSCTL */ 400 static int __init sve_sysctl_init(void) { return 0; } 401 #endif /* ! CONFIG_SYSCTL */ 402 403 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \ 404 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET)) 405 406 /* 407 * Transfer the FPSIMD state in task->thread.fpsimd_state to 408 * task->thread.sve_state. 409 * 410 * Task can be a non-runnable task, or current. In the latter case, 411 * softirqs (and preemption) must be disabled. 412 * task->thread.sve_state must point to at least sve_state_size(task) 413 * bytes of allocated kernel memory. 414 * task->thread.fpsimd_state must be up to date before calling this function. 415 */ 416 static void fpsimd_to_sve(struct task_struct *task) 417 { 418 unsigned int vq; 419 void *sst = task->thread.sve_state; 420 struct fpsimd_state const *fst = &task->thread.fpsimd_state; 421 unsigned int i; 422 423 if (!system_supports_sve()) 424 return; 425 426 vq = sve_vq_from_vl(task->thread.sve_vl); 427 for (i = 0; i < 32; ++i) 428 memcpy(ZREG(sst, vq, i), &fst->vregs[i], 429 sizeof(fst->vregs[i])); 430 } 431 432 /* 433 * Transfer the SVE state in task->thread.sve_state to 434 * task->thread.fpsimd_state. 435 * 436 * Task can be a non-runnable task, or current. In the latter case, 437 * softirqs (and preemption) must be disabled. 438 * task->thread.sve_state must point to at least sve_state_size(task) 439 * bytes of allocated kernel memory. 440 * task->thread.sve_state must be up to date before calling this function. 441 */ 442 static void sve_to_fpsimd(struct task_struct *task) 443 { 444 unsigned int vq; 445 void const *sst = task->thread.sve_state; 446 struct fpsimd_state *fst = &task->thread.fpsimd_state; 447 unsigned int i; 448 449 if (!system_supports_sve()) 450 return; 451 452 vq = sve_vq_from_vl(task->thread.sve_vl); 453 for (i = 0; i < 32; ++i) 454 memcpy(&fst->vregs[i], ZREG(sst, vq, i), 455 sizeof(fst->vregs[i])); 456 } 457 458 #ifdef CONFIG_ARM64_SVE 459 460 /* 461 * Return how many bytes of memory are required to store the full SVE 462 * state for task, given task's currently configured vector length. 463 */ 464 size_t sve_state_size(struct task_struct const *task) 465 { 466 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl)); 467 } 468 469 /* 470 * Ensure that task->thread.sve_state is allocated and sufficiently large. 471 * 472 * This function should be used only in preparation for replacing 473 * task->thread.sve_state with new data. The memory is always zeroed 474 * here to prevent stale data from showing through: this is done in 475 * the interest of testability and predictability: except in the 476 * do_sve_acc() case, there is no ABI requirement to hide stale data 477 * written previously be task. 478 */ 479 void sve_alloc(struct task_struct *task) 480 { 481 if (task->thread.sve_state) { 482 memset(task->thread.sve_state, 0, sve_state_size(current)); 483 return; 484 } 485 486 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */ 487 task->thread.sve_state = 488 kzalloc(sve_state_size(task), GFP_KERNEL); 489 490 /* 491 * If future SVE revisions can have larger vectors though, 492 * this may cease to be true: 493 */ 494 BUG_ON(!task->thread.sve_state); 495 } 496 497 498 /* 499 * Ensure that task->thread.sve_state is up to date with respect to 500 * the user task, irrespective of when SVE is in use or not. 501 * 502 * This should only be called by ptrace. task must be non-runnable. 503 * task->thread.sve_state must point to at least sve_state_size(task) 504 * bytes of allocated kernel memory. 505 */ 506 void fpsimd_sync_to_sve(struct task_struct *task) 507 { 508 if (!test_tsk_thread_flag(task, TIF_SVE)) 509 fpsimd_to_sve(task); 510 } 511 512 /* 513 * Ensure that task->thread.fpsimd_state is up to date with respect to 514 * the user task, irrespective of whether SVE is in use or not. 515 * 516 * This should only be called by ptrace. task must be non-runnable. 517 * task->thread.sve_state must point to at least sve_state_size(task) 518 * bytes of allocated kernel memory. 519 */ 520 void sve_sync_to_fpsimd(struct task_struct *task) 521 { 522 if (test_tsk_thread_flag(task, TIF_SVE)) 523 sve_to_fpsimd(task); 524 } 525 526 /* 527 * Ensure that task->thread.sve_state is up to date with respect to 528 * the task->thread.fpsimd_state. 529 * 530 * This should only be called by ptrace to merge new FPSIMD register 531 * values into a task for which SVE is currently active. 532 * task must be non-runnable. 533 * task->thread.sve_state must point to at least sve_state_size(task) 534 * bytes of allocated kernel memory. 535 * task->thread.fpsimd_state must already have been initialised with 536 * the new FPSIMD register values to be merged in. 537 */ 538 void sve_sync_from_fpsimd_zeropad(struct task_struct *task) 539 { 540 unsigned int vq; 541 void *sst = task->thread.sve_state; 542 struct fpsimd_state const *fst = &task->thread.fpsimd_state; 543 unsigned int i; 544 545 if (!test_tsk_thread_flag(task, TIF_SVE)) 546 return; 547 548 vq = sve_vq_from_vl(task->thread.sve_vl); 549 550 memset(sst, 0, SVE_SIG_REGS_SIZE(vq)); 551 552 for (i = 0; i < 32; ++i) 553 memcpy(ZREG(sst, vq, i), &fst->vregs[i], 554 sizeof(fst->vregs[i])); 555 } 556 557 int sve_set_vector_length(struct task_struct *task, 558 unsigned long vl, unsigned long flags) 559 { 560 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT | 561 PR_SVE_SET_VL_ONEXEC)) 562 return -EINVAL; 563 564 if (!sve_vl_valid(vl)) 565 return -EINVAL; 566 567 /* 568 * Clamp to the maximum vector length that VL-agnostic SVE code can 569 * work with. A flag may be assigned in the future to allow setting 570 * of larger vector lengths without confusing older software. 571 */ 572 if (vl > SVE_VL_ARCH_MAX) 573 vl = SVE_VL_ARCH_MAX; 574 575 vl = find_supported_vector_length(vl); 576 577 if (flags & (PR_SVE_VL_INHERIT | 578 PR_SVE_SET_VL_ONEXEC)) 579 task->thread.sve_vl_onexec = vl; 580 else 581 /* Reset VL to system default on next exec: */ 582 task->thread.sve_vl_onexec = 0; 583 584 /* Only actually set the VL if not deferred: */ 585 if (flags & PR_SVE_SET_VL_ONEXEC) 586 goto out; 587 588 if (vl == task->thread.sve_vl) 589 goto out; 590 591 /* 592 * To ensure the FPSIMD bits of the SVE vector registers are preserved, 593 * write any live register state back to task_struct, and convert to a 594 * non-SVE thread. 595 */ 596 if (task == current) { 597 local_bh_disable(); 598 599 task_fpsimd_save(); 600 set_thread_flag(TIF_FOREIGN_FPSTATE); 601 } 602 603 fpsimd_flush_task_state(task); 604 if (test_and_clear_tsk_thread_flag(task, TIF_SVE)) 605 sve_to_fpsimd(task); 606 607 if (task == current) 608 local_bh_enable(); 609 610 /* 611 * Force reallocation of task SVE state to the correct size 612 * on next use: 613 */ 614 sve_free(task); 615 616 task->thread.sve_vl = vl; 617 618 out: 619 if (flags & PR_SVE_VL_INHERIT) 620 set_tsk_thread_flag(task, TIF_SVE_VL_INHERIT); 621 else 622 clear_tsk_thread_flag(task, TIF_SVE_VL_INHERIT); 623 624 return 0; 625 } 626 627 /* 628 * Encode the current vector length and flags for return. 629 * This is only required for prctl(): ptrace has separate fields 630 * 631 * flags are as for sve_set_vector_length(). 632 */ 633 static int sve_prctl_status(unsigned long flags) 634 { 635 int ret; 636 637 if (flags & PR_SVE_SET_VL_ONEXEC) 638 ret = current->thread.sve_vl_onexec; 639 else 640 ret = current->thread.sve_vl; 641 642 if (test_thread_flag(TIF_SVE_VL_INHERIT)) 643 ret |= PR_SVE_VL_INHERIT; 644 645 return ret; 646 } 647 648 /* PR_SVE_SET_VL */ 649 int sve_set_current_vl(unsigned long arg) 650 { 651 unsigned long vl, flags; 652 int ret; 653 654 vl = arg & PR_SVE_VL_LEN_MASK; 655 flags = arg & ~vl; 656 657 if (!system_supports_sve()) 658 return -EINVAL; 659 660 ret = sve_set_vector_length(current, vl, flags); 661 if (ret) 662 return ret; 663 664 return sve_prctl_status(flags); 665 } 666 667 /* PR_SVE_GET_VL */ 668 int sve_get_current_vl(void) 669 { 670 if (!system_supports_sve()) 671 return -EINVAL; 672 673 return sve_prctl_status(0); 674 } 675 676 /* 677 * Bitmap for temporary storage of the per-CPU set of supported vector lengths 678 * during secondary boot. 679 */ 680 static DECLARE_BITMAP(sve_secondary_vq_map, SVE_VQ_MAX); 681 682 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX)) 683 { 684 unsigned int vq, vl; 685 unsigned long zcr; 686 687 bitmap_zero(map, SVE_VQ_MAX); 688 689 zcr = ZCR_ELx_LEN_MASK; 690 zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr; 691 692 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) { 693 write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */ 694 vl = sve_get_vl(); 695 vq = sve_vq_from_vl(vl); /* skip intervening lengths */ 696 set_bit(vq_to_bit(vq), map); 697 } 698 } 699 700 void __init sve_init_vq_map(void) 701 { 702 sve_probe_vqs(sve_vq_map); 703 } 704 705 /* 706 * If we haven't committed to the set of supported VQs yet, filter out 707 * those not supported by the current CPU. 708 */ 709 void sve_update_vq_map(void) 710 { 711 sve_probe_vqs(sve_secondary_vq_map); 712 bitmap_and(sve_vq_map, sve_vq_map, sve_secondary_vq_map, SVE_VQ_MAX); 713 } 714 715 /* Check whether the current CPU supports all VQs in the committed set */ 716 int sve_verify_vq_map(void) 717 { 718 int ret = 0; 719 720 sve_probe_vqs(sve_secondary_vq_map); 721 bitmap_andnot(sve_secondary_vq_map, sve_vq_map, sve_secondary_vq_map, 722 SVE_VQ_MAX); 723 if (!bitmap_empty(sve_secondary_vq_map, SVE_VQ_MAX)) { 724 pr_warn("SVE: cpu%d: Required vector length(s) missing\n", 725 smp_processor_id()); 726 ret = -EINVAL; 727 } 728 729 return ret; 730 } 731 732 static void __init sve_efi_setup(void) 733 { 734 if (!IS_ENABLED(CONFIG_EFI)) 735 return; 736 737 /* 738 * alloc_percpu() warns and prints a backtrace if this goes wrong. 739 * This is evidence of a crippled system and we are returning void, 740 * so no attempt is made to handle this situation here. 741 */ 742 if (!sve_vl_valid(sve_max_vl)) 743 goto fail; 744 745 efi_sve_state = __alloc_percpu( 746 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES); 747 if (!efi_sve_state) 748 goto fail; 749 750 return; 751 752 fail: 753 panic("Cannot allocate percpu memory for EFI SVE save/restore"); 754 } 755 756 /* 757 * Enable SVE for EL1. 758 * Intended for use by the cpufeatures code during CPU boot. 759 */ 760 int sve_kernel_enable(void *__always_unused p) 761 { 762 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1); 763 isb(); 764 765 return 0; 766 } 767 768 void __init sve_setup(void) 769 { 770 u64 zcr; 771 772 if (!system_supports_sve()) 773 return; 774 775 /* 776 * The SVE architecture mandates support for 128-bit vectors, 777 * so sve_vq_map must have at least SVE_VQ_MIN set. 778 * If something went wrong, at least try to patch it up: 779 */ 780 if (WARN_ON(!test_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map))) 781 set_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map); 782 783 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); 784 sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1); 785 786 /* 787 * Sanity-check that the max VL we determined through CPU features 788 * corresponds properly to sve_vq_map. If not, do our best: 789 */ 790 if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl))) 791 sve_max_vl = find_supported_vector_length(sve_max_vl); 792 793 /* 794 * For the default VL, pick the maximum supported value <= 64. 795 * VL == 64 is guaranteed not to grow the signal frame. 796 */ 797 sve_default_vl = find_supported_vector_length(64); 798 799 pr_info("SVE: maximum available vector length %u bytes per vector\n", 800 sve_max_vl); 801 pr_info("SVE: default vector length %u bytes per vector\n", 802 sve_default_vl); 803 804 sve_efi_setup(); 805 } 806 807 /* 808 * Called from the put_task_struct() path, which cannot get here 809 * unless dead_task is really dead and not schedulable. 810 */ 811 void fpsimd_release_task(struct task_struct *dead_task) 812 { 813 __sve_free(dead_task); 814 } 815 816 #endif /* CONFIG_ARM64_SVE */ 817 818 /* 819 * Trapped SVE access 820 * 821 * Storage is allocated for the full SVE state, the current FPSIMD 822 * register contents are migrated across, and TIF_SVE is set so that 823 * the SVE access trap will be disabled the next time this task 824 * reaches ret_to_user. 825 * 826 * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load() 827 * would have disabled the SVE access trap for userspace during 828 * ret_to_user, making an SVE access trap impossible in that case. 829 */ 830 asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs) 831 { 832 /* Even if we chose not to use SVE, the hardware could still trap: */ 833 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) { 834 force_signal_inject(SIGILL, ILL_ILLOPC, regs, 0); 835 return; 836 } 837 838 sve_alloc(current); 839 840 local_bh_disable(); 841 842 task_fpsimd_save(); 843 fpsimd_to_sve(current); 844 845 /* Force ret_to_user to reload the registers: */ 846 fpsimd_flush_task_state(current); 847 set_thread_flag(TIF_FOREIGN_FPSTATE); 848 849 if (test_and_set_thread_flag(TIF_SVE)) 850 WARN_ON(1); /* SVE access shouldn't have trapped */ 851 852 local_bh_enable(); 853 } 854 855 /* 856 * Trapped FP/ASIMD access. 857 */ 858 asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs) 859 { 860 /* TODO: implement lazy context saving/restoring */ 861 WARN_ON(1); 862 } 863 864 /* 865 * Raise a SIGFPE for the current process. 866 */ 867 asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs) 868 { 869 siginfo_t info; 870 unsigned int si_code = FPE_FIXME; 871 872 if (esr & FPEXC_IOF) 873 si_code = FPE_FLTINV; 874 else if (esr & FPEXC_DZF) 875 si_code = FPE_FLTDIV; 876 else if (esr & FPEXC_OFF) 877 si_code = FPE_FLTOVF; 878 else if (esr & FPEXC_UFF) 879 si_code = FPE_FLTUND; 880 else if (esr & FPEXC_IXF) 881 si_code = FPE_FLTRES; 882 883 memset(&info, 0, sizeof(info)); 884 info.si_signo = SIGFPE; 885 info.si_code = si_code; 886 info.si_addr = (void __user *)instruction_pointer(regs); 887 888 send_sig_info(SIGFPE, &info, current); 889 } 890 891 void fpsimd_thread_switch(struct task_struct *next) 892 { 893 if (!system_supports_fpsimd()) 894 return; 895 /* 896 * Save the current FPSIMD state to memory, but only if whatever is in 897 * the registers is in fact the most recent userland FPSIMD state of 898 * 'current'. 899 */ 900 if (current->mm) 901 task_fpsimd_save(); 902 903 if (next->mm) { 904 /* 905 * If we are switching to a task whose most recent userland 906 * FPSIMD state is already in the registers of *this* cpu, 907 * we can skip loading the state from memory. Otherwise, set 908 * the TIF_FOREIGN_FPSTATE flag so the state will be loaded 909 * upon the next return to userland. 910 */ 911 struct fpsimd_state *st = &next->thread.fpsimd_state; 912 913 if (__this_cpu_read(fpsimd_last_state.st) == st 914 && st->cpu == smp_processor_id()) 915 clear_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE); 916 else 917 set_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE); 918 } 919 } 920 921 void fpsimd_flush_thread(void) 922 { 923 int vl, supported_vl; 924 925 if (!system_supports_fpsimd()) 926 return; 927 928 local_bh_disable(); 929 930 memset(¤t->thread.fpsimd_state, 0, sizeof(struct fpsimd_state)); 931 fpsimd_flush_task_state(current); 932 933 if (system_supports_sve()) { 934 clear_thread_flag(TIF_SVE); 935 sve_free(current); 936 937 /* 938 * Reset the task vector length as required. 939 * This is where we ensure that all user tasks have a valid 940 * vector length configured: no kernel task can become a user 941 * task without an exec and hence a call to this function. 942 * By the time the first call to this function is made, all 943 * early hardware probing is complete, so sve_default_vl 944 * should be valid. 945 * If a bug causes this to go wrong, we make some noise and 946 * try to fudge thread.sve_vl to a safe value here. 947 */ 948 vl = current->thread.sve_vl_onexec ? 949 current->thread.sve_vl_onexec : sve_default_vl; 950 951 if (WARN_ON(!sve_vl_valid(vl))) 952 vl = SVE_VL_MIN; 953 954 supported_vl = find_supported_vector_length(vl); 955 if (WARN_ON(supported_vl != vl)) 956 vl = supported_vl; 957 958 current->thread.sve_vl = vl; 959 960 /* 961 * If the task is not set to inherit, ensure that the vector 962 * length will be reset by a subsequent exec: 963 */ 964 if (!test_thread_flag(TIF_SVE_VL_INHERIT)) 965 current->thread.sve_vl_onexec = 0; 966 } 967 968 set_thread_flag(TIF_FOREIGN_FPSTATE); 969 970 local_bh_enable(); 971 } 972 973 /* 974 * Save the userland FPSIMD state of 'current' to memory, but only if the state 975 * currently held in the registers does in fact belong to 'current' 976 */ 977 void fpsimd_preserve_current_state(void) 978 { 979 if (!system_supports_fpsimd()) 980 return; 981 982 local_bh_disable(); 983 task_fpsimd_save(); 984 local_bh_enable(); 985 } 986 987 /* 988 * Like fpsimd_preserve_current_state(), but ensure that 989 * current->thread.fpsimd_state is updated so that it can be copied to 990 * the signal frame. 991 */ 992 void fpsimd_signal_preserve_current_state(void) 993 { 994 fpsimd_preserve_current_state(); 995 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 996 sve_to_fpsimd(current); 997 } 998 999 /* 1000 * Associate current's FPSIMD context with this cpu 1001 * Preemption must be disabled when calling this function. 1002 */ 1003 static void fpsimd_bind_to_cpu(void) 1004 { 1005 struct fpsimd_last_state_struct *last = 1006 this_cpu_ptr(&fpsimd_last_state); 1007 struct fpsimd_state *st = ¤t->thread.fpsimd_state; 1008 1009 last->st = st; 1010 last->sve_in_use = test_thread_flag(TIF_SVE); 1011 st->cpu = smp_processor_id(); 1012 } 1013 1014 /* 1015 * Load the userland FPSIMD state of 'current' from memory, but only if the 1016 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD 1017 * state of 'current' 1018 */ 1019 void fpsimd_restore_current_state(void) 1020 { 1021 if (!system_supports_fpsimd()) 1022 return; 1023 1024 local_bh_disable(); 1025 1026 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { 1027 task_fpsimd_load(); 1028 fpsimd_bind_to_cpu(); 1029 } 1030 1031 local_bh_enable(); 1032 } 1033 1034 /* 1035 * Load an updated userland FPSIMD state for 'current' from memory and set the 1036 * flag that indicates that the FPSIMD register contents are the most recent 1037 * FPSIMD state of 'current' 1038 */ 1039 void fpsimd_update_current_state(struct user_fpsimd_state const *state) 1040 { 1041 if (!system_supports_fpsimd()) 1042 return; 1043 1044 local_bh_disable(); 1045 1046 current->thread.fpsimd_state.user_fpsimd = *state; 1047 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 1048 fpsimd_to_sve(current); 1049 1050 task_fpsimd_load(); 1051 1052 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) 1053 fpsimd_bind_to_cpu(); 1054 1055 local_bh_enable(); 1056 } 1057 1058 /* 1059 * Invalidate live CPU copies of task t's FPSIMD state 1060 */ 1061 void fpsimd_flush_task_state(struct task_struct *t) 1062 { 1063 t->thread.fpsimd_state.cpu = NR_CPUS; 1064 } 1065 1066 static inline void fpsimd_flush_cpu_state(void) 1067 { 1068 __this_cpu_write(fpsimd_last_state.st, NULL); 1069 } 1070 1071 /* 1072 * Invalidate any task SVE state currently held in this CPU's regs. 1073 * 1074 * This is used to prevent the kernel from trying to reuse SVE register data 1075 * that is detroyed by KVM guest enter/exit. This function should go away when 1076 * KVM SVE support is implemented. Don't use it for anything else. 1077 */ 1078 #ifdef CONFIG_ARM64_SVE 1079 void sve_flush_cpu_state(void) 1080 { 1081 struct fpsimd_last_state_struct const *last = 1082 this_cpu_ptr(&fpsimd_last_state); 1083 1084 if (last->st && last->sve_in_use) 1085 fpsimd_flush_cpu_state(); 1086 } 1087 #endif /* CONFIG_ARM64_SVE */ 1088 1089 #ifdef CONFIG_KERNEL_MODE_NEON 1090 1091 DEFINE_PER_CPU(bool, kernel_neon_busy); 1092 EXPORT_PER_CPU_SYMBOL(kernel_neon_busy); 1093 1094 /* 1095 * Kernel-side NEON support functions 1096 */ 1097 1098 /* 1099 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling 1100 * context 1101 * 1102 * Must not be called unless may_use_simd() returns true. 1103 * Task context in the FPSIMD registers is saved back to memory as necessary. 1104 * 1105 * A matching call to kernel_neon_end() must be made before returning from the 1106 * calling context. 1107 * 1108 * The caller may freely use the FPSIMD registers until kernel_neon_end() is 1109 * called. 1110 */ 1111 void kernel_neon_begin(void) 1112 { 1113 if (WARN_ON(!system_supports_fpsimd())) 1114 return; 1115 1116 BUG_ON(!may_use_simd()); 1117 1118 local_bh_disable(); 1119 1120 __this_cpu_write(kernel_neon_busy, true); 1121 1122 /* Save unsaved task fpsimd state, if any: */ 1123 if (current->mm) { 1124 task_fpsimd_save(); 1125 set_thread_flag(TIF_FOREIGN_FPSTATE); 1126 } 1127 1128 /* Invalidate any task state remaining in the fpsimd regs: */ 1129 fpsimd_flush_cpu_state(); 1130 1131 preempt_disable(); 1132 1133 local_bh_enable(); 1134 } 1135 EXPORT_SYMBOL(kernel_neon_begin); 1136 1137 /* 1138 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task 1139 * 1140 * Must be called from a context in which kernel_neon_begin() was previously 1141 * called, with no call to kernel_neon_end() in the meantime. 1142 * 1143 * The caller must not use the FPSIMD registers after this function is called, 1144 * unless kernel_neon_begin() is called again in the meantime. 1145 */ 1146 void kernel_neon_end(void) 1147 { 1148 bool busy; 1149 1150 if (!system_supports_fpsimd()) 1151 return; 1152 1153 busy = __this_cpu_xchg(kernel_neon_busy, false); 1154 WARN_ON(!busy); /* No matching kernel_neon_begin()? */ 1155 1156 preempt_enable(); 1157 } 1158 EXPORT_SYMBOL(kernel_neon_end); 1159 1160 #ifdef CONFIG_EFI 1161 1162 static DEFINE_PER_CPU(struct fpsimd_state, efi_fpsimd_state); 1163 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used); 1164 static DEFINE_PER_CPU(bool, efi_sve_state_used); 1165 1166 /* 1167 * EFI runtime services support functions 1168 * 1169 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call. 1170 * This means that for EFI (and only for EFI), we have to assume that FPSIMD 1171 * is always used rather than being an optional accelerator. 1172 * 1173 * These functions provide the necessary support for ensuring FPSIMD 1174 * save/restore in the contexts from which EFI is used. 1175 * 1176 * Do not use them for any other purpose -- if tempted to do so, you are 1177 * either doing something wrong or you need to propose some refactoring. 1178 */ 1179 1180 /* 1181 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call 1182 */ 1183 void __efi_fpsimd_begin(void) 1184 { 1185 if (!system_supports_fpsimd()) 1186 return; 1187 1188 WARN_ON(preemptible()); 1189 1190 if (may_use_simd()) { 1191 kernel_neon_begin(); 1192 } else { 1193 /* 1194 * If !efi_sve_state, SVE can't be in use yet and doesn't need 1195 * preserving: 1196 */ 1197 if (system_supports_sve() && likely(efi_sve_state)) { 1198 char *sve_state = this_cpu_ptr(efi_sve_state); 1199 1200 __this_cpu_write(efi_sve_state_used, true); 1201 1202 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl), 1203 &this_cpu_ptr(&efi_fpsimd_state)->fpsr); 1204 } else { 1205 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state)); 1206 } 1207 1208 __this_cpu_write(efi_fpsimd_state_used, true); 1209 } 1210 } 1211 1212 /* 1213 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call 1214 */ 1215 void __efi_fpsimd_end(void) 1216 { 1217 if (!system_supports_fpsimd()) 1218 return; 1219 1220 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) { 1221 kernel_neon_end(); 1222 } else { 1223 if (system_supports_sve() && 1224 likely(__this_cpu_read(efi_sve_state_used))) { 1225 char const *sve_state = this_cpu_ptr(efi_sve_state); 1226 1227 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl), 1228 &this_cpu_ptr(&efi_fpsimd_state)->fpsr, 1229 sve_vq_from_vl(sve_get_vl()) - 1); 1230 1231 __this_cpu_write(efi_sve_state_used, false); 1232 } else { 1233 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state)); 1234 } 1235 } 1236 } 1237 1238 #endif /* CONFIG_EFI */ 1239 1240 #endif /* CONFIG_KERNEL_MODE_NEON */ 1241 1242 #ifdef CONFIG_CPU_PM 1243 static int fpsimd_cpu_pm_notifier(struct notifier_block *self, 1244 unsigned long cmd, void *v) 1245 { 1246 switch (cmd) { 1247 case CPU_PM_ENTER: 1248 if (current->mm) 1249 task_fpsimd_save(); 1250 fpsimd_flush_cpu_state(); 1251 break; 1252 case CPU_PM_EXIT: 1253 if (current->mm) 1254 set_thread_flag(TIF_FOREIGN_FPSTATE); 1255 break; 1256 case CPU_PM_ENTER_FAILED: 1257 default: 1258 return NOTIFY_DONE; 1259 } 1260 return NOTIFY_OK; 1261 } 1262 1263 static struct notifier_block fpsimd_cpu_pm_notifier_block = { 1264 .notifier_call = fpsimd_cpu_pm_notifier, 1265 }; 1266 1267 static void __init fpsimd_pm_init(void) 1268 { 1269 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block); 1270 } 1271 1272 #else 1273 static inline void fpsimd_pm_init(void) { } 1274 #endif /* CONFIG_CPU_PM */ 1275 1276 #ifdef CONFIG_HOTPLUG_CPU 1277 static int fpsimd_cpu_dead(unsigned int cpu) 1278 { 1279 per_cpu(fpsimd_last_state.st, cpu) = NULL; 1280 return 0; 1281 } 1282 1283 static inline void fpsimd_hotplug_init(void) 1284 { 1285 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead", 1286 NULL, fpsimd_cpu_dead); 1287 } 1288 1289 #else 1290 static inline void fpsimd_hotplug_init(void) { } 1291 #endif 1292 1293 /* 1294 * FP/SIMD support code initialisation. 1295 */ 1296 static int __init fpsimd_init(void) 1297 { 1298 if (elf_hwcap & HWCAP_FP) { 1299 fpsimd_pm_init(); 1300 fpsimd_hotplug_init(); 1301 } else { 1302 pr_notice("Floating-point is not implemented\n"); 1303 } 1304 1305 if (!(elf_hwcap & HWCAP_ASIMD)) 1306 pr_notice("Advanced SIMD is not implemented\n"); 1307 1308 return sve_sysctl_init(); 1309 } 1310 core_initcall(fpsimd_init); 1311