xref: /openbmc/linux/arch/arm64/kernel/fpsimd.c (revision db30dc1a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FP/SIMD context switching and fault handling
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  * Author: Catalin Marinas <catalin.marinas@arm.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34 
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47 
48 #define FPEXC_IOF	(1 << 0)
49 #define FPEXC_DZF	(1 << 1)
50 #define FPEXC_OFF	(1 << 2)
51 #define FPEXC_UFF	(1 << 3)
52 #define FPEXC_IXF	(1 << 4)
53 #define FPEXC_IDF	(1 << 7)
54 
55 /*
56  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57  *
58  * In order to reduce the number of times the FPSIMD state is needlessly saved
59  * and restored, we need to keep track of two things:
60  * (a) for each task, we need to remember which CPU was the last one to have
61  *     the task's FPSIMD state loaded into its FPSIMD registers;
62  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63  *     been loaded into its FPSIMD registers most recently, or whether it has
64  *     been used to perform kernel mode NEON in the meantime.
65  *
66  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69  * address of the userland FPSIMD state of the task that was loaded onto the CPU
70  * the most recently, or NULL if kernel mode NEON has been performed after that.
71  *
72  * With this in place, we no longer have to restore the next FPSIMD state right
73  * when switching between tasks. Instead, we can defer this check to userland
74  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76  * can omit the FPSIMD restore.
77  *
78  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79  * indicate whether or not the userland FPSIMD state of the current task is
80  * present in the registers. The flag is set unless the FPSIMD registers of this
81  * CPU currently contain the most recent userland FPSIMD state of the current
82  * task. If the task is behaving as a VMM, then this is will be managed by
83  * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84  * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85  * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86  * flag the register state as invalid.
87  *
88  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
89  * save the task's FPSIMD context back to task_struct from softirq context.
90  * To prevent this from racing with the manipulation of the task's FPSIMD state
91  * from task context and thereby corrupting the state, it is necessary to
92  * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
93  * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
94  * run but prevent them to use FPSIMD.
95  *
96  * For a certain task, the sequence may look something like this:
97  * - the task gets scheduled in; if both the task's fpsimd_cpu field
98  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100  *   cleared, otherwise it is set;
101  *
102  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103  *   userland FPSIMD state is copied from memory to the registers, the task's
104  *   fpsimd_cpu field is set to the id of the current CPU, the current
105  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106  *   TIF_FOREIGN_FPSTATE flag is cleared;
107  *
108  * - the task executes an ordinary syscall; upon return to userland, the
109  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110  *   restored;
111  *
112  * - the task executes a syscall which executes some NEON instructions; this is
113  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
115  *   and sets the TIF_FOREIGN_FPSTATE flag;
116  *
117  * - the task gets preempted after kernel_neon_end() is called; as we have not
118  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
120  */
121 struct fpsimd_last_state_struct {
122 	struct user_fpsimd_state *st;
123 	void *sve_state;
124 	void *za_state;
125 	u64 *svcr;
126 	unsigned int sve_vl;
127 	unsigned int sme_vl;
128 };
129 
130 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
131 
132 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
133 #ifdef CONFIG_ARM64_SVE
134 	[ARM64_VEC_SVE] = {
135 		.type			= ARM64_VEC_SVE,
136 		.name			= "SVE",
137 		.min_vl			= SVE_VL_MIN,
138 		.max_vl			= SVE_VL_MIN,
139 		.max_virtualisable_vl	= SVE_VL_MIN,
140 	},
141 #endif
142 #ifdef CONFIG_ARM64_SME
143 	[ARM64_VEC_SME] = {
144 		.type			= ARM64_VEC_SME,
145 		.name			= "SME",
146 	},
147 #endif
148 };
149 
150 static unsigned int vec_vl_inherit_flag(enum vec_type type)
151 {
152 	switch (type) {
153 	case ARM64_VEC_SVE:
154 		return TIF_SVE_VL_INHERIT;
155 	case ARM64_VEC_SME:
156 		return TIF_SME_VL_INHERIT;
157 	default:
158 		WARN_ON_ONCE(1);
159 		return 0;
160 	}
161 }
162 
163 struct vl_config {
164 	int __default_vl;		/* Default VL for tasks */
165 };
166 
167 static struct vl_config vl_config[ARM64_VEC_MAX];
168 
169 static inline int get_default_vl(enum vec_type type)
170 {
171 	return READ_ONCE(vl_config[type].__default_vl);
172 }
173 
174 #ifdef CONFIG_ARM64_SVE
175 
176 static inline int get_sve_default_vl(void)
177 {
178 	return get_default_vl(ARM64_VEC_SVE);
179 }
180 
181 static inline void set_default_vl(enum vec_type type, int val)
182 {
183 	WRITE_ONCE(vl_config[type].__default_vl, val);
184 }
185 
186 static inline void set_sve_default_vl(int val)
187 {
188 	set_default_vl(ARM64_VEC_SVE, val);
189 }
190 
191 static void __percpu *efi_sve_state;
192 
193 #else /* ! CONFIG_ARM64_SVE */
194 
195 /* Dummy declaration for code that will be optimised out: */
196 extern void __percpu *efi_sve_state;
197 
198 #endif /* ! CONFIG_ARM64_SVE */
199 
200 #ifdef CONFIG_ARM64_SME
201 
202 static int get_sme_default_vl(void)
203 {
204 	return get_default_vl(ARM64_VEC_SME);
205 }
206 
207 static void set_sme_default_vl(int val)
208 {
209 	set_default_vl(ARM64_VEC_SME, val);
210 }
211 
212 static void sme_free(struct task_struct *);
213 
214 #else
215 
216 static inline void sme_free(struct task_struct *t) { }
217 
218 #endif
219 
220 DEFINE_PER_CPU(bool, fpsimd_context_busy);
221 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
222 
223 static void fpsimd_bind_task_to_cpu(void);
224 
225 static void __get_cpu_fpsimd_context(void)
226 {
227 	bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
228 
229 	WARN_ON(busy);
230 }
231 
232 /*
233  * Claim ownership of the CPU FPSIMD context for use by the calling context.
234  *
235  * The caller may freely manipulate the FPSIMD context metadata until
236  * put_cpu_fpsimd_context() is called.
237  *
238  * The double-underscore version must only be called if you know the task
239  * can't be preempted.
240  *
241  * On RT kernels local_bh_disable() is not sufficient because it only
242  * serializes soft interrupt related sections via a local lock, but stays
243  * preemptible. Disabling preemption is the right choice here as bottom
244  * half processing is always in thread context on RT kernels so it
245  * implicitly prevents bottom half processing as well.
246  */
247 static void get_cpu_fpsimd_context(void)
248 {
249 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250 		local_bh_disable();
251 	else
252 		preempt_disable();
253 	__get_cpu_fpsimd_context();
254 }
255 
256 static void __put_cpu_fpsimd_context(void)
257 {
258 	bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
259 
260 	WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
261 }
262 
263 /*
264  * Release the CPU FPSIMD context.
265  *
266  * Must be called from a context in which get_cpu_fpsimd_context() was
267  * previously called, with no call to put_cpu_fpsimd_context() in the
268  * meantime.
269  */
270 static void put_cpu_fpsimd_context(void)
271 {
272 	__put_cpu_fpsimd_context();
273 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
274 		local_bh_enable();
275 	else
276 		preempt_enable();
277 }
278 
279 static bool have_cpu_fpsimd_context(void)
280 {
281 	return !preemptible() && __this_cpu_read(fpsimd_context_busy);
282 }
283 
284 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
285 {
286 	return task->thread.vl[type];
287 }
288 
289 void task_set_vl(struct task_struct *task, enum vec_type type,
290 		 unsigned long vl)
291 {
292 	task->thread.vl[type] = vl;
293 }
294 
295 unsigned int task_get_vl_onexec(const struct task_struct *task,
296 				enum vec_type type)
297 {
298 	return task->thread.vl_onexec[type];
299 }
300 
301 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
302 			unsigned long vl)
303 {
304 	task->thread.vl_onexec[type] = vl;
305 }
306 
307 /*
308  * TIF_SME controls whether a task can use SME without trapping while
309  * in userspace, when TIF_SME is set then we must have storage
310  * alocated in sve_state and za_state to store the contents of both ZA
311  * and the SVE registers for both streaming and non-streaming modes.
312  *
313  * If both SVCR.ZA and SVCR.SM are disabled then at any point we
314  * may disable TIF_SME and reenable traps.
315  */
316 
317 
318 /*
319  * TIF_SVE controls whether a task can use SVE without trapping while
320  * in userspace, and also (together with TIF_SME) the way a task's
321  * FPSIMD/SVE state is stored in thread_struct.
322  *
323  * The kernel uses this flag to track whether a user task is actively
324  * using SVE, and therefore whether full SVE register state needs to
325  * be tracked.  If not, the cheaper FPSIMD context handling code can
326  * be used instead of the more costly SVE equivalents.
327  *
328  *  * TIF_SVE or SVCR.SM set:
329  *
330  *    The task can execute SVE instructions while in userspace without
331  *    trapping to the kernel.
332  *
333  *    When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
334  *    corresponding Zn), P0-P15 and FFR are encoded in
335  *    task->thread.sve_state, formatted appropriately for vector
336  *    length task->thread.sve_vl or, if SVCR.SM is set,
337  *    task->thread.sme_vl.
338  *
339  *    task->thread.sve_state must point to a valid buffer at least
340  *    sve_state_size(task) bytes in size.
341  *
342  *    During any syscall, the kernel may optionally clear TIF_SVE and
343  *    discard the vector state except for the FPSIMD subset.
344  *
345  *  * TIF_SVE clear:
346  *
347  *    An attempt by the user task to execute an SVE instruction causes
348  *    do_sve_acc() to be called, which does some preparation and then
349  *    sets TIF_SVE.
350  *
351  *    When stored, FPSIMD registers V0-V31 are encoded in
352  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
353  *    logically zero but not stored anywhere; P0-P15 and FFR are not
354  *    stored and have unspecified values from userspace's point of
355  *    view.  For hygiene purposes, the kernel zeroes them on next use,
356  *    but userspace is discouraged from relying on this.
357  *
358  *    task->thread.sve_state does not need to be non-NULL, valid or any
359  *    particular size: it must not be dereferenced.
360  *
361  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
362  *    irrespective of whether TIF_SVE is clear or set, since these are
363  *    not vector length dependent.
364  */
365 
366 /*
367  * Update current's FPSIMD/SVE registers from thread_struct.
368  *
369  * This function should be called only when the FPSIMD/SVE state in
370  * thread_struct is known to be up to date, when preparing to enter
371  * userspace.
372  */
373 static void task_fpsimd_load(void)
374 {
375 	bool restore_sve_regs = false;
376 	bool restore_ffr;
377 
378 	WARN_ON(!system_supports_fpsimd());
379 	WARN_ON(!have_cpu_fpsimd_context());
380 
381 	/* Check if we should restore SVE first */
382 	if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE)) {
383 		sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
384 		restore_sve_regs = true;
385 		restore_ffr = true;
386 	}
387 
388 	/* Restore SME, override SVE register configuration if needed */
389 	if (system_supports_sme()) {
390 		unsigned long sme_vl = task_get_sme_vl(current);
391 
392 		/* Ensure VL is set up for restoring data */
393 		if (test_thread_flag(TIF_SME))
394 			sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
395 
396 		write_sysreg_s(current->thread.svcr, SYS_SVCR);
397 
398 		if (thread_za_enabled(&current->thread))
399 			za_load_state(current->thread.za_state);
400 
401 		if (thread_sm_enabled(&current->thread)) {
402 			restore_sve_regs = true;
403 			restore_ffr = system_supports_fa64();
404 		}
405 	}
406 
407 	if (restore_sve_regs)
408 		sve_load_state(sve_pffr(&current->thread),
409 			       &current->thread.uw.fpsimd_state.fpsr,
410 			       restore_ffr);
411 	else
412 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
413 }
414 
415 /*
416  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
417  * date with respect to the CPU registers. Note carefully that the
418  * current context is the context last bound to the CPU stored in
419  * last, if KVM is involved this may be the guest VM context rather
420  * than the host thread for the VM pointed to by current. This means
421  * that we must always reference the state storage via last rather
422  * than via current, other than the TIF_ flags which KVM will
423  * carefully maintain for us.
424  */
425 static void fpsimd_save(void)
426 {
427 	struct fpsimd_last_state_struct const *last =
428 		this_cpu_ptr(&fpsimd_last_state);
429 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
430 	bool save_sve_regs = false;
431 	bool save_ffr;
432 	unsigned int vl;
433 
434 	WARN_ON(!system_supports_fpsimd());
435 	WARN_ON(!have_cpu_fpsimd_context());
436 
437 	if (test_thread_flag(TIF_FOREIGN_FPSTATE))
438 		return;
439 
440 	if (test_thread_flag(TIF_SVE)) {
441 		save_sve_regs = true;
442 		save_ffr = true;
443 		vl = last->sve_vl;
444 	}
445 
446 	if (system_supports_sme()) {
447 		u64 *svcr = last->svcr;
448 		*svcr = read_sysreg_s(SYS_SVCR);
449 
450 		*svcr = read_sysreg_s(SYS_SVCR);
451 
452 		if (*svcr & SVCR_ZA_MASK)
453 			za_save_state(last->za_state);
454 
455 		/* If we are in streaming mode override regular SVE. */
456 		if (*svcr & SVCR_SM_MASK) {
457 			save_sve_regs = true;
458 			save_ffr = system_supports_fa64();
459 			vl = last->sme_vl;
460 		}
461 	}
462 
463 	if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
464 		/* Get the configured VL from RDVL, will account for SM */
465 		if (WARN_ON(sve_get_vl() != vl)) {
466 			/*
467 			 * Can't save the user regs, so current would
468 			 * re-enter user with corrupt state.
469 			 * There's no way to recover, so kill it:
470 			 */
471 			force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
472 			return;
473 		}
474 
475 		sve_save_state((char *)last->sve_state +
476 					sve_ffr_offset(vl),
477 			       &last->st->fpsr, save_ffr);
478 	} else {
479 		fpsimd_save_state(last->st);
480 	}
481 }
482 
483 /*
484  * All vector length selection from userspace comes through here.
485  * We're on a slow path, so some sanity-checks are included.
486  * If things go wrong there's a bug somewhere, but try to fall back to a
487  * safe choice.
488  */
489 static unsigned int find_supported_vector_length(enum vec_type type,
490 						 unsigned int vl)
491 {
492 	struct vl_info *info = &vl_info[type];
493 	int bit;
494 	int max_vl = info->max_vl;
495 
496 	if (WARN_ON(!sve_vl_valid(vl)))
497 		vl = info->min_vl;
498 
499 	if (WARN_ON(!sve_vl_valid(max_vl)))
500 		max_vl = info->min_vl;
501 
502 	if (vl > max_vl)
503 		vl = max_vl;
504 	if (vl < info->min_vl)
505 		vl = info->min_vl;
506 
507 	bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
508 			    __vq_to_bit(sve_vq_from_vl(vl)));
509 	return sve_vl_from_vq(__bit_to_vq(bit));
510 }
511 
512 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
513 
514 static int vec_proc_do_default_vl(struct ctl_table *table, int write,
515 				  void *buffer, size_t *lenp, loff_t *ppos)
516 {
517 	struct vl_info *info = table->extra1;
518 	enum vec_type type = info->type;
519 	int ret;
520 	int vl = get_default_vl(type);
521 	struct ctl_table tmp_table = {
522 		.data = &vl,
523 		.maxlen = sizeof(vl),
524 	};
525 
526 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
527 	if (ret || !write)
528 		return ret;
529 
530 	/* Writing -1 has the special meaning "set to max": */
531 	if (vl == -1)
532 		vl = info->max_vl;
533 
534 	if (!sve_vl_valid(vl))
535 		return -EINVAL;
536 
537 	set_default_vl(type, find_supported_vector_length(type, vl));
538 	return 0;
539 }
540 
541 static struct ctl_table sve_default_vl_table[] = {
542 	{
543 		.procname	= "sve_default_vector_length",
544 		.mode		= 0644,
545 		.proc_handler	= vec_proc_do_default_vl,
546 		.extra1		= &vl_info[ARM64_VEC_SVE],
547 	},
548 	{ }
549 };
550 
551 static int __init sve_sysctl_init(void)
552 {
553 	if (system_supports_sve())
554 		if (!register_sysctl("abi", sve_default_vl_table))
555 			return -EINVAL;
556 
557 	return 0;
558 }
559 
560 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
561 static int __init sve_sysctl_init(void) { return 0; }
562 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
563 
564 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
565 static struct ctl_table sme_default_vl_table[] = {
566 	{
567 		.procname	= "sme_default_vector_length",
568 		.mode		= 0644,
569 		.proc_handler	= vec_proc_do_default_vl,
570 		.extra1		= &vl_info[ARM64_VEC_SME],
571 	},
572 	{ }
573 };
574 
575 static int __init sme_sysctl_init(void)
576 {
577 	if (system_supports_sme())
578 		if (!register_sysctl("abi", sme_default_vl_table))
579 			return -EINVAL;
580 
581 	return 0;
582 }
583 
584 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
585 static int __init sme_sysctl_init(void) { return 0; }
586 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
587 
588 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
589 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
590 
591 #ifdef CONFIG_CPU_BIG_ENDIAN
592 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
593 {
594 	u64 a = swab64(x);
595 	u64 b = swab64(x >> 64);
596 
597 	return ((__uint128_t)a << 64) | b;
598 }
599 #else
600 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
601 {
602 	return x;
603 }
604 #endif
605 
606 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
607 
608 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
609 			    unsigned int vq)
610 {
611 	unsigned int i;
612 	__uint128_t *p;
613 
614 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
615 		p = (__uint128_t *)ZREG(sst, vq, i);
616 		*p = arm64_cpu_to_le128(fst->vregs[i]);
617 	}
618 }
619 
620 /*
621  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
622  * task->thread.sve_state.
623  *
624  * Task can be a non-runnable task, or current.  In the latter case,
625  * the caller must have ownership of the cpu FPSIMD context before calling
626  * this function.
627  * task->thread.sve_state must point to at least sve_state_size(task)
628  * bytes of allocated kernel memory.
629  * task->thread.uw.fpsimd_state must be up to date before calling this
630  * function.
631  */
632 static void fpsimd_to_sve(struct task_struct *task)
633 {
634 	unsigned int vq;
635 	void *sst = task->thread.sve_state;
636 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
637 
638 	if (!system_supports_sve())
639 		return;
640 
641 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
642 	__fpsimd_to_sve(sst, fst, vq);
643 }
644 
645 /*
646  * Transfer the SVE state in task->thread.sve_state to
647  * task->thread.uw.fpsimd_state.
648  *
649  * Task can be a non-runnable task, or current.  In the latter case,
650  * the caller must have ownership of the cpu FPSIMD context before calling
651  * this function.
652  * task->thread.sve_state must point to at least sve_state_size(task)
653  * bytes of allocated kernel memory.
654  * task->thread.sve_state must be up to date before calling this function.
655  */
656 static void sve_to_fpsimd(struct task_struct *task)
657 {
658 	unsigned int vq, vl;
659 	void const *sst = task->thread.sve_state;
660 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
661 	unsigned int i;
662 	__uint128_t const *p;
663 
664 	if (!system_supports_sve())
665 		return;
666 
667 	vl = thread_get_cur_vl(&task->thread);
668 	vq = sve_vq_from_vl(vl);
669 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
670 		p = (__uint128_t const *)ZREG(sst, vq, i);
671 		fst->vregs[i] = arm64_le128_to_cpu(*p);
672 	}
673 }
674 
675 #ifdef CONFIG_ARM64_SVE
676 /*
677  * Call __sve_free() directly only if you know task can't be scheduled
678  * or preempted.
679  */
680 static void __sve_free(struct task_struct *task)
681 {
682 	kfree(task->thread.sve_state);
683 	task->thread.sve_state = NULL;
684 }
685 
686 static void sve_free(struct task_struct *task)
687 {
688 	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
689 
690 	__sve_free(task);
691 }
692 
693 /*
694  * Return how many bytes of memory are required to store the full SVE
695  * state for task, given task's currently configured vector length.
696  */
697 size_t sve_state_size(struct task_struct const *task)
698 {
699 	unsigned int vl = 0;
700 
701 	if (system_supports_sve())
702 		vl = task_get_sve_vl(task);
703 	if (system_supports_sme())
704 		vl = max(vl, task_get_sme_vl(task));
705 
706 	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
707 }
708 
709 /*
710  * Ensure that task->thread.sve_state is allocated and sufficiently large.
711  *
712  * This function should be used only in preparation for replacing
713  * task->thread.sve_state with new data.  The memory is always zeroed
714  * here to prevent stale data from showing through: this is done in
715  * the interest of testability and predictability: except in the
716  * do_sve_acc() case, there is no ABI requirement to hide stale data
717  * written previously be task.
718  */
719 void sve_alloc(struct task_struct *task)
720 {
721 	if (task->thread.sve_state) {
722 		memset(task->thread.sve_state, 0, sve_state_size(task));
723 		return;
724 	}
725 
726 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
727 	task->thread.sve_state =
728 		kzalloc(sve_state_size(task), GFP_KERNEL);
729 }
730 
731 
732 /*
733  * Force the FPSIMD state shared with SVE to be updated in the SVE state
734  * even if the SVE state is the current active state.
735  *
736  * This should only be called by ptrace.  task must be non-runnable.
737  * task->thread.sve_state must point to at least sve_state_size(task)
738  * bytes of allocated kernel memory.
739  */
740 void fpsimd_force_sync_to_sve(struct task_struct *task)
741 {
742 	fpsimd_to_sve(task);
743 }
744 
745 /*
746  * Ensure that task->thread.sve_state is up to date with respect to
747  * the user task, irrespective of when SVE is in use or not.
748  *
749  * This should only be called by ptrace.  task must be non-runnable.
750  * task->thread.sve_state must point to at least sve_state_size(task)
751  * bytes of allocated kernel memory.
752  */
753 void fpsimd_sync_to_sve(struct task_struct *task)
754 {
755 	if (!test_tsk_thread_flag(task, TIF_SVE) &&
756 	    !thread_sm_enabled(&task->thread))
757 		fpsimd_to_sve(task);
758 }
759 
760 /*
761  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
762  * the user task, irrespective of whether SVE is in use or not.
763  *
764  * This should only be called by ptrace.  task must be non-runnable.
765  * task->thread.sve_state must point to at least sve_state_size(task)
766  * bytes of allocated kernel memory.
767  */
768 void sve_sync_to_fpsimd(struct task_struct *task)
769 {
770 	if (test_tsk_thread_flag(task, TIF_SVE) ||
771 	    thread_sm_enabled(&task->thread))
772 		sve_to_fpsimd(task);
773 }
774 
775 /*
776  * Ensure that task->thread.sve_state is up to date with respect to
777  * the task->thread.uw.fpsimd_state.
778  *
779  * This should only be called by ptrace to merge new FPSIMD register
780  * values into a task for which SVE is currently active.
781  * task must be non-runnable.
782  * task->thread.sve_state must point to at least sve_state_size(task)
783  * bytes of allocated kernel memory.
784  * task->thread.uw.fpsimd_state must already have been initialised with
785  * the new FPSIMD register values to be merged in.
786  */
787 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
788 {
789 	unsigned int vq;
790 	void *sst = task->thread.sve_state;
791 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
792 
793 	if (!test_tsk_thread_flag(task, TIF_SVE))
794 		return;
795 
796 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
797 
798 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
799 	__fpsimd_to_sve(sst, fst, vq);
800 }
801 
802 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
803 			  unsigned long vl, unsigned long flags)
804 {
805 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
806 				     PR_SVE_SET_VL_ONEXEC))
807 		return -EINVAL;
808 
809 	if (!sve_vl_valid(vl))
810 		return -EINVAL;
811 
812 	/*
813 	 * Clamp to the maximum vector length that VL-agnostic code
814 	 * can work with.  A flag may be assigned in the future to
815 	 * allow setting of larger vector lengths without confusing
816 	 * older software.
817 	 */
818 	if (vl > VL_ARCH_MAX)
819 		vl = VL_ARCH_MAX;
820 
821 	vl = find_supported_vector_length(type, vl);
822 
823 	if (flags & (PR_SVE_VL_INHERIT |
824 		     PR_SVE_SET_VL_ONEXEC))
825 		task_set_vl_onexec(task, type, vl);
826 	else
827 		/* Reset VL to system default on next exec: */
828 		task_set_vl_onexec(task, type, 0);
829 
830 	/* Only actually set the VL if not deferred: */
831 	if (flags & PR_SVE_SET_VL_ONEXEC)
832 		goto out;
833 
834 	if (vl == task_get_vl(task, type))
835 		goto out;
836 
837 	/*
838 	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
839 	 * write any live register state back to task_struct, and convert to a
840 	 * regular FPSIMD thread.
841 	 */
842 	if (task == current) {
843 		get_cpu_fpsimd_context();
844 
845 		fpsimd_save();
846 	}
847 
848 	fpsimd_flush_task_state(task);
849 	if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
850 	    thread_sm_enabled(&task->thread))
851 		sve_to_fpsimd(task);
852 
853 	if (system_supports_sme() && type == ARM64_VEC_SME) {
854 		task->thread.svcr &= ~(SVCR_SM_MASK |
855 				       SVCR_ZA_MASK);
856 		clear_thread_flag(TIF_SME);
857 	}
858 
859 	if (task == current)
860 		put_cpu_fpsimd_context();
861 
862 	/*
863 	 * Force reallocation of task SVE and SME state to the correct
864 	 * size on next use:
865 	 */
866 	sve_free(task);
867 	if (system_supports_sme() && type == ARM64_VEC_SME)
868 		sme_free(task);
869 
870 	task_set_vl(task, type, vl);
871 
872 out:
873 	update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
874 			       flags & PR_SVE_VL_INHERIT);
875 
876 	return 0;
877 }
878 
879 /*
880  * Encode the current vector length and flags for return.
881  * This is only required for prctl(): ptrace has separate fields.
882  * SVE and SME use the same bits for _ONEXEC and _INHERIT.
883  *
884  * flags are as for vec_set_vector_length().
885  */
886 static int vec_prctl_status(enum vec_type type, unsigned long flags)
887 {
888 	int ret;
889 
890 	if (flags & PR_SVE_SET_VL_ONEXEC)
891 		ret = task_get_vl_onexec(current, type);
892 	else
893 		ret = task_get_vl(current, type);
894 
895 	if (test_thread_flag(vec_vl_inherit_flag(type)))
896 		ret |= PR_SVE_VL_INHERIT;
897 
898 	return ret;
899 }
900 
901 /* PR_SVE_SET_VL */
902 int sve_set_current_vl(unsigned long arg)
903 {
904 	unsigned long vl, flags;
905 	int ret;
906 
907 	vl = arg & PR_SVE_VL_LEN_MASK;
908 	flags = arg & ~vl;
909 
910 	if (!system_supports_sve() || is_compat_task())
911 		return -EINVAL;
912 
913 	ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
914 	if (ret)
915 		return ret;
916 
917 	return vec_prctl_status(ARM64_VEC_SVE, flags);
918 }
919 
920 /* PR_SVE_GET_VL */
921 int sve_get_current_vl(void)
922 {
923 	if (!system_supports_sve() || is_compat_task())
924 		return -EINVAL;
925 
926 	return vec_prctl_status(ARM64_VEC_SVE, 0);
927 }
928 
929 #ifdef CONFIG_ARM64_SME
930 /* PR_SME_SET_VL */
931 int sme_set_current_vl(unsigned long arg)
932 {
933 	unsigned long vl, flags;
934 	int ret;
935 
936 	vl = arg & PR_SME_VL_LEN_MASK;
937 	flags = arg & ~vl;
938 
939 	if (!system_supports_sme() || is_compat_task())
940 		return -EINVAL;
941 
942 	ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
943 	if (ret)
944 		return ret;
945 
946 	return vec_prctl_status(ARM64_VEC_SME, flags);
947 }
948 
949 /* PR_SME_GET_VL */
950 int sme_get_current_vl(void)
951 {
952 	if (!system_supports_sme() || is_compat_task())
953 		return -EINVAL;
954 
955 	return vec_prctl_status(ARM64_VEC_SME, 0);
956 }
957 #endif /* CONFIG_ARM64_SME */
958 
959 static void vec_probe_vqs(struct vl_info *info,
960 			  DECLARE_BITMAP(map, SVE_VQ_MAX))
961 {
962 	unsigned int vq, vl;
963 
964 	bitmap_zero(map, SVE_VQ_MAX);
965 
966 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
967 		write_vl(info->type, vq - 1); /* self-syncing */
968 
969 		switch (info->type) {
970 		case ARM64_VEC_SVE:
971 			vl = sve_get_vl();
972 			break;
973 		case ARM64_VEC_SME:
974 			vl = sme_get_vl();
975 			break;
976 		default:
977 			vl = 0;
978 			break;
979 		}
980 
981 		/* Minimum VL identified? */
982 		if (sve_vq_from_vl(vl) > vq)
983 			break;
984 
985 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
986 		set_bit(__vq_to_bit(vq), map);
987 	}
988 }
989 
990 /*
991  * Initialise the set of known supported VQs for the boot CPU.
992  * This is called during kernel boot, before secondary CPUs are brought up.
993  */
994 void __init vec_init_vq_map(enum vec_type type)
995 {
996 	struct vl_info *info = &vl_info[type];
997 	vec_probe_vqs(info, info->vq_map);
998 	bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
999 }
1000 
1001 /*
1002  * If we haven't committed to the set of supported VQs yet, filter out
1003  * those not supported by the current CPU.
1004  * This function is called during the bring-up of early secondary CPUs only.
1005  */
1006 void vec_update_vq_map(enum vec_type type)
1007 {
1008 	struct vl_info *info = &vl_info[type];
1009 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1010 
1011 	vec_probe_vqs(info, tmp_map);
1012 	bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1013 	bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1014 		  SVE_VQ_MAX);
1015 }
1016 
1017 /*
1018  * Check whether the current CPU supports all VQs in the committed set.
1019  * This function is called during the bring-up of late secondary CPUs only.
1020  */
1021 int vec_verify_vq_map(enum vec_type type)
1022 {
1023 	struct vl_info *info = &vl_info[type];
1024 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1025 	unsigned long b;
1026 
1027 	vec_probe_vqs(info, tmp_map);
1028 
1029 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1030 	if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1031 		pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1032 			info->name, smp_processor_id());
1033 		return -EINVAL;
1034 	}
1035 
1036 	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1037 		return 0;
1038 
1039 	/*
1040 	 * For KVM, it is necessary to ensure that this CPU doesn't
1041 	 * support any vector length that guests may have probed as
1042 	 * unsupported.
1043 	 */
1044 
1045 	/* Recover the set of supported VQs: */
1046 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1047 	/* Find VQs supported that are not globally supported: */
1048 	bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1049 
1050 	/* Find the lowest such VQ, if any: */
1051 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1052 	if (b >= SVE_VQ_MAX)
1053 		return 0; /* no mismatches */
1054 
1055 	/*
1056 	 * Mismatches above sve_max_virtualisable_vl are fine, since
1057 	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1058 	 */
1059 	if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1060 		pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1061 			info->name, smp_processor_id());
1062 		return -EINVAL;
1063 	}
1064 
1065 	return 0;
1066 }
1067 
1068 static void __init sve_efi_setup(void)
1069 {
1070 	int max_vl = 0;
1071 	int i;
1072 
1073 	if (!IS_ENABLED(CONFIG_EFI))
1074 		return;
1075 
1076 	for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1077 		max_vl = max(vl_info[i].max_vl, max_vl);
1078 
1079 	/*
1080 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1081 	 * This is evidence of a crippled system and we are returning void,
1082 	 * so no attempt is made to handle this situation here.
1083 	 */
1084 	if (!sve_vl_valid(max_vl))
1085 		goto fail;
1086 
1087 	efi_sve_state = __alloc_percpu(
1088 		SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
1089 	if (!efi_sve_state)
1090 		goto fail;
1091 
1092 	return;
1093 
1094 fail:
1095 	panic("Cannot allocate percpu memory for EFI SVE save/restore");
1096 }
1097 
1098 /*
1099  * Enable SVE for EL1.
1100  * Intended for use by the cpufeatures code during CPU boot.
1101  */
1102 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1103 {
1104 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1105 	isb();
1106 }
1107 
1108 /*
1109  * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
1110  * vector length.
1111  *
1112  * Use only if SVE is present.
1113  * This function clobbers the SVE vector length.
1114  */
1115 u64 read_zcr_features(void)
1116 {
1117 	u64 zcr;
1118 	unsigned int vq_max;
1119 
1120 	/*
1121 	 * Set the maximum possible VL, and write zeroes to all other
1122 	 * bits to see if they stick.
1123 	 */
1124 	sve_kernel_enable(NULL);
1125 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
1126 
1127 	zcr = read_sysreg_s(SYS_ZCR_EL1);
1128 	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
1129 	vq_max = sve_vq_from_vl(sve_get_vl());
1130 	zcr |= vq_max - 1; /* set LEN field to maximum effective value */
1131 
1132 	return zcr;
1133 }
1134 
1135 void __init sve_setup(void)
1136 {
1137 	struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1138 	u64 zcr;
1139 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1140 	unsigned long b;
1141 
1142 	if (!system_supports_sve())
1143 		return;
1144 
1145 	/*
1146 	 * The SVE architecture mandates support for 128-bit vectors,
1147 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
1148 	 * If something went wrong, at least try to patch it up:
1149 	 */
1150 	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1151 		set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1152 
1153 	zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1154 	info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
1155 
1156 	/*
1157 	 * Sanity-check that the max VL we determined through CPU features
1158 	 * corresponds properly to sve_vq_map.  If not, do our best:
1159 	 */
1160 	if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
1161 								 info->max_vl)))
1162 		info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
1163 							    info->max_vl);
1164 
1165 	/*
1166 	 * For the default VL, pick the maximum supported value <= 64.
1167 	 * VL == 64 is guaranteed not to grow the signal frame.
1168 	 */
1169 	set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1170 
1171 	bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1172 		      SVE_VQ_MAX);
1173 
1174 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1175 	if (b >= SVE_VQ_MAX)
1176 		/* No non-virtualisable VLs found */
1177 		info->max_virtualisable_vl = SVE_VQ_MAX;
1178 	else if (WARN_ON(b == SVE_VQ_MAX - 1))
1179 		/* No virtualisable VLs?  This is architecturally forbidden. */
1180 		info->max_virtualisable_vl = SVE_VQ_MIN;
1181 	else /* b + 1 < SVE_VQ_MAX */
1182 		info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1183 
1184 	if (info->max_virtualisable_vl > info->max_vl)
1185 		info->max_virtualisable_vl = info->max_vl;
1186 
1187 	pr_info("%s: maximum available vector length %u bytes per vector\n",
1188 		info->name, info->max_vl);
1189 	pr_info("%s: default vector length %u bytes per vector\n",
1190 		info->name, get_sve_default_vl());
1191 
1192 	/* KVM decides whether to support mismatched systems. Just warn here: */
1193 	if (sve_max_virtualisable_vl() < sve_max_vl())
1194 		pr_warn("%s: unvirtualisable vector lengths present\n",
1195 			info->name);
1196 
1197 	sve_efi_setup();
1198 }
1199 
1200 /*
1201  * Called from the put_task_struct() path, which cannot get here
1202  * unless dead_task is really dead and not schedulable.
1203  */
1204 void fpsimd_release_task(struct task_struct *dead_task)
1205 {
1206 	__sve_free(dead_task);
1207 	sme_free(dead_task);
1208 }
1209 
1210 #endif /* CONFIG_ARM64_SVE */
1211 
1212 #ifdef CONFIG_ARM64_SME
1213 
1214 /*
1215  * Ensure that task->thread.za_state is allocated and sufficiently large.
1216  *
1217  * This function should be used only in preparation for replacing
1218  * task->thread.za_state with new data.  The memory is always zeroed
1219  * here to prevent stale data from showing through: this is done in
1220  * the interest of testability and predictability, the architecture
1221  * guarantees that when ZA is enabled it will be zeroed.
1222  */
1223 void sme_alloc(struct task_struct *task)
1224 {
1225 	if (task->thread.za_state) {
1226 		memset(task->thread.za_state, 0, za_state_size(task));
1227 		return;
1228 	}
1229 
1230 	/* This could potentially be up to 64K. */
1231 	task->thread.za_state =
1232 		kzalloc(za_state_size(task), GFP_KERNEL);
1233 }
1234 
1235 static void sme_free(struct task_struct *task)
1236 {
1237 	kfree(task->thread.za_state);
1238 	task->thread.za_state = NULL;
1239 }
1240 
1241 void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1242 {
1243 	/* Set priority for all PEs to architecturally defined minimum */
1244 	write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1245 		       SYS_SMPRI_EL1);
1246 
1247 	/* Allow SME in kernel */
1248 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1249 	isb();
1250 
1251 	/* Allow EL0 to access TPIDR2 */
1252 	write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1253 	isb();
1254 }
1255 
1256 /*
1257  * This must be called after sme_kernel_enable(), we rely on the
1258  * feature table being sorted to ensure this.
1259  */
1260 void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1261 {
1262 	/* Allow use of FA64 */
1263 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1264 		       SYS_SMCR_EL1);
1265 }
1266 
1267 /*
1268  * Read the pseudo-SMCR used by cpufeatures to identify the supported
1269  * vector length.
1270  *
1271  * Use only if SME is present.
1272  * This function clobbers the SME vector length.
1273  */
1274 u64 read_smcr_features(void)
1275 {
1276 	u64 smcr;
1277 	unsigned int vq_max;
1278 
1279 	sme_kernel_enable(NULL);
1280 	sme_smstart_sm();
1281 
1282 	/*
1283 	 * Set the maximum possible VL.
1284 	 */
1285 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
1286 		       SYS_SMCR_EL1);
1287 
1288 	smcr = read_sysreg_s(SYS_SMCR_EL1);
1289 	smcr &= ~(u64)SMCR_ELx_LEN_MASK; /* Only the LEN field */
1290 	vq_max = sve_vq_from_vl(sve_get_vl());
1291 	smcr |= vq_max - 1; /* set LEN field to maximum effective value */
1292 
1293 	sme_smstop_sm();
1294 
1295 	return smcr;
1296 }
1297 
1298 void __init sme_setup(void)
1299 {
1300 	struct vl_info *info = &vl_info[ARM64_VEC_SME];
1301 	u64 smcr;
1302 	int min_bit;
1303 
1304 	if (!system_supports_sme())
1305 		return;
1306 
1307 	/*
1308 	 * SME doesn't require any particular vector length be
1309 	 * supported but it does require at least one.  We should have
1310 	 * disabled the feature entirely while bringing up CPUs but
1311 	 * let's double check here.
1312 	 */
1313 	WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1314 
1315 	min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1316 	info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1317 
1318 	smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
1319 	info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
1320 
1321 	/*
1322 	 * Sanity-check that the max VL we determined through CPU features
1323 	 * corresponds properly to sme_vq_map.  If not, do our best:
1324 	 */
1325 	if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
1326 								 info->max_vl)))
1327 		info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
1328 							    info->max_vl);
1329 
1330 	WARN_ON(info->min_vl > info->max_vl);
1331 
1332 	/*
1333 	 * For the default VL, pick the maximum supported value <= 32
1334 	 * (256 bits) if there is one since this is guaranteed not to
1335 	 * grow the signal frame when in streaming mode, otherwise the
1336 	 * minimum available VL will be used.
1337 	 */
1338 	set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1339 
1340 	pr_info("SME: minimum available vector length %u bytes per vector\n",
1341 		info->min_vl);
1342 	pr_info("SME: maximum available vector length %u bytes per vector\n",
1343 		info->max_vl);
1344 	pr_info("SME: default vector length %u bytes per vector\n",
1345 		get_sme_default_vl());
1346 }
1347 
1348 #endif /* CONFIG_ARM64_SME */
1349 
1350 static void sve_init_regs(void)
1351 {
1352 	/*
1353 	 * Convert the FPSIMD state to SVE, zeroing all the state that
1354 	 * is not shared with FPSIMD. If (as is likely) the current
1355 	 * state is live in the registers then do this there and
1356 	 * update our metadata for the current task including
1357 	 * disabling the trap, otherwise update our in-memory copy.
1358 	 * We are guaranteed to not be in streaming mode, we can only
1359 	 * take a SVE trap when not in streaming mode and we can't be
1360 	 * in streaming mode when taking a SME trap.
1361 	 */
1362 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1363 		unsigned long vq_minus_one =
1364 			sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1365 		sve_set_vq(vq_minus_one);
1366 		sve_flush_live(true, vq_minus_one);
1367 		fpsimd_bind_task_to_cpu();
1368 	} else {
1369 		fpsimd_to_sve(current);
1370 	}
1371 }
1372 
1373 /*
1374  * Trapped SVE access
1375  *
1376  * Storage is allocated for the full SVE state, the current FPSIMD
1377  * register contents are migrated across, and the access trap is
1378  * disabled.
1379  *
1380  * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1381  * would have disabled the SVE access trap for userspace during
1382  * ret_to_user, making an SVE access trap impossible in that case.
1383  */
1384 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1385 {
1386 	/* Even if we chose not to use SVE, the hardware could still trap: */
1387 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1388 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1389 		return;
1390 	}
1391 
1392 	sve_alloc(current);
1393 	if (!current->thread.sve_state) {
1394 		force_sig(SIGKILL);
1395 		return;
1396 	}
1397 
1398 	get_cpu_fpsimd_context();
1399 
1400 	if (test_and_set_thread_flag(TIF_SVE))
1401 		WARN_ON(1); /* SVE access shouldn't have trapped */
1402 
1403 	/*
1404 	 * Even if the task can have used streaming mode we can only
1405 	 * generate SVE access traps in normal SVE mode and
1406 	 * transitioning out of streaming mode may discard any
1407 	 * streaming mode state.  Always clear the high bits to avoid
1408 	 * any potential errors tracking what is properly initialised.
1409 	 */
1410 	sve_init_regs();
1411 
1412 	put_cpu_fpsimd_context();
1413 }
1414 
1415 /*
1416  * Trapped SME access
1417  *
1418  * Storage is allocated for the full SVE and SME state, the current
1419  * FPSIMD register contents are migrated to SVE if SVE is not already
1420  * active, and the access trap is disabled.
1421  *
1422  * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1423  * would have disabled the SME access trap for userspace during
1424  * ret_to_user, making an SVE access trap impossible in that case.
1425  */
1426 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1427 {
1428 	/* Even if we chose not to use SME, the hardware could still trap: */
1429 	if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1430 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1431 		return;
1432 	}
1433 
1434 	/*
1435 	 * If this not a trap due to SME being disabled then something
1436 	 * is being used in the wrong mode, report as SIGILL.
1437 	 */
1438 	if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
1439 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1440 		return;
1441 	}
1442 
1443 	sve_alloc(current);
1444 	sme_alloc(current);
1445 	if (!current->thread.sve_state || !current->thread.za_state) {
1446 		force_sig(SIGKILL);
1447 		return;
1448 	}
1449 
1450 	get_cpu_fpsimd_context();
1451 
1452 	/* With TIF_SME userspace shouldn't generate any traps */
1453 	if (test_and_set_thread_flag(TIF_SME))
1454 		WARN_ON(1);
1455 
1456 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1457 		unsigned long vq_minus_one =
1458 			sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1459 		sme_set_vq(vq_minus_one);
1460 
1461 		fpsimd_bind_task_to_cpu();
1462 	}
1463 
1464 	/*
1465 	 * If SVE was not already active initialise the SVE registers,
1466 	 * any non-shared state between the streaming and regular SVE
1467 	 * registers is architecturally guaranteed to be zeroed when
1468 	 * we enter streaming mode.  We do not need to initialize ZA
1469 	 * since ZA must be disabled at this point and enabling ZA is
1470 	 * architecturally defined to zero ZA.
1471 	 */
1472 	if (system_supports_sve() && !test_thread_flag(TIF_SVE))
1473 		sve_init_regs();
1474 
1475 	put_cpu_fpsimd_context();
1476 }
1477 
1478 /*
1479  * Trapped FP/ASIMD access.
1480  */
1481 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1482 {
1483 	/* TODO: implement lazy context saving/restoring */
1484 	WARN_ON(1);
1485 }
1486 
1487 /*
1488  * Raise a SIGFPE for the current process.
1489  */
1490 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1491 {
1492 	unsigned int si_code = FPE_FLTUNK;
1493 
1494 	if (esr & ESR_ELx_FP_EXC_TFV) {
1495 		if (esr & FPEXC_IOF)
1496 			si_code = FPE_FLTINV;
1497 		else if (esr & FPEXC_DZF)
1498 			si_code = FPE_FLTDIV;
1499 		else if (esr & FPEXC_OFF)
1500 			si_code = FPE_FLTOVF;
1501 		else if (esr & FPEXC_UFF)
1502 			si_code = FPE_FLTUND;
1503 		else if (esr & FPEXC_IXF)
1504 			si_code = FPE_FLTRES;
1505 	}
1506 
1507 	send_sig_fault(SIGFPE, si_code,
1508 		       (void __user *)instruction_pointer(regs),
1509 		       current);
1510 }
1511 
1512 void fpsimd_thread_switch(struct task_struct *next)
1513 {
1514 	bool wrong_task, wrong_cpu;
1515 
1516 	if (!system_supports_fpsimd())
1517 		return;
1518 
1519 	__get_cpu_fpsimd_context();
1520 
1521 	/* Save unsaved fpsimd state, if any: */
1522 	fpsimd_save();
1523 
1524 	/*
1525 	 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1526 	 * state.  For kernel threads, FPSIMD registers are never loaded
1527 	 * and wrong_task and wrong_cpu will always be true.
1528 	 */
1529 	wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1530 					&next->thread.uw.fpsimd_state;
1531 	wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1532 
1533 	update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1534 			       wrong_task || wrong_cpu);
1535 
1536 	__put_cpu_fpsimd_context();
1537 }
1538 
1539 static void fpsimd_flush_thread_vl(enum vec_type type)
1540 {
1541 	int vl, supported_vl;
1542 
1543 	/*
1544 	 * Reset the task vector length as required.  This is where we
1545 	 * ensure that all user tasks have a valid vector length
1546 	 * configured: no kernel task can become a user task without
1547 	 * an exec and hence a call to this function.  By the time the
1548 	 * first call to this function is made, all early hardware
1549 	 * probing is complete, so __sve_default_vl should be valid.
1550 	 * If a bug causes this to go wrong, we make some noise and
1551 	 * try to fudge thread.sve_vl to a safe value here.
1552 	 */
1553 	vl = task_get_vl_onexec(current, type);
1554 	if (!vl)
1555 		vl = get_default_vl(type);
1556 
1557 	if (WARN_ON(!sve_vl_valid(vl)))
1558 		vl = vl_info[type].min_vl;
1559 
1560 	supported_vl = find_supported_vector_length(type, vl);
1561 	if (WARN_ON(supported_vl != vl))
1562 		vl = supported_vl;
1563 
1564 	task_set_vl(current, type, vl);
1565 
1566 	/*
1567 	 * If the task is not set to inherit, ensure that the vector
1568 	 * length will be reset by a subsequent exec:
1569 	 */
1570 	if (!test_thread_flag(vec_vl_inherit_flag(type)))
1571 		task_set_vl_onexec(current, type, 0);
1572 }
1573 
1574 void fpsimd_flush_thread(void)
1575 {
1576 	void *sve_state = NULL;
1577 	void *za_state = NULL;
1578 
1579 	if (!system_supports_fpsimd())
1580 		return;
1581 
1582 	get_cpu_fpsimd_context();
1583 
1584 	fpsimd_flush_task_state(current);
1585 	memset(&current->thread.uw.fpsimd_state, 0,
1586 	       sizeof(current->thread.uw.fpsimd_state));
1587 
1588 	if (system_supports_sve()) {
1589 		clear_thread_flag(TIF_SVE);
1590 
1591 		/* Defer kfree() while in atomic context */
1592 		sve_state = current->thread.sve_state;
1593 		current->thread.sve_state = NULL;
1594 
1595 		fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1596 	}
1597 
1598 	if (system_supports_sme()) {
1599 		clear_thread_flag(TIF_SME);
1600 
1601 		/* Defer kfree() while in atomic context */
1602 		za_state = current->thread.za_state;
1603 		current->thread.za_state = NULL;
1604 
1605 		fpsimd_flush_thread_vl(ARM64_VEC_SME);
1606 		current->thread.svcr = 0;
1607 	}
1608 
1609 	put_cpu_fpsimd_context();
1610 	kfree(sve_state);
1611 	kfree(za_state);
1612 }
1613 
1614 /*
1615  * Save the userland FPSIMD state of 'current' to memory, but only if the state
1616  * currently held in the registers does in fact belong to 'current'
1617  */
1618 void fpsimd_preserve_current_state(void)
1619 {
1620 	if (!system_supports_fpsimd())
1621 		return;
1622 
1623 	get_cpu_fpsimd_context();
1624 	fpsimd_save();
1625 	put_cpu_fpsimd_context();
1626 }
1627 
1628 /*
1629  * Like fpsimd_preserve_current_state(), but ensure that
1630  * current->thread.uw.fpsimd_state is updated so that it can be copied to
1631  * the signal frame.
1632  */
1633 void fpsimd_signal_preserve_current_state(void)
1634 {
1635 	fpsimd_preserve_current_state();
1636 	if (test_thread_flag(TIF_SVE))
1637 		sve_to_fpsimd(current);
1638 }
1639 
1640 /*
1641  * Associate current's FPSIMD context with this cpu
1642  * The caller must have ownership of the cpu FPSIMD context before calling
1643  * this function.
1644  */
1645 static void fpsimd_bind_task_to_cpu(void)
1646 {
1647 	struct fpsimd_last_state_struct *last =
1648 		this_cpu_ptr(&fpsimd_last_state);
1649 
1650 	WARN_ON(!system_supports_fpsimd());
1651 	last->st = &current->thread.uw.fpsimd_state;
1652 	last->sve_state = current->thread.sve_state;
1653 	last->za_state = current->thread.za_state;
1654 	last->sve_vl = task_get_sve_vl(current);
1655 	last->sme_vl = task_get_sme_vl(current);
1656 	last->svcr = &current->thread.svcr;
1657 	current->thread.fpsimd_cpu = smp_processor_id();
1658 
1659 	/*
1660 	 * Toggle SVE and SME trapping for userspace if needed, these
1661 	 * are serialsied by ret_to_user().
1662 	 */
1663 	if (system_supports_sme()) {
1664 		if (test_thread_flag(TIF_SME))
1665 			sme_user_enable();
1666 		else
1667 			sme_user_disable();
1668 	}
1669 
1670 	if (system_supports_sve()) {
1671 		if (test_thread_flag(TIF_SVE))
1672 			sve_user_enable();
1673 		else
1674 			sve_user_disable();
1675 	}
1676 }
1677 
1678 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1679 			      unsigned int sve_vl, void *za_state,
1680 			      unsigned int sme_vl, u64 *svcr)
1681 {
1682 	struct fpsimd_last_state_struct *last =
1683 		this_cpu_ptr(&fpsimd_last_state);
1684 
1685 	WARN_ON(!system_supports_fpsimd());
1686 	WARN_ON(!in_softirq() && !irqs_disabled());
1687 
1688 	last->st = st;
1689 	last->svcr = svcr;
1690 	last->sve_state = sve_state;
1691 	last->za_state = za_state;
1692 	last->sve_vl = sve_vl;
1693 	last->sme_vl = sme_vl;
1694 }
1695 
1696 /*
1697  * Load the userland FPSIMD state of 'current' from memory, but only if the
1698  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1699  * state of 'current'.  This is called when we are preparing to return to
1700  * userspace to ensure that userspace sees a good register state.
1701  */
1702 void fpsimd_restore_current_state(void)
1703 {
1704 	/*
1705 	 * For the tasks that were created before we detected the absence of
1706 	 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1707 	 * e.g, init. This could be then inherited by the children processes.
1708 	 * If we later detect that the system doesn't support FP/SIMD,
1709 	 * we must clear the flag for  all the tasks to indicate that the
1710 	 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1711 	 * do_notify_resume().
1712 	 */
1713 	if (!system_supports_fpsimd()) {
1714 		clear_thread_flag(TIF_FOREIGN_FPSTATE);
1715 		return;
1716 	}
1717 
1718 	get_cpu_fpsimd_context();
1719 
1720 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1721 		task_fpsimd_load();
1722 		fpsimd_bind_task_to_cpu();
1723 	}
1724 
1725 	put_cpu_fpsimd_context();
1726 }
1727 
1728 /*
1729  * Load an updated userland FPSIMD state for 'current' from memory and set the
1730  * flag that indicates that the FPSIMD register contents are the most recent
1731  * FPSIMD state of 'current'. This is used by the signal code to restore the
1732  * register state when returning from a signal handler in FPSIMD only cases,
1733  * any SVE context will be discarded.
1734  */
1735 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1736 {
1737 	if (WARN_ON(!system_supports_fpsimd()))
1738 		return;
1739 
1740 	get_cpu_fpsimd_context();
1741 
1742 	current->thread.uw.fpsimd_state = *state;
1743 	if (test_thread_flag(TIF_SVE))
1744 		fpsimd_to_sve(current);
1745 
1746 	task_fpsimd_load();
1747 	fpsimd_bind_task_to_cpu();
1748 
1749 	clear_thread_flag(TIF_FOREIGN_FPSTATE);
1750 
1751 	put_cpu_fpsimd_context();
1752 }
1753 
1754 /*
1755  * Invalidate live CPU copies of task t's FPSIMD state
1756  *
1757  * This function may be called with preemption enabled.  The barrier()
1758  * ensures that the assignment to fpsimd_cpu is visible to any
1759  * preemption/softirq that could race with set_tsk_thread_flag(), so
1760  * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1761  *
1762  * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1763  * subsequent code.
1764  */
1765 void fpsimd_flush_task_state(struct task_struct *t)
1766 {
1767 	t->thread.fpsimd_cpu = NR_CPUS;
1768 	/*
1769 	 * If we don't support fpsimd, bail out after we have
1770 	 * reset the fpsimd_cpu for this task and clear the
1771 	 * FPSTATE.
1772 	 */
1773 	if (!system_supports_fpsimd())
1774 		return;
1775 	barrier();
1776 	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1777 
1778 	barrier();
1779 }
1780 
1781 /*
1782  * Invalidate any task's FPSIMD state that is present on this cpu.
1783  * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1784  * before calling this function.
1785  */
1786 static void fpsimd_flush_cpu_state(void)
1787 {
1788 	WARN_ON(!system_supports_fpsimd());
1789 	__this_cpu_write(fpsimd_last_state.st, NULL);
1790 
1791 	/*
1792 	 * Leaving streaming mode enabled will cause issues for any kernel
1793 	 * NEON and leaving streaming mode or ZA enabled may increase power
1794 	 * consumption.
1795 	 */
1796 	if (system_supports_sme())
1797 		sme_smstop();
1798 
1799 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1800 }
1801 
1802 /*
1803  * Save the FPSIMD state to memory and invalidate cpu view.
1804  * This function must be called with preemption disabled.
1805  */
1806 void fpsimd_save_and_flush_cpu_state(void)
1807 {
1808 	if (!system_supports_fpsimd())
1809 		return;
1810 	WARN_ON(preemptible());
1811 	__get_cpu_fpsimd_context();
1812 	fpsimd_save();
1813 	fpsimd_flush_cpu_state();
1814 	__put_cpu_fpsimd_context();
1815 }
1816 
1817 #ifdef CONFIG_KERNEL_MODE_NEON
1818 
1819 /*
1820  * Kernel-side NEON support functions
1821  */
1822 
1823 /*
1824  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1825  * context
1826  *
1827  * Must not be called unless may_use_simd() returns true.
1828  * Task context in the FPSIMD registers is saved back to memory as necessary.
1829  *
1830  * A matching call to kernel_neon_end() must be made before returning from the
1831  * calling context.
1832  *
1833  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1834  * called.
1835  */
1836 void kernel_neon_begin(void)
1837 {
1838 	if (WARN_ON(!system_supports_fpsimd()))
1839 		return;
1840 
1841 	BUG_ON(!may_use_simd());
1842 
1843 	get_cpu_fpsimd_context();
1844 
1845 	/* Save unsaved fpsimd state, if any: */
1846 	fpsimd_save();
1847 
1848 	/* Invalidate any task state remaining in the fpsimd regs: */
1849 	fpsimd_flush_cpu_state();
1850 }
1851 EXPORT_SYMBOL(kernel_neon_begin);
1852 
1853 /*
1854  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1855  *
1856  * Must be called from a context in which kernel_neon_begin() was previously
1857  * called, with no call to kernel_neon_end() in the meantime.
1858  *
1859  * The caller must not use the FPSIMD registers after this function is called,
1860  * unless kernel_neon_begin() is called again in the meantime.
1861  */
1862 void kernel_neon_end(void)
1863 {
1864 	if (!system_supports_fpsimd())
1865 		return;
1866 
1867 	put_cpu_fpsimd_context();
1868 }
1869 EXPORT_SYMBOL(kernel_neon_end);
1870 
1871 #ifdef CONFIG_EFI
1872 
1873 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1874 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1875 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1876 static DEFINE_PER_CPU(bool, efi_sm_state);
1877 
1878 /*
1879  * EFI runtime services support functions
1880  *
1881  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1882  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1883  * is always used rather than being an optional accelerator.
1884  *
1885  * These functions provide the necessary support for ensuring FPSIMD
1886  * save/restore in the contexts from which EFI is used.
1887  *
1888  * Do not use them for any other purpose -- if tempted to do so, you are
1889  * either doing something wrong or you need to propose some refactoring.
1890  */
1891 
1892 /*
1893  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1894  */
1895 void __efi_fpsimd_begin(void)
1896 {
1897 	if (!system_supports_fpsimd())
1898 		return;
1899 
1900 	WARN_ON(preemptible());
1901 
1902 	if (may_use_simd()) {
1903 		kernel_neon_begin();
1904 	} else {
1905 		/*
1906 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1907 		 * preserving:
1908 		 */
1909 		if (system_supports_sve() && likely(efi_sve_state)) {
1910 			char *sve_state = this_cpu_ptr(efi_sve_state);
1911 			bool ffr = true;
1912 			u64 svcr;
1913 
1914 			__this_cpu_write(efi_sve_state_used, true);
1915 
1916 			if (system_supports_sme()) {
1917 				svcr = read_sysreg_s(SYS_SVCR);
1918 
1919 				__this_cpu_write(efi_sm_state,
1920 						 svcr & SVCR_SM_MASK);
1921 
1922 				/*
1923 				 * Unless we have FA64 FFR does not
1924 				 * exist in streaming mode.
1925 				 */
1926 				if (!system_supports_fa64())
1927 					ffr = !(svcr & SVCR_SM_MASK);
1928 			}
1929 
1930 			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
1931 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1932 				       ffr);
1933 
1934 			if (system_supports_sme())
1935 				sysreg_clear_set_s(SYS_SVCR,
1936 						   SVCR_SM_MASK, 0);
1937 
1938 		} else {
1939 			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1940 		}
1941 
1942 		__this_cpu_write(efi_fpsimd_state_used, true);
1943 	}
1944 }
1945 
1946 /*
1947  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1948  */
1949 void __efi_fpsimd_end(void)
1950 {
1951 	if (!system_supports_fpsimd())
1952 		return;
1953 
1954 	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1955 		kernel_neon_end();
1956 	} else {
1957 		if (system_supports_sve() &&
1958 		    likely(__this_cpu_read(efi_sve_state_used))) {
1959 			char const *sve_state = this_cpu_ptr(efi_sve_state);
1960 			bool ffr = true;
1961 
1962 			/*
1963 			 * Restore streaming mode; EFI calls are
1964 			 * normal function calls so should not return in
1965 			 * streaming mode.
1966 			 */
1967 			if (system_supports_sme()) {
1968 				if (__this_cpu_read(efi_sm_state)) {
1969 					sysreg_clear_set_s(SYS_SVCR,
1970 							   0,
1971 							   SVCR_SM_MASK);
1972 
1973 					/*
1974 					 * Unless we have FA64 FFR does not
1975 					 * exist in streaming mode.
1976 					 */
1977 					if (!system_supports_fa64())
1978 						ffr = false;
1979 				}
1980 			}
1981 
1982 			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
1983 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1984 				       ffr);
1985 
1986 			__this_cpu_write(efi_sve_state_used, false);
1987 		} else {
1988 			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1989 		}
1990 	}
1991 }
1992 
1993 #endif /* CONFIG_EFI */
1994 
1995 #endif /* CONFIG_KERNEL_MODE_NEON */
1996 
1997 #ifdef CONFIG_CPU_PM
1998 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1999 				  unsigned long cmd, void *v)
2000 {
2001 	switch (cmd) {
2002 	case CPU_PM_ENTER:
2003 		fpsimd_save_and_flush_cpu_state();
2004 		break;
2005 	case CPU_PM_EXIT:
2006 		break;
2007 	case CPU_PM_ENTER_FAILED:
2008 	default:
2009 		return NOTIFY_DONE;
2010 	}
2011 	return NOTIFY_OK;
2012 }
2013 
2014 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2015 	.notifier_call = fpsimd_cpu_pm_notifier,
2016 };
2017 
2018 static void __init fpsimd_pm_init(void)
2019 {
2020 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2021 }
2022 
2023 #else
2024 static inline void fpsimd_pm_init(void) { }
2025 #endif /* CONFIG_CPU_PM */
2026 
2027 #ifdef CONFIG_HOTPLUG_CPU
2028 static int fpsimd_cpu_dead(unsigned int cpu)
2029 {
2030 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
2031 	return 0;
2032 }
2033 
2034 static inline void fpsimd_hotplug_init(void)
2035 {
2036 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2037 				  NULL, fpsimd_cpu_dead);
2038 }
2039 
2040 #else
2041 static inline void fpsimd_hotplug_init(void) { }
2042 #endif
2043 
2044 /*
2045  * FP/SIMD support code initialisation.
2046  */
2047 static int __init fpsimd_init(void)
2048 {
2049 	if (cpu_have_named_feature(FP)) {
2050 		fpsimd_pm_init();
2051 		fpsimd_hotplug_init();
2052 	} else {
2053 		pr_notice("Floating-point is not implemented\n");
2054 	}
2055 
2056 	if (!cpu_have_named_feature(ASIMD))
2057 		pr_notice("Advanced SIMD is not implemented\n");
2058 
2059 
2060 	if (cpu_have_named_feature(SME) && !cpu_have_named_feature(SVE))
2061 		pr_notice("SME is implemented but not SVE\n");
2062 
2063 	sve_sysctl_init();
2064 	sme_sysctl_init();
2065 
2066 	return 0;
2067 }
2068 core_initcall(fpsimd_init);
2069