1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * FP/SIMD context switching and fault handling 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * Author: Catalin Marinas <catalin.marinas@arm.com> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/bitops.h> 11 #include <linux/bottom_half.h> 12 #include <linux/bug.h> 13 #include <linux/cache.h> 14 #include <linux/compat.h> 15 #include <linux/compiler.h> 16 #include <linux/cpu.h> 17 #include <linux/cpu_pm.h> 18 #include <linux/kernel.h> 19 #include <linux/linkage.h> 20 #include <linux/irqflags.h> 21 #include <linux/init.h> 22 #include <linux/percpu.h> 23 #include <linux/prctl.h> 24 #include <linux/preempt.h> 25 #include <linux/ptrace.h> 26 #include <linux/sched/signal.h> 27 #include <linux/sched/task_stack.h> 28 #include <linux/signal.h> 29 #include <linux/slab.h> 30 #include <linux/stddef.h> 31 #include <linux/sysctl.h> 32 #include <linux/swab.h> 33 34 #include <asm/esr.h> 35 #include <asm/fpsimd.h> 36 #include <asm/cpufeature.h> 37 #include <asm/cputype.h> 38 #include <asm/processor.h> 39 #include <asm/simd.h> 40 #include <asm/sigcontext.h> 41 #include <asm/sysreg.h> 42 #include <asm/traps.h> 43 #include <asm/virt.h> 44 45 #define FPEXC_IOF (1 << 0) 46 #define FPEXC_DZF (1 << 1) 47 #define FPEXC_OFF (1 << 2) 48 #define FPEXC_UFF (1 << 3) 49 #define FPEXC_IXF (1 << 4) 50 #define FPEXC_IDF (1 << 7) 51 52 /* 53 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.) 54 * 55 * In order to reduce the number of times the FPSIMD state is needlessly saved 56 * and restored, we need to keep track of two things: 57 * (a) for each task, we need to remember which CPU was the last one to have 58 * the task's FPSIMD state loaded into its FPSIMD registers; 59 * (b) for each CPU, we need to remember which task's userland FPSIMD state has 60 * been loaded into its FPSIMD registers most recently, or whether it has 61 * been used to perform kernel mode NEON in the meantime. 62 * 63 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to 64 * the id of the current CPU every time the state is loaded onto a CPU. For (b), 65 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the 66 * address of the userland FPSIMD state of the task that was loaded onto the CPU 67 * the most recently, or NULL if kernel mode NEON has been performed after that. 68 * 69 * With this in place, we no longer have to restore the next FPSIMD state right 70 * when switching between tasks. Instead, we can defer this check to userland 71 * resume, at which time we verify whether the CPU's fpsimd_last_state and the 72 * task's fpsimd_cpu are still mutually in sync. If this is the case, we 73 * can omit the FPSIMD restore. 74 * 75 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to 76 * indicate whether or not the userland FPSIMD state of the current task is 77 * present in the registers. The flag is set unless the FPSIMD registers of this 78 * CPU currently contain the most recent userland FPSIMD state of the current 79 * task. 80 * 81 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may 82 * save the task's FPSIMD context back to task_struct from softirq context. 83 * To prevent this from racing with the manipulation of the task's FPSIMD state 84 * from task context and thereby corrupting the state, it is necessary to 85 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE 86 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to 87 * run but prevent them to use FPSIMD. 88 * 89 * For a certain task, the sequence may look something like this: 90 * - the task gets scheduled in; if both the task's fpsimd_cpu field 91 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu 92 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is 93 * cleared, otherwise it is set; 94 * 95 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's 96 * userland FPSIMD state is copied from memory to the registers, the task's 97 * fpsimd_cpu field is set to the id of the current CPU, the current 98 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the 99 * TIF_FOREIGN_FPSTATE flag is cleared; 100 * 101 * - the task executes an ordinary syscall; upon return to userland, the 102 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is 103 * restored; 104 * 105 * - the task executes a syscall which executes some NEON instructions; this is 106 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD 107 * register contents to memory, clears the fpsimd_last_state per-cpu variable 108 * and sets the TIF_FOREIGN_FPSTATE flag; 109 * 110 * - the task gets preempted after kernel_neon_end() is called; as we have not 111 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so 112 * whatever is in the FPSIMD registers is not saved to memory, but discarded. 113 */ 114 struct fpsimd_last_state_struct { 115 struct user_fpsimd_state *st; 116 void *sve_state; 117 unsigned int sve_vl; 118 }; 119 120 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state); 121 122 /* Default VL for tasks that don't set it explicitly: */ 123 static int __sve_default_vl = -1; 124 125 static int get_sve_default_vl(void) 126 { 127 return READ_ONCE(__sve_default_vl); 128 } 129 130 #ifdef CONFIG_ARM64_SVE 131 132 static void set_sve_default_vl(int val) 133 { 134 WRITE_ONCE(__sve_default_vl, val); 135 } 136 137 /* Maximum supported vector length across all CPUs (initially poisoned) */ 138 int __ro_after_init sve_max_vl = SVE_VL_MIN; 139 int __ro_after_init sve_max_virtualisable_vl = SVE_VL_MIN; 140 141 /* 142 * Set of available vector lengths, 143 * where length vq encoded as bit __vq_to_bit(vq): 144 */ 145 __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX); 146 /* Set of vector lengths present on at least one cpu: */ 147 static __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX); 148 149 static void __percpu *efi_sve_state; 150 151 #else /* ! CONFIG_ARM64_SVE */ 152 153 /* Dummy declaration for code that will be optimised out: */ 154 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX); 155 extern __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX); 156 extern void __percpu *efi_sve_state; 157 158 #endif /* ! CONFIG_ARM64_SVE */ 159 160 DEFINE_PER_CPU(bool, fpsimd_context_busy); 161 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy); 162 163 static void __get_cpu_fpsimd_context(void) 164 { 165 bool busy = __this_cpu_xchg(fpsimd_context_busy, true); 166 167 WARN_ON(busy); 168 } 169 170 /* 171 * Claim ownership of the CPU FPSIMD context for use by the calling context. 172 * 173 * The caller may freely manipulate the FPSIMD context metadata until 174 * put_cpu_fpsimd_context() is called. 175 * 176 * The double-underscore version must only be called if you know the task 177 * can't be preempted. 178 */ 179 static void get_cpu_fpsimd_context(void) 180 { 181 preempt_disable(); 182 __get_cpu_fpsimd_context(); 183 } 184 185 static void __put_cpu_fpsimd_context(void) 186 { 187 bool busy = __this_cpu_xchg(fpsimd_context_busy, false); 188 189 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */ 190 } 191 192 /* 193 * Release the CPU FPSIMD context. 194 * 195 * Must be called from a context in which get_cpu_fpsimd_context() was 196 * previously called, with no call to put_cpu_fpsimd_context() in the 197 * meantime. 198 */ 199 static void put_cpu_fpsimd_context(void) 200 { 201 __put_cpu_fpsimd_context(); 202 preempt_enable(); 203 } 204 205 static bool have_cpu_fpsimd_context(void) 206 { 207 return !preemptible() && __this_cpu_read(fpsimd_context_busy); 208 } 209 210 /* 211 * Call __sve_free() directly only if you know task can't be scheduled 212 * or preempted. 213 */ 214 static void __sve_free(struct task_struct *task) 215 { 216 kfree(task->thread.sve_state); 217 task->thread.sve_state = NULL; 218 } 219 220 static void sve_free(struct task_struct *task) 221 { 222 WARN_ON(test_tsk_thread_flag(task, TIF_SVE)); 223 224 __sve_free(task); 225 } 226 227 /* 228 * TIF_SVE controls whether a task can use SVE without trapping while 229 * in userspace, and also the way a task's FPSIMD/SVE state is stored 230 * in thread_struct. 231 * 232 * The kernel uses this flag to track whether a user task is actively 233 * using SVE, and therefore whether full SVE register state needs to 234 * be tracked. If not, the cheaper FPSIMD context handling code can 235 * be used instead of the more costly SVE equivalents. 236 * 237 * * TIF_SVE set: 238 * 239 * The task can execute SVE instructions while in userspace without 240 * trapping to the kernel. 241 * 242 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the 243 * corresponding Zn), P0-P15 and FFR are encoded in in 244 * task->thread.sve_state, formatted appropriately for vector 245 * length task->thread.sve_vl. 246 * 247 * task->thread.sve_state must point to a valid buffer at least 248 * sve_state_size(task) bytes in size. 249 * 250 * During any syscall, the kernel may optionally clear TIF_SVE and 251 * discard the vector state except for the FPSIMD subset. 252 * 253 * * TIF_SVE clear: 254 * 255 * An attempt by the user task to execute an SVE instruction causes 256 * do_sve_acc() to be called, which does some preparation and then 257 * sets TIF_SVE. 258 * 259 * When stored, FPSIMD registers V0-V31 are encoded in 260 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are 261 * logically zero but not stored anywhere; P0-P15 and FFR are not 262 * stored and have unspecified values from userspace's point of 263 * view. For hygiene purposes, the kernel zeroes them on next use, 264 * but userspace is discouraged from relying on this. 265 * 266 * task->thread.sve_state does not need to be non-NULL, valid or any 267 * particular size: it must not be dereferenced. 268 * 269 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state 270 * irrespective of whether TIF_SVE is clear or set, since these are 271 * not vector length dependent. 272 */ 273 274 /* 275 * Update current's FPSIMD/SVE registers from thread_struct. 276 * 277 * This function should be called only when the FPSIMD/SVE state in 278 * thread_struct is known to be up to date, when preparing to enter 279 * userspace. 280 */ 281 static void task_fpsimd_load(void) 282 { 283 WARN_ON(!system_supports_fpsimd()); 284 WARN_ON(!have_cpu_fpsimd_context()); 285 286 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 287 sve_load_state(sve_pffr(¤t->thread), 288 ¤t->thread.uw.fpsimd_state.fpsr, 289 sve_vq_from_vl(current->thread.sve_vl) - 1); 290 else 291 fpsimd_load_state(¤t->thread.uw.fpsimd_state); 292 } 293 294 /* 295 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to 296 * date with respect to the CPU registers. 297 */ 298 static void fpsimd_save(void) 299 { 300 struct fpsimd_last_state_struct const *last = 301 this_cpu_ptr(&fpsimd_last_state); 302 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */ 303 304 WARN_ON(!system_supports_fpsimd()); 305 WARN_ON(!have_cpu_fpsimd_context()); 306 307 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 308 if (system_supports_sve() && test_thread_flag(TIF_SVE)) { 309 if (WARN_ON(sve_get_vl() != last->sve_vl)) { 310 /* 311 * Can't save the user regs, so current would 312 * re-enter user with corrupt state. 313 * There's no way to recover, so kill it: 314 */ 315 force_signal_inject(SIGKILL, SI_KERNEL, 0); 316 return; 317 } 318 319 sve_save_state((char *)last->sve_state + 320 sve_ffr_offset(last->sve_vl), 321 &last->st->fpsr); 322 } else 323 fpsimd_save_state(last->st); 324 } 325 } 326 327 /* 328 * All vector length selection from userspace comes through here. 329 * We're on a slow path, so some sanity-checks are included. 330 * If things go wrong there's a bug somewhere, but try to fall back to a 331 * safe choice. 332 */ 333 static unsigned int find_supported_vector_length(unsigned int vl) 334 { 335 int bit; 336 int max_vl = sve_max_vl; 337 338 if (WARN_ON(!sve_vl_valid(vl))) 339 vl = SVE_VL_MIN; 340 341 if (WARN_ON(!sve_vl_valid(max_vl))) 342 max_vl = SVE_VL_MIN; 343 344 if (vl > max_vl) 345 vl = max_vl; 346 347 bit = find_next_bit(sve_vq_map, SVE_VQ_MAX, 348 __vq_to_bit(sve_vq_from_vl(vl))); 349 return sve_vl_from_vq(__bit_to_vq(bit)); 350 } 351 352 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL) 353 354 static int sve_proc_do_default_vl(struct ctl_table *table, int write, 355 void *buffer, size_t *lenp, loff_t *ppos) 356 { 357 int ret; 358 int vl = get_sve_default_vl(); 359 struct ctl_table tmp_table = { 360 .data = &vl, 361 .maxlen = sizeof(vl), 362 }; 363 364 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); 365 if (ret || !write) 366 return ret; 367 368 /* Writing -1 has the special meaning "set to max": */ 369 if (vl == -1) 370 vl = sve_max_vl; 371 372 if (!sve_vl_valid(vl)) 373 return -EINVAL; 374 375 set_sve_default_vl(find_supported_vector_length(vl)); 376 return 0; 377 } 378 379 static struct ctl_table sve_default_vl_table[] = { 380 { 381 .procname = "sve_default_vector_length", 382 .mode = 0644, 383 .proc_handler = sve_proc_do_default_vl, 384 }, 385 { } 386 }; 387 388 static int __init sve_sysctl_init(void) 389 { 390 if (system_supports_sve()) 391 if (!register_sysctl("abi", sve_default_vl_table)) 392 return -EINVAL; 393 394 return 0; 395 } 396 397 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ 398 static int __init sve_sysctl_init(void) { return 0; } 399 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ 400 401 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \ 402 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET)) 403 404 #ifdef CONFIG_CPU_BIG_ENDIAN 405 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 406 { 407 u64 a = swab64(x); 408 u64 b = swab64(x >> 64); 409 410 return ((__uint128_t)a << 64) | b; 411 } 412 #else 413 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 414 { 415 return x; 416 } 417 #endif 418 419 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x) 420 421 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst, 422 unsigned int vq) 423 { 424 unsigned int i; 425 __uint128_t *p; 426 427 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 428 p = (__uint128_t *)ZREG(sst, vq, i); 429 *p = arm64_cpu_to_le128(fst->vregs[i]); 430 } 431 } 432 433 /* 434 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to 435 * task->thread.sve_state. 436 * 437 * Task can be a non-runnable task, or current. In the latter case, 438 * the caller must have ownership of the cpu FPSIMD context before calling 439 * this function. 440 * task->thread.sve_state must point to at least sve_state_size(task) 441 * bytes of allocated kernel memory. 442 * task->thread.uw.fpsimd_state must be up to date before calling this 443 * function. 444 */ 445 static void fpsimd_to_sve(struct task_struct *task) 446 { 447 unsigned int vq; 448 void *sst = task->thread.sve_state; 449 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 450 451 if (!system_supports_sve()) 452 return; 453 454 vq = sve_vq_from_vl(task->thread.sve_vl); 455 __fpsimd_to_sve(sst, fst, vq); 456 } 457 458 /* 459 * Transfer the SVE state in task->thread.sve_state to 460 * task->thread.uw.fpsimd_state. 461 * 462 * Task can be a non-runnable task, or current. In the latter case, 463 * the caller must have ownership of the cpu FPSIMD context before calling 464 * this function. 465 * task->thread.sve_state must point to at least sve_state_size(task) 466 * bytes of allocated kernel memory. 467 * task->thread.sve_state must be up to date before calling this function. 468 */ 469 static void sve_to_fpsimd(struct task_struct *task) 470 { 471 unsigned int vq; 472 void const *sst = task->thread.sve_state; 473 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state; 474 unsigned int i; 475 __uint128_t const *p; 476 477 if (!system_supports_sve()) 478 return; 479 480 vq = sve_vq_from_vl(task->thread.sve_vl); 481 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 482 p = (__uint128_t const *)ZREG(sst, vq, i); 483 fst->vregs[i] = arm64_le128_to_cpu(*p); 484 } 485 } 486 487 #ifdef CONFIG_ARM64_SVE 488 489 /* 490 * Return how many bytes of memory are required to store the full SVE 491 * state for task, given task's currently configured vector length. 492 */ 493 size_t sve_state_size(struct task_struct const *task) 494 { 495 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl)); 496 } 497 498 /* 499 * Ensure that task->thread.sve_state is allocated and sufficiently large. 500 * 501 * This function should be used only in preparation for replacing 502 * task->thread.sve_state with new data. The memory is always zeroed 503 * here to prevent stale data from showing through: this is done in 504 * the interest of testability and predictability: except in the 505 * do_sve_acc() case, there is no ABI requirement to hide stale data 506 * written previously be task. 507 */ 508 void sve_alloc(struct task_struct *task) 509 { 510 if (task->thread.sve_state) { 511 memset(task->thread.sve_state, 0, sve_state_size(current)); 512 return; 513 } 514 515 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */ 516 task->thread.sve_state = 517 kzalloc(sve_state_size(task), GFP_KERNEL); 518 519 /* 520 * If future SVE revisions can have larger vectors though, 521 * this may cease to be true: 522 */ 523 BUG_ON(!task->thread.sve_state); 524 } 525 526 527 /* 528 * Ensure that task->thread.sve_state is up to date with respect to 529 * the user task, irrespective of when SVE is in use or not. 530 * 531 * This should only be called by ptrace. task must be non-runnable. 532 * task->thread.sve_state must point to at least sve_state_size(task) 533 * bytes of allocated kernel memory. 534 */ 535 void fpsimd_sync_to_sve(struct task_struct *task) 536 { 537 if (!test_tsk_thread_flag(task, TIF_SVE)) 538 fpsimd_to_sve(task); 539 } 540 541 /* 542 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to 543 * the user task, irrespective of whether SVE is in use or not. 544 * 545 * This should only be called by ptrace. task must be non-runnable. 546 * task->thread.sve_state must point to at least sve_state_size(task) 547 * bytes of allocated kernel memory. 548 */ 549 void sve_sync_to_fpsimd(struct task_struct *task) 550 { 551 if (test_tsk_thread_flag(task, TIF_SVE)) 552 sve_to_fpsimd(task); 553 } 554 555 /* 556 * Ensure that task->thread.sve_state is up to date with respect to 557 * the task->thread.uw.fpsimd_state. 558 * 559 * This should only be called by ptrace to merge new FPSIMD register 560 * values into a task for which SVE is currently active. 561 * task must be non-runnable. 562 * task->thread.sve_state must point to at least sve_state_size(task) 563 * bytes of allocated kernel memory. 564 * task->thread.uw.fpsimd_state must already have been initialised with 565 * the new FPSIMD register values to be merged in. 566 */ 567 void sve_sync_from_fpsimd_zeropad(struct task_struct *task) 568 { 569 unsigned int vq; 570 void *sst = task->thread.sve_state; 571 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 572 573 if (!test_tsk_thread_flag(task, TIF_SVE)) 574 return; 575 576 vq = sve_vq_from_vl(task->thread.sve_vl); 577 578 memset(sst, 0, SVE_SIG_REGS_SIZE(vq)); 579 __fpsimd_to_sve(sst, fst, vq); 580 } 581 582 int sve_set_vector_length(struct task_struct *task, 583 unsigned long vl, unsigned long flags) 584 { 585 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT | 586 PR_SVE_SET_VL_ONEXEC)) 587 return -EINVAL; 588 589 if (!sve_vl_valid(vl)) 590 return -EINVAL; 591 592 /* 593 * Clamp to the maximum vector length that VL-agnostic SVE code can 594 * work with. A flag may be assigned in the future to allow setting 595 * of larger vector lengths without confusing older software. 596 */ 597 if (vl > SVE_VL_ARCH_MAX) 598 vl = SVE_VL_ARCH_MAX; 599 600 vl = find_supported_vector_length(vl); 601 602 if (flags & (PR_SVE_VL_INHERIT | 603 PR_SVE_SET_VL_ONEXEC)) 604 task->thread.sve_vl_onexec = vl; 605 else 606 /* Reset VL to system default on next exec: */ 607 task->thread.sve_vl_onexec = 0; 608 609 /* Only actually set the VL if not deferred: */ 610 if (flags & PR_SVE_SET_VL_ONEXEC) 611 goto out; 612 613 if (vl == task->thread.sve_vl) 614 goto out; 615 616 /* 617 * To ensure the FPSIMD bits of the SVE vector registers are preserved, 618 * write any live register state back to task_struct, and convert to a 619 * non-SVE thread. 620 */ 621 if (task == current) { 622 get_cpu_fpsimd_context(); 623 624 fpsimd_save(); 625 } 626 627 fpsimd_flush_task_state(task); 628 if (test_and_clear_tsk_thread_flag(task, TIF_SVE)) 629 sve_to_fpsimd(task); 630 631 if (task == current) 632 put_cpu_fpsimd_context(); 633 634 /* 635 * Force reallocation of task SVE state to the correct size 636 * on next use: 637 */ 638 sve_free(task); 639 640 task->thread.sve_vl = vl; 641 642 out: 643 update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT, 644 flags & PR_SVE_VL_INHERIT); 645 646 return 0; 647 } 648 649 /* 650 * Encode the current vector length and flags for return. 651 * This is only required for prctl(): ptrace has separate fields 652 * 653 * flags are as for sve_set_vector_length(). 654 */ 655 static int sve_prctl_status(unsigned long flags) 656 { 657 int ret; 658 659 if (flags & PR_SVE_SET_VL_ONEXEC) 660 ret = current->thread.sve_vl_onexec; 661 else 662 ret = current->thread.sve_vl; 663 664 if (test_thread_flag(TIF_SVE_VL_INHERIT)) 665 ret |= PR_SVE_VL_INHERIT; 666 667 return ret; 668 } 669 670 /* PR_SVE_SET_VL */ 671 int sve_set_current_vl(unsigned long arg) 672 { 673 unsigned long vl, flags; 674 int ret; 675 676 vl = arg & PR_SVE_VL_LEN_MASK; 677 flags = arg & ~vl; 678 679 if (!system_supports_sve()) 680 return -EINVAL; 681 682 ret = sve_set_vector_length(current, vl, flags); 683 if (ret) 684 return ret; 685 686 return sve_prctl_status(flags); 687 } 688 689 /* PR_SVE_GET_VL */ 690 int sve_get_current_vl(void) 691 { 692 if (!system_supports_sve()) 693 return -EINVAL; 694 695 return sve_prctl_status(0); 696 } 697 698 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX)) 699 { 700 unsigned int vq, vl; 701 unsigned long zcr; 702 703 bitmap_zero(map, SVE_VQ_MAX); 704 705 zcr = ZCR_ELx_LEN_MASK; 706 zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr; 707 708 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) { 709 write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */ 710 vl = sve_get_vl(); 711 vq = sve_vq_from_vl(vl); /* skip intervening lengths */ 712 set_bit(__vq_to_bit(vq), map); 713 } 714 } 715 716 /* 717 * Initialise the set of known supported VQs for the boot CPU. 718 * This is called during kernel boot, before secondary CPUs are brought up. 719 */ 720 void __init sve_init_vq_map(void) 721 { 722 sve_probe_vqs(sve_vq_map); 723 bitmap_copy(sve_vq_partial_map, sve_vq_map, SVE_VQ_MAX); 724 } 725 726 /* 727 * If we haven't committed to the set of supported VQs yet, filter out 728 * those not supported by the current CPU. 729 * This function is called during the bring-up of early secondary CPUs only. 730 */ 731 void sve_update_vq_map(void) 732 { 733 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 734 735 sve_probe_vqs(tmp_map); 736 bitmap_and(sve_vq_map, sve_vq_map, tmp_map, SVE_VQ_MAX); 737 bitmap_or(sve_vq_partial_map, sve_vq_partial_map, tmp_map, SVE_VQ_MAX); 738 } 739 740 /* 741 * Check whether the current CPU supports all VQs in the committed set. 742 * This function is called during the bring-up of late secondary CPUs only. 743 */ 744 int sve_verify_vq_map(void) 745 { 746 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 747 unsigned long b; 748 749 sve_probe_vqs(tmp_map); 750 751 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 752 if (bitmap_intersects(tmp_map, sve_vq_map, SVE_VQ_MAX)) { 753 pr_warn("SVE: cpu%d: Required vector length(s) missing\n", 754 smp_processor_id()); 755 return -EINVAL; 756 } 757 758 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available()) 759 return 0; 760 761 /* 762 * For KVM, it is necessary to ensure that this CPU doesn't 763 * support any vector length that guests may have probed as 764 * unsupported. 765 */ 766 767 /* Recover the set of supported VQs: */ 768 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 769 /* Find VQs supported that are not globally supported: */ 770 bitmap_andnot(tmp_map, tmp_map, sve_vq_map, SVE_VQ_MAX); 771 772 /* Find the lowest such VQ, if any: */ 773 b = find_last_bit(tmp_map, SVE_VQ_MAX); 774 if (b >= SVE_VQ_MAX) 775 return 0; /* no mismatches */ 776 777 /* 778 * Mismatches above sve_max_virtualisable_vl are fine, since 779 * no guest is allowed to configure ZCR_EL2.LEN to exceed this: 780 */ 781 if (sve_vl_from_vq(__bit_to_vq(b)) <= sve_max_virtualisable_vl) { 782 pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n", 783 smp_processor_id()); 784 return -EINVAL; 785 } 786 787 return 0; 788 } 789 790 static void __init sve_efi_setup(void) 791 { 792 if (!IS_ENABLED(CONFIG_EFI)) 793 return; 794 795 /* 796 * alloc_percpu() warns and prints a backtrace if this goes wrong. 797 * This is evidence of a crippled system and we are returning void, 798 * so no attempt is made to handle this situation here. 799 */ 800 if (!sve_vl_valid(sve_max_vl)) 801 goto fail; 802 803 efi_sve_state = __alloc_percpu( 804 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES); 805 if (!efi_sve_state) 806 goto fail; 807 808 return; 809 810 fail: 811 panic("Cannot allocate percpu memory for EFI SVE save/restore"); 812 } 813 814 /* 815 * Enable SVE for EL1. 816 * Intended for use by the cpufeatures code during CPU boot. 817 */ 818 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p) 819 { 820 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1); 821 isb(); 822 } 823 824 /* 825 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE 826 * vector length. 827 * 828 * Use only if SVE is present. 829 * This function clobbers the SVE vector length. 830 */ 831 u64 read_zcr_features(void) 832 { 833 u64 zcr; 834 unsigned int vq_max; 835 836 /* 837 * Set the maximum possible VL, and write zeroes to all other 838 * bits to see if they stick. 839 */ 840 sve_kernel_enable(NULL); 841 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1); 842 843 zcr = read_sysreg_s(SYS_ZCR_EL1); 844 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */ 845 vq_max = sve_vq_from_vl(sve_get_vl()); 846 zcr |= vq_max - 1; /* set LEN field to maximum effective value */ 847 848 return zcr; 849 } 850 851 void __init sve_setup(void) 852 { 853 u64 zcr; 854 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 855 unsigned long b; 856 857 if (!system_supports_sve()) 858 return; 859 860 /* 861 * The SVE architecture mandates support for 128-bit vectors, 862 * so sve_vq_map must have at least SVE_VQ_MIN set. 863 * If something went wrong, at least try to patch it up: 864 */ 865 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map))) 866 set_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map); 867 868 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); 869 sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1); 870 871 /* 872 * Sanity-check that the max VL we determined through CPU features 873 * corresponds properly to sve_vq_map. If not, do our best: 874 */ 875 if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl))) 876 sve_max_vl = find_supported_vector_length(sve_max_vl); 877 878 /* 879 * For the default VL, pick the maximum supported value <= 64. 880 * VL == 64 is guaranteed not to grow the signal frame. 881 */ 882 set_sve_default_vl(find_supported_vector_length(64)); 883 884 bitmap_andnot(tmp_map, sve_vq_partial_map, sve_vq_map, 885 SVE_VQ_MAX); 886 887 b = find_last_bit(tmp_map, SVE_VQ_MAX); 888 if (b >= SVE_VQ_MAX) 889 /* No non-virtualisable VLs found */ 890 sve_max_virtualisable_vl = SVE_VQ_MAX; 891 else if (WARN_ON(b == SVE_VQ_MAX - 1)) 892 /* No virtualisable VLs? This is architecturally forbidden. */ 893 sve_max_virtualisable_vl = SVE_VQ_MIN; 894 else /* b + 1 < SVE_VQ_MAX */ 895 sve_max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1)); 896 897 if (sve_max_virtualisable_vl > sve_max_vl) 898 sve_max_virtualisable_vl = sve_max_vl; 899 900 pr_info("SVE: maximum available vector length %u bytes per vector\n", 901 sve_max_vl); 902 pr_info("SVE: default vector length %u bytes per vector\n", 903 get_sve_default_vl()); 904 905 /* KVM decides whether to support mismatched systems. Just warn here: */ 906 if (sve_max_virtualisable_vl < sve_max_vl) 907 pr_warn("SVE: unvirtualisable vector lengths present\n"); 908 909 sve_efi_setup(); 910 } 911 912 /* 913 * Called from the put_task_struct() path, which cannot get here 914 * unless dead_task is really dead and not schedulable. 915 */ 916 void fpsimd_release_task(struct task_struct *dead_task) 917 { 918 __sve_free(dead_task); 919 } 920 921 #endif /* CONFIG_ARM64_SVE */ 922 923 /* 924 * Trapped SVE access 925 * 926 * Storage is allocated for the full SVE state, the current FPSIMD 927 * register contents are migrated across, and TIF_SVE is set so that 928 * the SVE access trap will be disabled the next time this task 929 * reaches ret_to_user. 930 * 931 * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load() 932 * would have disabled the SVE access trap for userspace during 933 * ret_to_user, making an SVE access trap impossible in that case. 934 */ 935 void do_sve_acc(unsigned int esr, struct pt_regs *regs) 936 { 937 /* Even if we chose not to use SVE, the hardware could still trap: */ 938 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) { 939 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc); 940 return; 941 } 942 943 sve_alloc(current); 944 945 get_cpu_fpsimd_context(); 946 947 fpsimd_save(); 948 949 /* Force ret_to_user to reload the registers: */ 950 fpsimd_flush_task_state(current); 951 952 fpsimd_to_sve(current); 953 if (test_and_set_thread_flag(TIF_SVE)) 954 WARN_ON(1); /* SVE access shouldn't have trapped */ 955 956 put_cpu_fpsimd_context(); 957 } 958 959 /* 960 * Trapped FP/ASIMD access. 961 */ 962 void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs) 963 { 964 /* TODO: implement lazy context saving/restoring */ 965 WARN_ON(1); 966 } 967 968 /* 969 * Raise a SIGFPE for the current process. 970 */ 971 void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs) 972 { 973 unsigned int si_code = FPE_FLTUNK; 974 975 if (esr & ESR_ELx_FP_EXC_TFV) { 976 if (esr & FPEXC_IOF) 977 si_code = FPE_FLTINV; 978 else if (esr & FPEXC_DZF) 979 si_code = FPE_FLTDIV; 980 else if (esr & FPEXC_OFF) 981 si_code = FPE_FLTOVF; 982 else if (esr & FPEXC_UFF) 983 si_code = FPE_FLTUND; 984 else if (esr & FPEXC_IXF) 985 si_code = FPE_FLTRES; 986 } 987 988 send_sig_fault(SIGFPE, si_code, 989 (void __user *)instruction_pointer(regs), 990 current); 991 } 992 993 void fpsimd_thread_switch(struct task_struct *next) 994 { 995 bool wrong_task, wrong_cpu; 996 997 if (!system_supports_fpsimd()) 998 return; 999 1000 __get_cpu_fpsimd_context(); 1001 1002 /* Save unsaved fpsimd state, if any: */ 1003 fpsimd_save(); 1004 1005 /* 1006 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's 1007 * state. For kernel threads, FPSIMD registers are never loaded 1008 * and wrong_task and wrong_cpu will always be true. 1009 */ 1010 wrong_task = __this_cpu_read(fpsimd_last_state.st) != 1011 &next->thread.uw.fpsimd_state; 1012 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id(); 1013 1014 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE, 1015 wrong_task || wrong_cpu); 1016 1017 __put_cpu_fpsimd_context(); 1018 } 1019 1020 void fpsimd_flush_thread(void) 1021 { 1022 int vl, supported_vl; 1023 1024 if (!system_supports_fpsimd()) 1025 return; 1026 1027 get_cpu_fpsimd_context(); 1028 1029 fpsimd_flush_task_state(current); 1030 memset(¤t->thread.uw.fpsimd_state, 0, 1031 sizeof(current->thread.uw.fpsimd_state)); 1032 1033 if (system_supports_sve()) { 1034 clear_thread_flag(TIF_SVE); 1035 sve_free(current); 1036 1037 /* 1038 * Reset the task vector length as required. 1039 * This is where we ensure that all user tasks have a valid 1040 * vector length configured: no kernel task can become a user 1041 * task without an exec and hence a call to this function. 1042 * By the time the first call to this function is made, all 1043 * early hardware probing is complete, so __sve_default_vl 1044 * should be valid. 1045 * If a bug causes this to go wrong, we make some noise and 1046 * try to fudge thread.sve_vl to a safe value here. 1047 */ 1048 vl = current->thread.sve_vl_onexec ? 1049 current->thread.sve_vl_onexec : get_sve_default_vl(); 1050 1051 if (WARN_ON(!sve_vl_valid(vl))) 1052 vl = SVE_VL_MIN; 1053 1054 supported_vl = find_supported_vector_length(vl); 1055 if (WARN_ON(supported_vl != vl)) 1056 vl = supported_vl; 1057 1058 current->thread.sve_vl = vl; 1059 1060 /* 1061 * If the task is not set to inherit, ensure that the vector 1062 * length will be reset by a subsequent exec: 1063 */ 1064 if (!test_thread_flag(TIF_SVE_VL_INHERIT)) 1065 current->thread.sve_vl_onexec = 0; 1066 } 1067 1068 put_cpu_fpsimd_context(); 1069 } 1070 1071 /* 1072 * Save the userland FPSIMD state of 'current' to memory, but only if the state 1073 * currently held in the registers does in fact belong to 'current' 1074 */ 1075 void fpsimd_preserve_current_state(void) 1076 { 1077 if (!system_supports_fpsimd()) 1078 return; 1079 1080 get_cpu_fpsimd_context(); 1081 fpsimd_save(); 1082 put_cpu_fpsimd_context(); 1083 } 1084 1085 /* 1086 * Like fpsimd_preserve_current_state(), but ensure that 1087 * current->thread.uw.fpsimd_state is updated so that it can be copied to 1088 * the signal frame. 1089 */ 1090 void fpsimd_signal_preserve_current_state(void) 1091 { 1092 fpsimd_preserve_current_state(); 1093 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 1094 sve_to_fpsimd(current); 1095 } 1096 1097 /* 1098 * Associate current's FPSIMD context with this cpu 1099 * The caller must have ownership of the cpu FPSIMD context before calling 1100 * this function. 1101 */ 1102 void fpsimd_bind_task_to_cpu(void) 1103 { 1104 struct fpsimd_last_state_struct *last = 1105 this_cpu_ptr(&fpsimd_last_state); 1106 1107 WARN_ON(!system_supports_fpsimd()); 1108 last->st = ¤t->thread.uw.fpsimd_state; 1109 last->sve_state = current->thread.sve_state; 1110 last->sve_vl = current->thread.sve_vl; 1111 current->thread.fpsimd_cpu = smp_processor_id(); 1112 1113 if (system_supports_sve()) { 1114 /* Toggle SVE trapping for userspace if needed */ 1115 if (test_thread_flag(TIF_SVE)) 1116 sve_user_enable(); 1117 else 1118 sve_user_disable(); 1119 1120 /* Serialised by exception return to user */ 1121 } 1122 } 1123 1124 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state, 1125 unsigned int sve_vl) 1126 { 1127 struct fpsimd_last_state_struct *last = 1128 this_cpu_ptr(&fpsimd_last_state); 1129 1130 WARN_ON(!system_supports_fpsimd()); 1131 WARN_ON(!in_softirq() && !irqs_disabled()); 1132 1133 last->st = st; 1134 last->sve_state = sve_state; 1135 last->sve_vl = sve_vl; 1136 } 1137 1138 /* 1139 * Load the userland FPSIMD state of 'current' from memory, but only if the 1140 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD 1141 * state of 'current' 1142 */ 1143 void fpsimd_restore_current_state(void) 1144 { 1145 /* 1146 * For the tasks that were created before we detected the absence of 1147 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(), 1148 * e.g, init. This could be then inherited by the children processes. 1149 * If we later detect that the system doesn't support FP/SIMD, 1150 * we must clear the flag for all the tasks to indicate that the 1151 * FPSTATE is clean (as we can't have one) to avoid looping for ever in 1152 * do_notify_resume(). 1153 */ 1154 if (!system_supports_fpsimd()) { 1155 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1156 return; 1157 } 1158 1159 get_cpu_fpsimd_context(); 1160 1161 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { 1162 task_fpsimd_load(); 1163 fpsimd_bind_task_to_cpu(); 1164 } 1165 1166 put_cpu_fpsimd_context(); 1167 } 1168 1169 /* 1170 * Load an updated userland FPSIMD state for 'current' from memory and set the 1171 * flag that indicates that the FPSIMD register contents are the most recent 1172 * FPSIMD state of 'current' 1173 */ 1174 void fpsimd_update_current_state(struct user_fpsimd_state const *state) 1175 { 1176 if (WARN_ON(!system_supports_fpsimd())) 1177 return; 1178 1179 get_cpu_fpsimd_context(); 1180 1181 current->thread.uw.fpsimd_state = *state; 1182 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 1183 fpsimd_to_sve(current); 1184 1185 task_fpsimd_load(); 1186 fpsimd_bind_task_to_cpu(); 1187 1188 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1189 1190 put_cpu_fpsimd_context(); 1191 } 1192 1193 /* 1194 * Invalidate live CPU copies of task t's FPSIMD state 1195 * 1196 * This function may be called with preemption enabled. The barrier() 1197 * ensures that the assignment to fpsimd_cpu is visible to any 1198 * preemption/softirq that could race with set_tsk_thread_flag(), so 1199 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared. 1200 * 1201 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any 1202 * subsequent code. 1203 */ 1204 void fpsimd_flush_task_state(struct task_struct *t) 1205 { 1206 t->thread.fpsimd_cpu = NR_CPUS; 1207 /* 1208 * If we don't support fpsimd, bail out after we have 1209 * reset the fpsimd_cpu for this task and clear the 1210 * FPSTATE. 1211 */ 1212 if (!system_supports_fpsimd()) 1213 return; 1214 barrier(); 1215 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE); 1216 1217 barrier(); 1218 } 1219 1220 /* 1221 * Invalidate any task's FPSIMD state that is present on this cpu. 1222 * The FPSIMD context should be acquired with get_cpu_fpsimd_context() 1223 * before calling this function. 1224 */ 1225 static void fpsimd_flush_cpu_state(void) 1226 { 1227 WARN_ON(!system_supports_fpsimd()); 1228 __this_cpu_write(fpsimd_last_state.st, NULL); 1229 set_thread_flag(TIF_FOREIGN_FPSTATE); 1230 } 1231 1232 /* 1233 * Save the FPSIMD state to memory and invalidate cpu view. 1234 * This function must be called with preemption disabled. 1235 */ 1236 void fpsimd_save_and_flush_cpu_state(void) 1237 { 1238 if (!system_supports_fpsimd()) 1239 return; 1240 WARN_ON(preemptible()); 1241 __get_cpu_fpsimd_context(); 1242 fpsimd_save(); 1243 fpsimd_flush_cpu_state(); 1244 __put_cpu_fpsimd_context(); 1245 } 1246 1247 #ifdef CONFIG_KERNEL_MODE_NEON 1248 1249 /* 1250 * Kernel-side NEON support functions 1251 */ 1252 1253 /* 1254 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling 1255 * context 1256 * 1257 * Must not be called unless may_use_simd() returns true. 1258 * Task context in the FPSIMD registers is saved back to memory as necessary. 1259 * 1260 * A matching call to kernel_neon_end() must be made before returning from the 1261 * calling context. 1262 * 1263 * The caller may freely use the FPSIMD registers until kernel_neon_end() is 1264 * called. 1265 */ 1266 void kernel_neon_begin(void) 1267 { 1268 if (WARN_ON(!system_supports_fpsimd())) 1269 return; 1270 1271 BUG_ON(!may_use_simd()); 1272 1273 get_cpu_fpsimd_context(); 1274 1275 /* Save unsaved fpsimd state, if any: */ 1276 fpsimd_save(); 1277 1278 /* Invalidate any task state remaining in the fpsimd regs: */ 1279 fpsimd_flush_cpu_state(); 1280 } 1281 EXPORT_SYMBOL(kernel_neon_begin); 1282 1283 /* 1284 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task 1285 * 1286 * Must be called from a context in which kernel_neon_begin() was previously 1287 * called, with no call to kernel_neon_end() in the meantime. 1288 * 1289 * The caller must not use the FPSIMD registers after this function is called, 1290 * unless kernel_neon_begin() is called again in the meantime. 1291 */ 1292 void kernel_neon_end(void) 1293 { 1294 if (!system_supports_fpsimd()) 1295 return; 1296 1297 put_cpu_fpsimd_context(); 1298 } 1299 EXPORT_SYMBOL(kernel_neon_end); 1300 1301 #ifdef CONFIG_EFI 1302 1303 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state); 1304 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used); 1305 static DEFINE_PER_CPU(bool, efi_sve_state_used); 1306 1307 /* 1308 * EFI runtime services support functions 1309 * 1310 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call. 1311 * This means that for EFI (and only for EFI), we have to assume that FPSIMD 1312 * is always used rather than being an optional accelerator. 1313 * 1314 * These functions provide the necessary support for ensuring FPSIMD 1315 * save/restore in the contexts from which EFI is used. 1316 * 1317 * Do not use them for any other purpose -- if tempted to do so, you are 1318 * either doing something wrong or you need to propose some refactoring. 1319 */ 1320 1321 /* 1322 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call 1323 */ 1324 void __efi_fpsimd_begin(void) 1325 { 1326 if (!system_supports_fpsimd()) 1327 return; 1328 1329 WARN_ON(preemptible()); 1330 1331 if (may_use_simd()) { 1332 kernel_neon_begin(); 1333 } else { 1334 /* 1335 * If !efi_sve_state, SVE can't be in use yet and doesn't need 1336 * preserving: 1337 */ 1338 if (system_supports_sve() && likely(efi_sve_state)) { 1339 char *sve_state = this_cpu_ptr(efi_sve_state); 1340 1341 __this_cpu_write(efi_sve_state_used, true); 1342 1343 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl), 1344 &this_cpu_ptr(&efi_fpsimd_state)->fpsr); 1345 } else { 1346 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state)); 1347 } 1348 1349 __this_cpu_write(efi_fpsimd_state_used, true); 1350 } 1351 } 1352 1353 /* 1354 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call 1355 */ 1356 void __efi_fpsimd_end(void) 1357 { 1358 if (!system_supports_fpsimd()) 1359 return; 1360 1361 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) { 1362 kernel_neon_end(); 1363 } else { 1364 if (system_supports_sve() && 1365 likely(__this_cpu_read(efi_sve_state_used))) { 1366 char const *sve_state = this_cpu_ptr(efi_sve_state); 1367 1368 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl), 1369 &this_cpu_ptr(&efi_fpsimd_state)->fpsr, 1370 sve_vq_from_vl(sve_get_vl()) - 1); 1371 1372 __this_cpu_write(efi_sve_state_used, false); 1373 } else { 1374 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state)); 1375 } 1376 } 1377 } 1378 1379 #endif /* CONFIG_EFI */ 1380 1381 #endif /* CONFIG_KERNEL_MODE_NEON */ 1382 1383 #ifdef CONFIG_CPU_PM 1384 static int fpsimd_cpu_pm_notifier(struct notifier_block *self, 1385 unsigned long cmd, void *v) 1386 { 1387 switch (cmd) { 1388 case CPU_PM_ENTER: 1389 fpsimd_save_and_flush_cpu_state(); 1390 break; 1391 case CPU_PM_EXIT: 1392 break; 1393 case CPU_PM_ENTER_FAILED: 1394 default: 1395 return NOTIFY_DONE; 1396 } 1397 return NOTIFY_OK; 1398 } 1399 1400 static struct notifier_block fpsimd_cpu_pm_notifier_block = { 1401 .notifier_call = fpsimd_cpu_pm_notifier, 1402 }; 1403 1404 static void __init fpsimd_pm_init(void) 1405 { 1406 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block); 1407 } 1408 1409 #else 1410 static inline void fpsimd_pm_init(void) { } 1411 #endif /* CONFIG_CPU_PM */ 1412 1413 #ifdef CONFIG_HOTPLUG_CPU 1414 static int fpsimd_cpu_dead(unsigned int cpu) 1415 { 1416 per_cpu(fpsimd_last_state.st, cpu) = NULL; 1417 return 0; 1418 } 1419 1420 static inline void fpsimd_hotplug_init(void) 1421 { 1422 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead", 1423 NULL, fpsimd_cpu_dead); 1424 } 1425 1426 #else 1427 static inline void fpsimd_hotplug_init(void) { } 1428 #endif 1429 1430 /* 1431 * FP/SIMD support code initialisation. 1432 */ 1433 static int __init fpsimd_init(void) 1434 { 1435 if (cpu_have_named_feature(FP)) { 1436 fpsimd_pm_init(); 1437 fpsimd_hotplug_init(); 1438 } else { 1439 pr_notice("Floating-point is not implemented\n"); 1440 } 1441 1442 if (!cpu_have_named_feature(ASIMD)) 1443 pr_notice("Advanced SIMD is not implemented\n"); 1444 1445 return sve_sysctl_init(); 1446 } 1447 core_initcall(fpsimd_init); 1448