1 /* 2 * FP/SIMD context switching and fault handling 3 * 4 * Copyright (C) 2012 ARM Ltd. 5 * Author: Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/bitmap.h> 21 #include <linux/bottom_half.h> 22 #include <linux/bug.h> 23 #include <linux/cache.h> 24 #include <linux/compat.h> 25 #include <linux/cpu.h> 26 #include <linux/cpu_pm.h> 27 #include <linux/kernel.h> 28 #include <linux/linkage.h> 29 #include <linux/irqflags.h> 30 #include <linux/init.h> 31 #include <linux/percpu.h> 32 #include <linux/prctl.h> 33 #include <linux/preempt.h> 34 #include <linux/ptrace.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/task_stack.h> 37 #include <linux/signal.h> 38 #include <linux/slab.h> 39 #include <linux/stddef.h> 40 #include <linux/sysctl.h> 41 42 #include <asm/esr.h> 43 #include <asm/fpsimd.h> 44 #include <asm/cpufeature.h> 45 #include <asm/cputype.h> 46 #include <asm/processor.h> 47 #include <asm/simd.h> 48 #include <asm/sigcontext.h> 49 #include <asm/sysreg.h> 50 #include <asm/traps.h> 51 52 #define FPEXC_IOF (1 << 0) 53 #define FPEXC_DZF (1 << 1) 54 #define FPEXC_OFF (1 << 2) 55 #define FPEXC_UFF (1 << 3) 56 #define FPEXC_IXF (1 << 4) 57 #define FPEXC_IDF (1 << 7) 58 59 /* 60 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.) 61 * 62 * In order to reduce the number of times the FPSIMD state is needlessly saved 63 * and restored, we need to keep track of two things: 64 * (a) for each task, we need to remember which CPU was the last one to have 65 * the task's FPSIMD state loaded into its FPSIMD registers; 66 * (b) for each CPU, we need to remember which task's userland FPSIMD state has 67 * been loaded into its FPSIMD registers most recently, or whether it has 68 * been used to perform kernel mode NEON in the meantime. 69 * 70 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to 71 * the id of the current CPU every time the state is loaded onto a CPU. For (b), 72 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the 73 * address of the userland FPSIMD state of the task that was loaded onto the CPU 74 * the most recently, or NULL if kernel mode NEON has been performed after that. 75 * 76 * With this in place, we no longer have to restore the next FPSIMD state right 77 * when switching between tasks. Instead, we can defer this check to userland 78 * resume, at which time we verify whether the CPU's fpsimd_last_state and the 79 * task's fpsimd_cpu are still mutually in sync. If this is the case, we 80 * can omit the FPSIMD restore. 81 * 82 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to 83 * indicate whether or not the userland FPSIMD state of the current task is 84 * present in the registers. The flag is set unless the FPSIMD registers of this 85 * CPU currently contain the most recent userland FPSIMD state of the current 86 * task. 87 * 88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may 89 * save the task's FPSIMD context back to task_struct from softirq context. 90 * To prevent this from racing with the manipulation of the task's FPSIMD state 91 * from task context and thereby corrupting the state, it is necessary to 92 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE 93 * flag with local_bh_disable() unless softirqs are already masked. 94 * 95 * For a certain task, the sequence may look something like this: 96 * - the task gets scheduled in; if both the task's fpsimd_cpu field 97 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu 98 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is 99 * cleared, otherwise it is set; 100 * 101 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's 102 * userland FPSIMD state is copied from memory to the registers, the task's 103 * fpsimd_cpu field is set to the id of the current CPU, the current 104 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the 105 * TIF_FOREIGN_FPSTATE flag is cleared; 106 * 107 * - the task executes an ordinary syscall; upon return to userland, the 108 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is 109 * restored; 110 * 111 * - the task executes a syscall which executes some NEON instructions; this is 112 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD 113 * register contents to memory, clears the fpsimd_last_state per-cpu variable 114 * and sets the TIF_FOREIGN_FPSTATE flag; 115 * 116 * - the task gets preempted after kernel_neon_end() is called; as we have not 117 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so 118 * whatever is in the FPSIMD registers is not saved to memory, but discarded. 119 */ 120 struct fpsimd_last_state_struct { 121 struct user_fpsimd_state *st; 122 }; 123 124 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state); 125 126 /* Default VL for tasks that don't set it explicitly: */ 127 static int sve_default_vl = -1; 128 129 #ifdef CONFIG_ARM64_SVE 130 131 /* Maximum supported vector length across all CPUs (initially poisoned) */ 132 int __ro_after_init sve_max_vl = SVE_VL_MIN; 133 /* Set of available vector lengths, as vq_to_bit(vq): */ 134 static __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX); 135 static void __percpu *efi_sve_state; 136 137 #else /* ! CONFIG_ARM64_SVE */ 138 139 /* Dummy declaration for code that will be optimised out: */ 140 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX); 141 extern void __percpu *efi_sve_state; 142 143 #endif /* ! CONFIG_ARM64_SVE */ 144 145 /* 146 * Call __sve_free() directly only if you know task can't be scheduled 147 * or preempted. 148 */ 149 static void __sve_free(struct task_struct *task) 150 { 151 kfree(task->thread.sve_state); 152 task->thread.sve_state = NULL; 153 } 154 155 static void sve_free(struct task_struct *task) 156 { 157 WARN_ON(test_tsk_thread_flag(task, TIF_SVE)); 158 159 __sve_free(task); 160 } 161 162 /* 163 * TIF_SVE controls whether a task can use SVE without trapping while 164 * in userspace, and also the way a task's FPSIMD/SVE state is stored 165 * in thread_struct. 166 * 167 * The kernel uses this flag to track whether a user task is actively 168 * using SVE, and therefore whether full SVE register state needs to 169 * be tracked. If not, the cheaper FPSIMD context handling code can 170 * be used instead of the more costly SVE equivalents. 171 * 172 * * TIF_SVE set: 173 * 174 * The task can execute SVE instructions while in userspace without 175 * trapping to the kernel. 176 * 177 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the 178 * corresponding Zn), P0-P15 and FFR are encoded in in 179 * task->thread.sve_state, formatted appropriately for vector 180 * length task->thread.sve_vl. 181 * 182 * task->thread.sve_state must point to a valid buffer at least 183 * sve_state_size(task) bytes in size. 184 * 185 * During any syscall, the kernel may optionally clear TIF_SVE and 186 * discard the vector state except for the FPSIMD subset. 187 * 188 * * TIF_SVE clear: 189 * 190 * An attempt by the user task to execute an SVE instruction causes 191 * do_sve_acc() to be called, which does some preparation and then 192 * sets TIF_SVE. 193 * 194 * When stored, FPSIMD registers V0-V31 are encoded in 195 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are 196 * logically zero but not stored anywhere; P0-P15 and FFR are not 197 * stored and have unspecified values from userspace's point of 198 * view. For hygiene purposes, the kernel zeroes them on next use, 199 * but userspace is discouraged from relying on this. 200 * 201 * task->thread.sve_state does not need to be non-NULL, valid or any 202 * particular size: it must not be dereferenced. 203 * 204 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state 205 * irrespective of whether TIF_SVE is clear or set, since these are 206 * not vector length dependent. 207 */ 208 209 /* 210 * Update current's FPSIMD/SVE registers from thread_struct. 211 * 212 * This function should be called only when the FPSIMD/SVE state in 213 * thread_struct is known to be up to date, when preparing to enter 214 * userspace. 215 * 216 * Softirqs (and preemption) must be disabled. 217 */ 218 static void task_fpsimd_load(void) 219 { 220 WARN_ON(!in_softirq() && !irqs_disabled()); 221 222 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 223 sve_load_state(sve_pffr(¤t->thread), 224 ¤t->thread.uw.fpsimd_state.fpsr, 225 sve_vq_from_vl(current->thread.sve_vl) - 1); 226 else 227 fpsimd_load_state(¤t->thread.uw.fpsimd_state); 228 } 229 230 /* 231 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to 232 * date with respect to the CPU registers. 233 * 234 * Softirqs (and preemption) must be disabled. 235 */ 236 void fpsimd_save(void) 237 { 238 struct user_fpsimd_state *st = __this_cpu_read(fpsimd_last_state.st); 239 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */ 240 241 WARN_ON(!in_softirq() && !irqs_disabled()); 242 243 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 244 if (system_supports_sve() && test_thread_flag(TIF_SVE)) { 245 if (WARN_ON(sve_get_vl() != current->thread.sve_vl)) { 246 /* 247 * Can't save the user regs, so current would 248 * re-enter user with corrupt state. 249 * There's no way to recover, so kill it: 250 */ 251 force_signal_inject(SIGKILL, SI_KERNEL, 0); 252 return; 253 } 254 255 sve_save_state(sve_pffr(¤t->thread), &st->fpsr); 256 } else 257 fpsimd_save_state(st); 258 } 259 } 260 261 /* 262 * Helpers to translate bit indices in sve_vq_map to VQ values (and 263 * vice versa). This allows find_next_bit() to be used to find the 264 * _maximum_ VQ not exceeding a certain value. 265 */ 266 267 static unsigned int vq_to_bit(unsigned int vq) 268 { 269 return SVE_VQ_MAX - vq; 270 } 271 272 static unsigned int bit_to_vq(unsigned int bit) 273 { 274 if (WARN_ON(bit >= SVE_VQ_MAX)) 275 bit = SVE_VQ_MAX - 1; 276 277 return SVE_VQ_MAX - bit; 278 } 279 280 /* 281 * All vector length selection from userspace comes through here. 282 * We're on a slow path, so some sanity-checks are included. 283 * If things go wrong there's a bug somewhere, but try to fall back to a 284 * safe choice. 285 */ 286 static unsigned int find_supported_vector_length(unsigned int vl) 287 { 288 int bit; 289 int max_vl = sve_max_vl; 290 291 if (WARN_ON(!sve_vl_valid(vl))) 292 vl = SVE_VL_MIN; 293 294 if (WARN_ON(!sve_vl_valid(max_vl))) 295 max_vl = SVE_VL_MIN; 296 297 if (vl > max_vl) 298 vl = max_vl; 299 300 bit = find_next_bit(sve_vq_map, SVE_VQ_MAX, 301 vq_to_bit(sve_vq_from_vl(vl))); 302 return sve_vl_from_vq(bit_to_vq(bit)); 303 } 304 305 #ifdef CONFIG_SYSCTL 306 307 static int sve_proc_do_default_vl(struct ctl_table *table, int write, 308 void __user *buffer, size_t *lenp, 309 loff_t *ppos) 310 { 311 int ret; 312 int vl = sve_default_vl; 313 struct ctl_table tmp_table = { 314 .data = &vl, 315 .maxlen = sizeof(vl), 316 }; 317 318 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); 319 if (ret || !write) 320 return ret; 321 322 /* Writing -1 has the special meaning "set to max": */ 323 if (vl == -1) 324 vl = sve_max_vl; 325 326 if (!sve_vl_valid(vl)) 327 return -EINVAL; 328 329 sve_default_vl = find_supported_vector_length(vl); 330 return 0; 331 } 332 333 static struct ctl_table sve_default_vl_table[] = { 334 { 335 .procname = "sve_default_vector_length", 336 .mode = 0644, 337 .proc_handler = sve_proc_do_default_vl, 338 }, 339 { } 340 }; 341 342 static int __init sve_sysctl_init(void) 343 { 344 if (system_supports_sve()) 345 if (!register_sysctl("abi", sve_default_vl_table)) 346 return -EINVAL; 347 348 return 0; 349 } 350 351 #else /* ! CONFIG_SYSCTL */ 352 static int __init sve_sysctl_init(void) { return 0; } 353 #endif /* ! CONFIG_SYSCTL */ 354 355 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \ 356 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET)) 357 358 /* 359 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to 360 * task->thread.sve_state. 361 * 362 * Task can be a non-runnable task, or current. In the latter case, 363 * softirqs (and preemption) must be disabled. 364 * task->thread.sve_state must point to at least sve_state_size(task) 365 * bytes of allocated kernel memory. 366 * task->thread.uw.fpsimd_state must be up to date before calling this 367 * function. 368 */ 369 static void fpsimd_to_sve(struct task_struct *task) 370 { 371 unsigned int vq; 372 void *sst = task->thread.sve_state; 373 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 374 unsigned int i; 375 376 if (!system_supports_sve()) 377 return; 378 379 vq = sve_vq_from_vl(task->thread.sve_vl); 380 for (i = 0; i < 32; ++i) 381 memcpy(ZREG(sst, vq, i), &fst->vregs[i], 382 sizeof(fst->vregs[i])); 383 } 384 385 /* 386 * Transfer the SVE state in task->thread.sve_state to 387 * task->thread.uw.fpsimd_state. 388 * 389 * Task can be a non-runnable task, or current. In the latter case, 390 * softirqs (and preemption) must be disabled. 391 * task->thread.sve_state must point to at least sve_state_size(task) 392 * bytes of allocated kernel memory. 393 * task->thread.sve_state must be up to date before calling this function. 394 */ 395 static void sve_to_fpsimd(struct task_struct *task) 396 { 397 unsigned int vq; 398 void const *sst = task->thread.sve_state; 399 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state; 400 unsigned int i; 401 402 if (!system_supports_sve()) 403 return; 404 405 vq = sve_vq_from_vl(task->thread.sve_vl); 406 for (i = 0; i < 32; ++i) 407 memcpy(&fst->vregs[i], ZREG(sst, vq, i), 408 sizeof(fst->vregs[i])); 409 } 410 411 #ifdef CONFIG_ARM64_SVE 412 413 /* 414 * Return how many bytes of memory are required to store the full SVE 415 * state for task, given task's currently configured vector length. 416 */ 417 size_t sve_state_size(struct task_struct const *task) 418 { 419 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl)); 420 } 421 422 /* 423 * Ensure that task->thread.sve_state is allocated and sufficiently large. 424 * 425 * This function should be used only in preparation for replacing 426 * task->thread.sve_state with new data. The memory is always zeroed 427 * here to prevent stale data from showing through: this is done in 428 * the interest of testability and predictability: except in the 429 * do_sve_acc() case, there is no ABI requirement to hide stale data 430 * written previously be task. 431 */ 432 void sve_alloc(struct task_struct *task) 433 { 434 if (task->thread.sve_state) { 435 memset(task->thread.sve_state, 0, sve_state_size(current)); 436 return; 437 } 438 439 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */ 440 task->thread.sve_state = 441 kzalloc(sve_state_size(task), GFP_KERNEL); 442 443 /* 444 * If future SVE revisions can have larger vectors though, 445 * this may cease to be true: 446 */ 447 BUG_ON(!task->thread.sve_state); 448 } 449 450 451 /* 452 * Ensure that task->thread.sve_state is up to date with respect to 453 * the user task, irrespective of when SVE is in use or not. 454 * 455 * This should only be called by ptrace. task must be non-runnable. 456 * task->thread.sve_state must point to at least sve_state_size(task) 457 * bytes of allocated kernel memory. 458 */ 459 void fpsimd_sync_to_sve(struct task_struct *task) 460 { 461 if (!test_tsk_thread_flag(task, TIF_SVE)) 462 fpsimd_to_sve(task); 463 } 464 465 /* 466 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to 467 * the user task, irrespective of whether SVE is in use or not. 468 * 469 * This should only be called by ptrace. task must be non-runnable. 470 * task->thread.sve_state must point to at least sve_state_size(task) 471 * bytes of allocated kernel memory. 472 */ 473 void sve_sync_to_fpsimd(struct task_struct *task) 474 { 475 if (test_tsk_thread_flag(task, TIF_SVE)) 476 sve_to_fpsimd(task); 477 } 478 479 /* 480 * Ensure that task->thread.sve_state is up to date with respect to 481 * the task->thread.uw.fpsimd_state. 482 * 483 * This should only be called by ptrace to merge new FPSIMD register 484 * values into a task for which SVE is currently active. 485 * task must be non-runnable. 486 * task->thread.sve_state must point to at least sve_state_size(task) 487 * bytes of allocated kernel memory. 488 * task->thread.uw.fpsimd_state must already have been initialised with 489 * the new FPSIMD register values to be merged in. 490 */ 491 void sve_sync_from_fpsimd_zeropad(struct task_struct *task) 492 { 493 unsigned int vq; 494 void *sst = task->thread.sve_state; 495 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 496 unsigned int i; 497 498 if (!test_tsk_thread_flag(task, TIF_SVE)) 499 return; 500 501 vq = sve_vq_from_vl(task->thread.sve_vl); 502 503 memset(sst, 0, SVE_SIG_REGS_SIZE(vq)); 504 505 for (i = 0; i < 32; ++i) 506 memcpy(ZREG(sst, vq, i), &fst->vregs[i], 507 sizeof(fst->vregs[i])); 508 } 509 510 int sve_set_vector_length(struct task_struct *task, 511 unsigned long vl, unsigned long flags) 512 { 513 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT | 514 PR_SVE_SET_VL_ONEXEC)) 515 return -EINVAL; 516 517 if (!sve_vl_valid(vl)) 518 return -EINVAL; 519 520 /* 521 * Clamp to the maximum vector length that VL-agnostic SVE code can 522 * work with. A flag may be assigned in the future to allow setting 523 * of larger vector lengths without confusing older software. 524 */ 525 if (vl > SVE_VL_ARCH_MAX) 526 vl = SVE_VL_ARCH_MAX; 527 528 vl = find_supported_vector_length(vl); 529 530 if (flags & (PR_SVE_VL_INHERIT | 531 PR_SVE_SET_VL_ONEXEC)) 532 task->thread.sve_vl_onexec = vl; 533 else 534 /* Reset VL to system default on next exec: */ 535 task->thread.sve_vl_onexec = 0; 536 537 /* Only actually set the VL if not deferred: */ 538 if (flags & PR_SVE_SET_VL_ONEXEC) 539 goto out; 540 541 if (vl == task->thread.sve_vl) 542 goto out; 543 544 /* 545 * To ensure the FPSIMD bits of the SVE vector registers are preserved, 546 * write any live register state back to task_struct, and convert to a 547 * non-SVE thread. 548 */ 549 if (task == current) { 550 local_bh_disable(); 551 552 fpsimd_save(); 553 set_thread_flag(TIF_FOREIGN_FPSTATE); 554 } 555 556 fpsimd_flush_task_state(task); 557 if (test_and_clear_tsk_thread_flag(task, TIF_SVE)) 558 sve_to_fpsimd(task); 559 560 if (task == current) 561 local_bh_enable(); 562 563 /* 564 * Force reallocation of task SVE state to the correct size 565 * on next use: 566 */ 567 sve_free(task); 568 569 task->thread.sve_vl = vl; 570 571 out: 572 update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT, 573 flags & PR_SVE_VL_INHERIT); 574 575 return 0; 576 } 577 578 /* 579 * Encode the current vector length and flags for return. 580 * This is only required for prctl(): ptrace has separate fields 581 * 582 * flags are as for sve_set_vector_length(). 583 */ 584 static int sve_prctl_status(unsigned long flags) 585 { 586 int ret; 587 588 if (flags & PR_SVE_SET_VL_ONEXEC) 589 ret = current->thread.sve_vl_onexec; 590 else 591 ret = current->thread.sve_vl; 592 593 if (test_thread_flag(TIF_SVE_VL_INHERIT)) 594 ret |= PR_SVE_VL_INHERIT; 595 596 return ret; 597 } 598 599 /* PR_SVE_SET_VL */ 600 int sve_set_current_vl(unsigned long arg) 601 { 602 unsigned long vl, flags; 603 int ret; 604 605 vl = arg & PR_SVE_VL_LEN_MASK; 606 flags = arg & ~vl; 607 608 if (!system_supports_sve()) 609 return -EINVAL; 610 611 ret = sve_set_vector_length(current, vl, flags); 612 if (ret) 613 return ret; 614 615 return sve_prctl_status(flags); 616 } 617 618 /* PR_SVE_GET_VL */ 619 int sve_get_current_vl(void) 620 { 621 if (!system_supports_sve()) 622 return -EINVAL; 623 624 return sve_prctl_status(0); 625 } 626 627 /* 628 * Bitmap for temporary storage of the per-CPU set of supported vector lengths 629 * during secondary boot. 630 */ 631 static DECLARE_BITMAP(sve_secondary_vq_map, SVE_VQ_MAX); 632 633 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX)) 634 { 635 unsigned int vq, vl; 636 unsigned long zcr; 637 638 bitmap_zero(map, SVE_VQ_MAX); 639 640 zcr = ZCR_ELx_LEN_MASK; 641 zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr; 642 643 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) { 644 write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */ 645 vl = sve_get_vl(); 646 vq = sve_vq_from_vl(vl); /* skip intervening lengths */ 647 set_bit(vq_to_bit(vq), map); 648 } 649 } 650 651 void __init sve_init_vq_map(void) 652 { 653 sve_probe_vqs(sve_vq_map); 654 } 655 656 /* 657 * If we haven't committed to the set of supported VQs yet, filter out 658 * those not supported by the current CPU. 659 */ 660 void sve_update_vq_map(void) 661 { 662 sve_probe_vqs(sve_secondary_vq_map); 663 bitmap_and(sve_vq_map, sve_vq_map, sve_secondary_vq_map, SVE_VQ_MAX); 664 } 665 666 /* Check whether the current CPU supports all VQs in the committed set */ 667 int sve_verify_vq_map(void) 668 { 669 int ret = 0; 670 671 sve_probe_vqs(sve_secondary_vq_map); 672 bitmap_andnot(sve_secondary_vq_map, sve_vq_map, sve_secondary_vq_map, 673 SVE_VQ_MAX); 674 if (!bitmap_empty(sve_secondary_vq_map, SVE_VQ_MAX)) { 675 pr_warn("SVE: cpu%d: Required vector length(s) missing\n", 676 smp_processor_id()); 677 ret = -EINVAL; 678 } 679 680 return ret; 681 } 682 683 static void __init sve_efi_setup(void) 684 { 685 if (!IS_ENABLED(CONFIG_EFI)) 686 return; 687 688 /* 689 * alloc_percpu() warns and prints a backtrace if this goes wrong. 690 * This is evidence of a crippled system and we are returning void, 691 * so no attempt is made to handle this situation here. 692 */ 693 if (!sve_vl_valid(sve_max_vl)) 694 goto fail; 695 696 efi_sve_state = __alloc_percpu( 697 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES); 698 if (!efi_sve_state) 699 goto fail; 700 701 return; 702 703 fail: 704 panic("Cannot allocate percpu memory for EFI SVE save/restore"); 705 } 706 707 /* 708 * Enable SVE for EL1. 709 * Intended for use by the cpufeatures code during CPU boot. 710 */ 711 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p) 712 { 713 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1); 714 isb(); 715 } 716 717 /* 718 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE 719 * vector length. 720 * 721 * Use only if SVE is present. 722 * This function clobbers the SVE vector length. 723 */ 724 u64 read_zcr_features(void) 725 { 726 u64 zcr; 727 unsigned int vq_max; 728 729 /* 730 * Set the maximum possible VL, and write zeroes to all other 731 * bits to see if they stick. 732 */ 733 sve_kernel_enable(NULL); 734 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1); 735 736 zcr = read_sysreg_s(SYS_ZCR_EL1); 737 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */ 738 vq_max = sve_vq_from_vl(sve_get_vl()); 739 zcr |= vq_max - 1; /* set LEN field to maximum effective value */ 740 741 return zcr; 742 } 743 744 void __init sve_setup(void) 745 { 746 u64 zcr; 747 748 if (!system_supports_sve()) 749 return; 750 751 /* 752 * The SVE architecture mandates support for 128-bit vectors, 753 * so sve_vq_map must have at least SVE_VQ_MIN set. 754 * If something went wrong, at least try to patch it up: 755 */ 756 if (WARN_ON(!test_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map))) 757 set_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map); 758 759 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); 760 sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1); 761 762 /* 763 * Sanity-check that the max VL we determined through CPU features 764 * corresponds properly to sve_vq_map. If not, do our best: 765 */ 766 if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl))) 767 sve_max_vl = find_supported_vector_length(sve_max_vl); 768 769 /* 770 * For the default VL, pick the maximum supported value <= 64. 771 * VL == 64 is guaranteed not to grow the signal frame. 772 */ 773 sve_default_vl = find_supported_vector_length(64); 774 775 pr_info("SVE: maximum available vector length %u bytes per vector\n", 776 sve_max_vl); 777 pr_info("SVE: default vector length %u bytes per vector\n", 778 sve_default_vl); 779 780 sve_efi_setup(); 781 } 782 783 /* 784 * Called from the put_task_struct() path, which cannot get here 785 * unless dead_task is really dead and not schedulable. 786 */ 787 void fpsimd_release_task(struct task_struct *dead_task) 788 { 789 __sve_free(dead_task); 790 } 791 792 #endif /* CONFIG_ARM64_SVE */ 793 794 /* 795 * Trapped SVE access 796 * 797 * Storage is allocated for the full SVE state, the current FPSIMD 798 * register contents are migrated across, and TIF_SVE is set so that 799 * the SVE access trap will be disabled the next time this task 800 * reaches ret_to_user. 801 * 802 * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load() 803 * would have disabled the SVE access trap for userspace during 804 * ret_to_user, making an SVE access trap impossible in that case. 805 */ 806 asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs) 807 { 808 /* Even if we chose not to use SVE, the hardware could still trap: */ 809 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) { 810 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc); 811 return; 812 } 813 814 sve_alloc(current); 815 816 local_bh_disable(); 817 818 fpsimd_save(); 819 fpsimd_to_sve(current); 820 821 /* Force ret_to_user to reload the registers: */ 822 fpsimd_flush_task_state(current); 823 set_thread_flag(TIF_FOREIGN_FPSTATE); 824 825 if (test_and_set_thread_flag(TIF_SVE)) 826 WARN_ON(1); /* SVE access shouldn't have trapped */ 827 828 local_bh_enable(); 829 } 830 831 /* 832 * Trapped FP/ASIMD access. 833 */ 834 asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs) 835 { 836 /* TODO: implement lazy context saving/restoring */ 837 WARN_ON(1); 838 } 839 840 /* 841 * Raise a SIGFPE for the current process. 842 */ 843 asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs) 844 { 845 unsigned int si_code = FPE_FLTUNK; 846 847 if (esr & ESR_ELx_FP_EXC_TFV) { 848 if (esr & FPEXC_IOF) 849 si_code = FPE_FLTINV; 850 else if (esr & FPEXC_DZF) 851 si_code = FPE_FLTDIV; 852 else if (esr & FPEXC_OFF) 853 si_code = FPE_FLTOVF; 854 else if (esr & FPEXC_UFF) 855 si_code = FPE_FLTUND; 856 else if (esr & FPEXC_IXF) 857 si_code = FPE_FLTRES; 858 } 859 860 send_sig_fault(SIGFPE, si_code, 861 (void __user *)instruction_pointer(regs), 862 current); 863 } 864 865 void fpsimd_thread_switch(struct task_struct *next) 866 { 867 bool wrong_task, wrong_cpu; 868 869 if (!system_supports_fpsimd()) 870 return; 871 872 /* Save unsaved fpsimd state, if any: */ 873 fpsimd_save(); 874 875 /* 876 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's 877 * state. For kernel threads, FPSIMD registers are never loaded 878 * and wrong_task and wrong_cpu will always be true. 879 */ 880 wrong_task = __this_cpu_read(fpsimd_last_state.st) != 881 &next->thread.uw.fpsimd_state; 882 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id(); 883 884 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE, 885 wrong_task || wrong_cpu); 886 } 887 888 void fpsimd_flush_thread(void) 889 { 890 int vl, supported_vl; 891 892 if (!system_supports_fpsimd()) 893 return; 894 895 local_bh_disable(); 896 897 memset(¤t->thread.uw.fpsimd_state, 0, 898 sizeof(current->thread.uw.fpsimd_state)); 899 fpsimd_flush_task_state(current); 900 901 if (system_supports_sve()) { 902 clear_thread_flag(TIF_SVE); 903 sve_free(current); 904 905 /* 906 * Reset the task vector length as required. 907 * This is where we ensure that all user tasks have a valid 908 * vector length configured: no kernel task can become a user 909 * task without an exec and hence a call to this function. 910 * By the time the first call to this function is made, all 911 * early hardware probing is complete, so sve_default_vl 912 * should be valid. 913 * If a bug causes this to go wrong, we make some noise and 914 * try to fudge thread.sve_vl to a safe value here. 915 */ 916 vl = current->thread.sve_vl_onexec ? 917 current->thread.sve_vl_onexec : sve_default_vl; 918 919 if (WARN_ON(!sve_vl_valid(vl))) 920 vl = SVE_VL_MIN; 921 922 supported_vl = find_supported_vector_length(vl); 923 if (WARN_ON(supported_vl != vl)) 924 vl = supported_vl; 925 926 current->thread.sve_vl = vl; 927 928 /* 929 * If the task is not set to inherit, ensure that the vector 930 * length will be reset by a subsequent exec: 931 */ 932 if (!test_thread_flag(TIF_SVE_VL_INHERIT)) 933 current->thread.sve_vl_onexec = 0; 934 } 935 936 set_thread_flag(TIF_FOREIGN_FPSTATE); 937 938 local_bh_enable(); 939 } 940 941 /* 942 * Save the userland FPSIMD state of 'current' to memory, but only if the state 943 * currently held in the registers does in fact belong to 'current' 944 */ 945 void fpsimd_preserve_current_state(void) 946 { 947 if (!system_supports_fpsimd()) 948 return; 949 950 local_bh_disable(); 951 fpsimd_save(); 952 local_bh_enable(); 953 } 954 955 /* 956 * Like fpsimd_preserve_current_state(), but ensure that 957 * current->thread.uw.fpsimd_state is updated so that it can be copied to 958 * the signal frame. 959 */ 960 void fpsimd_signal_preserve_current_state(void) 961 { 962 fpsimd_preserve_current_state(); 963 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 964 sve_to_fpsimd(current); 965 } 966 967 /* 968 * Associate current's FPSIMD context with this cpu 969 * Preemption must be disabled when calling this function. 970 */ 971 void fpsimd_bind_task_to_cpu(void) 972 { 973 struct fpsimd_last_state_struct *last = 974 this_cpu_ptr(&fpsimd_last_state); 975 976 last->st = ¤t->thread.uw.fpsimd_state; 977 current->thread.fpsimd_cpu = smp_processor_id(); 978 979 if (system_supports_sve()) { 980 /* Toggle SVE trapping for userspace if needed */ 981 if (test_thread_flag(TIF_SVE)) 982 sve_user_enable(); 983 else 984 sve_user_disable(); 985 986 /* Serialised by exception return to user */ 987 } 988 } 989 990 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st) 991 { 992 struct fpsimd_last_state_struct *last = 993 this_cpu_ptr(&fpsimd_last_state); 994 995 WARN_ON(!in_softirq() && !irqs_disabled()); 996 997 last->st = st; 998 } 999 1000 /* 1001 * Load the userland FPSIMD state of 'current' from memory, but only if the 1002 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD 1003 * state of 'current' 1004 */ 1005 void fpsimd_restore_current_state(void) 1006 { 1007 if (!system_supports_fpsimd()) 1008 return; 1009 1010 local_bh_disable(); 1011 1012 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { 1013 task_fpsimd_load(); 1014 fpsimd_bind_task_to_cpu(); 1015 } 1016 1017 local_bh_enable(); 1018 } 1019 1020 /* 1021 * Load an updated userland FPSIMD state for 'current' from memory and set the 1022 * flag that indicates that the FPSIMD register contents are the most recent 1023 * FPSIMD state of 'current' 1024 */ 1025 void fpsimd_update_current_state(struct user_fpsimd_state const *state) 1026 { 1027 if (!system_supports_fpsimd()) 1028 return; 1029 1030 local_bh_disable(); 1031 1032 current->thread.uw.fpsimd_state = *state; 1033 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 1034 fpsimd_to_sve(current); 1035 1036 task_fpsimd_load(); 1037 fpsimd_bind_task_to_cpu(); 1038 1039 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1040 1041 local_bh_enable(); 1042 } 1043 1044 /* 1045 * Invalidate live CPU copies of task t's FPSIMD state 1046 */ 1047 void fpsimd_flush_task_state(struct task_struct *t) 1048 { 1049 t->thread.fpsimd_cpu = NR_CPUS; 1050 } 1051 1052 void fpsimd_flush_cpu_state(void) 1053 { 1054 __this_cpu_write(fpsimd_last_state.st, NULL); 1055 set_thread_flag(TIF_FOREIGN_FPSTATE); 1056 } 1057 1058 #ifdef CONFIG_KERNEL_MODE_NEON 1059 1060 DEFINE_PER_CPU(bool, kernel_neon_busy); 1061 EXPORT_PER_CPU_SYMBOL(kernel_neon_busy); 1062 1063 /* 1064 * Kernel-side NEON support functions 1065 */ 1066 1067 /* 1068 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling 1069 * context 1070 * 1071 * Must not be called unless may_use_simd() returns true. 1072 * Task context in the FPSIMD registers is saved back to memory as necessary. 1073 * 1074 * A matching call to kernel_neon_end() must be made before returning from the 1075 * calling context. 1076 * 1077 * The caller may freely use the FPSIMD registers until kernel_neon_end() is 1078 * called. 1079 */ 1080 void kernel_neon_begin(void) 1081 { 1082 if (WARN_ON(!system_supports_fpsimd())) 1083 return; 1084 1085 BUG_ON(!may_use_simd()); 1086 1087 local_bh_disable(); 1088 1089 __this_cpu_write(kernel_neon_busy, true); 1090 1091 /* Save unsaved fpsimd state, if any: */ 1092 fpsimd_save(); 1093 1094 /* Invalidate any task state remaining in the fpsimd regs: */ 1095 fpsimd_flush_cpu_state(); 1096 1097 preempt_disable(); 1098 1099 local_bh_enable(); 1100 } 1101 EXPORT_SYMBOL(kernel_neon_begin); 1102 1103 /* 1104 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task 1105 * 1106 * Must be called from a context in which kernel_neon_begin() was previously 1107 * called, with no call to kernel_neon_end() in the meantime. 1108 * 1109 * The caller must not use the FPSIMD registers after this function is called, 1110 * unless kernel_neon_begin() is called again in the meantime. 1111 */ 1112 void kernel_neon_end(void) 1113 { 1114 bool busy; 1115 1116 if (!system_supports_fpsimd()) 1117 return; 1118 1119 busy = __this_cpu_xchg(kernel_neon_busy, false); 1120 WARN_ON(!busy); /* No matching kernel_neon_begin()? */ 1121 1122 preempt_enable(); 1123 } 1124 EXPORT_SYMBOL(kernel_neon_end); 1125 1126 #ifdef CONFIG_EFI 1127 1128 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state); 1129 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used); 1130 static DEFINE_PER_CPU(bool, efi_sve_state_used); 1131 1132 /* 1133 * EFI runtime services support functions 1134 * 1135 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call. 1136 * This means that for EFI (and only for EFI), we have to assume that FPSIMD 1137 * is always used rather than being an optional accelerator. 1138 * 1139 * These functions provide the necessary support for ensuring FPSIMD 1140 * save/restore in the contexts from which EFI is used. 1141 * 1142 * Do not use them for any other purpose -- if tempted to do so, you are 1143 * either doing something wrong or you need to propose some refactoring. 1144 */ 1145 1146 /* 1147 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call 1148 */ 1149 void __efi_fpsimd_begin(void) 1150 { 1151 if (!system_supports_fpsimd()) 1152 return; 1153 1154 WARN_ON(preemptible()); 1155 1156 if (may_use_simd()) { 1157 kernel_neon_begin(); 1158 } else { 1159 /* 1160 * If !efi_sve_state, SVE can't be in use yet and doesn't need 1161 * preserving: 1162 */ 1163 if (system_supports_sve() && likely(efi_sve_state)) { 1164 char *sve_state = this_cpu_ptr(efi_sve_state); 1165 1166 __this_cpu_write(efi_sve_state_used, true); 1167 1168 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl), 1169 &this_cpu_ptr(&efi_fpsimd_state)->fpsr); 1170 } else { 1171 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state)); 1172 } 1173 1174 __this_cpu_write(efi_fpsimd_state_used, true); 1175 } 1176 } 1177 1178 /* 1179 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call 1180 */ 1181 void __efi_fpsimd_end(void) 1182 { 1183 if (!system_supports_fpsimd()) 1184 return; 1185 1186 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) { 1187 kernel_neon_end(); 1188 } else { 1189 if (system_supports_sve() && 1190 likely(__this_cpu_read(efi_sve_state_used))) { 1191 char const *sve_state = this_cpu_ptr(efi_sve_state); 1192 1193 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl), 1194 &this_cpu_ptr(&efi_fpsimd_state)->fpsr, 1195 sve_vq_from_vl(sve_get_vl()) - 1); 1196 1197 __this_cpu_write(efi_sve_state_used, false); 1198 } else { 1199 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state)); 1200 } 1201 } 1202 } 1203 1204 #endif /* CONFIG_EFI */ 1205 1206 #endif /* CONFIG_KERNEL_MODE_NEON */ 1207 1208 #ifdef CONFIG_CPU_PM 1209 static int fpsimd_cpu_pm_notifier(struct notifier_block *self, 1210 unsigned long cmd, void *v) 1211 { 1212 switch (cmd) { 1213 case CPU_PM_ENTER: 1214 fpsimd_save(); 1215 fpsimd_flush_cpu_state(); 1216 break; 1217 case CPU_PM_EXIT: 1218 break; 1219 case CPU_PM_ENTER_FAILED: 1220 default: 1221 return NOTIFY_DONE; 1222 } 1223 return NOTIFY_OK; 1224 } 1225 1226 static struct notifier_block fpsimd_cpu_pm_notifier_block = { 1227 .notifier_call = fpsimd_cpu_pm_notifier, 1228 }; 1229 1230 static void __init fpsimd_pm_init(void) 1231 { 1232 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block); 1233 } 1234 1235 #else 1236 static inline void fpsimd_pm_init(void) { } 1237 #endif /* CONFIG_CPU_PM */ 1238 1239 #ifdef CONFIG_HOTPLUG_CPU 1240 static int fpsimd_cpu_dead(unsigned int cpu) 1241 { 1242 per_cpu(fpsimd_last_state.st, cpu) = NULL; 1243 return 0; 1244 } 1245 1246 static inline void fpsimd_hotplug_init(void) 1247 { 1248 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead", 1249 NULL, fpsimd_cpu_dead); 1250 } 1251 1252 #else 1253 static inline void fpsimd_hotplug_init(void) { } 1254 #endif 1255 1256 /* 1257 * FP/SIMD support code initialisation. 1258 */ 1259 static int __init fpsimd_init(void) 1260 { 1261 if (elf_hwcap & HWCAP_FP) { 1262 fpsimd_pm_init(); 1263 fpsimd_hotplug_init(); 1264 } else { 1265 pr_notice("Floating-point is not implemented\n"); 1266 } 1267 1268 if (!(elf_hwcap & HWCAP_ASIMD)) 1269 pr_notice("Advanced SIMD is not implemented\n"); 1270 1271 return sve_sysctl_init(); 1272 } 1273 core_initcall(fpsimd_init); 1274