xref: /openbmc/linux/arch/arm64/kernel/fpsimd.c (revision c0d3b831)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FP/SIMD context switching and fault handling
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  * Author: Catalin Marinas <catalin.marinas@arm.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34 
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47 
48 #define FPEXC_IOF	(1 << 0)
49 #define FPEXC_DZF	(1 << 1)
50 #define FPEXC_OFF	(1 << 2)
51 #define FPEXC_UFF	(1 << 3)
52 #define FPEXC_IXF	(1 << 4)
53 #define FPEXC_IDF	(1 << 7)
54 
55 /*
56  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57  *
58  * In order to reduce the number of times the FPSIMD state is needlessly saved
59  * and restored, we need to keep track of two things:
60  * (a) for each task, we need to remember which CPU was the last one to have
61  *     the task's FPSIMD state loaded into its FPSIMD registers;
62  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63  *     been loaded into its FPSIMD registers most recently, or whether it has
64  *     been used to perform kernel mode NEON in the meantime.
65  *
66  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69  * address of the userland FPSIMD state of the task that was loaded onto the CPU
70  * the most recently, or NULL if kernel mode NEON has been performed after that.
71  *
72  * With this in place, we no longer have to restore the next FPSIMD state right
73  * when switching between tasks. Instead, we can defer this check to userland
74  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76  * can omit the FPSIMD restore.
77  *
78  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79  * indicate whether or not the userland FPSIMD state of the current task is
80  * present in the registers. The flag is set unless the FPSIMD registers of this
81  * CPU currently contain the most recent userland FPSIMD state of the current
82  * task. If the task is behaving as a VMM, then this is will be managed by
83  * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84  * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85  * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86  * flag the register state as invalid.
87  *
88  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
89  * save the task's FPSIMD context back to task_struct from softirq context.
90  * To prevent this from racing with the manipulation of the task's FPSIMD state
91  * from task context and thereby corrupting the state, it is necessary to
92  * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
93  * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
94  * run but prevent them to use FPSIMD.
95  *
96  * For a certain task, the sequence may look something like this:
97  * - the task gets scheduled in; if both the task's fpsimd_cpu field
98  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100  *   cleared, otherwise it is set;
101  *
102  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103  *   userland FPSIMD state is copied from memory to the registers, the task's
104  *   fpsimd_cpu field is set to the id of the current CPU, the current
105  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106  *   TIF_FOREIGN_FPSTATE flag is cleared;
107  *
108  * - the task executes an ordinary syscall; upon return to userland, the
109  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110  *   restored;
111  *
112  * - the task executes a syscall which executes some NEON instructions; this is
113  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
115  *   and sets the TIF_FOREIGN_FPSTATE flag;
116  *
117  * - the task gets preempted after kernel_neon_end() is called; as we have not
118  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
120  */
121 
122 static DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
123 
124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
125 #ifdef CONFIG_ARM64_SVE
126 	[ARM64_VEC_SVE] = {
127 		.type			= ARM64_VEC_SVE,
128 		.name			= "SVE",
129 		.min_vl			= SVE_VL_MIN,
130 		.max_vl			= SVE_VL_MIN,
131 		.max_virtualisable_vl	= SVE_VL_MIN,
132 	},
133 #endif
134 #ifdef CONFIG_ARM64_SME
135 	[ARM64_VEC_SME] = {
136 		.type			= ARM64_VEC_SME,
137 		.name			= "SME",
138 	},
139 #endif
140 };
141 
142 static unsigned int vec_vl_inherit_flag(enum vec_type type)
143 {
144 	switch (type) {
145 	case ARM64_VEC_SVE:
146 		return TIF_SVE_VL_INHERIT;
147 	case ARM64_VEC_SME:
148 		return TIF_SME_VL_INHERIT;
149 	default:
150 		WARN_ON_ONCE(1);
151 		return 0;
152 	}
153 }
154 
155 struct vl_config {
156 	int __default_vl;		/* Default VL for tasks */
157 };
158 
159 static struct vl_config vl_config[ARM64_VEC_MAX];
160 
161 static inline int get_default_vl(enum vec_type type)
162 {
163 	return READ_ONCE(vl_config[type].__default_vl);
164 }
165 
166 #ifdef CONFIG_ARM64_SVE
167 
168 static inline int get_sve_default_vl(void)
169 {
170 	return get_default_vl(ARM64_VEC_SVE);
171 }
172 
173 static inline void set_default_vl(enum vec_type type, int val)
174 {
175 	WRITE_ONCE(vl_config[type].__default_vl, val);
176 }
177 
178 static inline void set_sve_default_vl(int val)
179 {
180 	set_default_vl(ARM64_VEC_SVE, val);
181 }
182 
183 static void __percpu *efi_sve_state;
184 
185 #else /* ! CONFIG_ARM64_SVE */
186 
187 /* Dummy declaration for code that will be optimised out: */
188 extern void __percpu *efi_sve_state;
189 
190 #endif /* ! CONFIG_ARM64_SVE */
191 
192 #ifdef CONFIG_ARM64_SME
193 
194 static int get_sme_default_vl(void)
195 {
196 	return get_default_vl(ARM64_VEC_SME);
197 }
198 
199 static void set_sme_default_vl(int val)
200 {
201 	set_default_vl(ARM64_VEC_SME, val);
202 }
203 
204 static void sme_free(struct task_struct *);
205 
206 #else
207 
208 static inline void sme_free(struct task_struct *t) { }
209 
210 #endif
211 
212 DEFINE_PER_CPU(bool, fpsimd_context_busy);
213 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
214 
215 static void fpsimd_bind_task_to_cpu(void);
216 
217 static void __get_cpu_fpsimd_context(void)
218 {
219 	bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
220 
221 	WARN_ON(busy);
222 }
223 
224 /*
225  * Claim ownership of the CPU FPSIMD context for use by the calling context.
226  *
227  * The caller may freely manipulate the FPSIMD context metadata until
228  * put_cpu_fpsimd_context() is called.
229  *
230  * The double-underscore version must only be called if you know the task
231  * can't be preempted.
232  *
233  * On RT kernels local_bh_disable() is not sufficient because it only
234  * serializes soft interrupt related sections via a local lock, but stays
235  * preemptible. Disabling preemption is the right choice here as bottom
236  * half processing is always in thread context on RT kernels so it
237  * implicitly prevents bottom half processing as well.
238  */
239 static void get_cpu_fpsimd_context(void)
240 {
241 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 		local_bh_disable();
243 	else
244 		preempt_disable();
245 	__get_cpu_fpsimd_context();
246 }
247 
248 static void __put_cpu_fpsimd_context(void)
249 {
250 	bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
251 
252 	WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
253 }
254 
255 /*
256  * Release the CPU FPSIMD context.
257  *
258  * Must be called from a context in which get_cpu_fpsimd_context() was
259  * previously called, with no call to put_cpu_fpsimd_context() in the
260  * meantime.
261  */
262 static void put_cpu_fpsimd_context(void)
263 {
264 	__put_cpu_fpsimd_context();
265 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
266 		local_bh_enable();
267 	else
268 		preempt_enable();
269 }
270 
271 static bool have_cpu_fpsimd_context(void)
272 {
273 	return !preemptible() && __this_cpu_read(fpsimd_context_busy);
274 }
275 
276 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
277 {
278 	return task->thread.vl[type];
279 }
280 
281 void task_set_vl(struct task_struct *task, enum vec_type type,
282 		 unsigned long vl)
283 {
284 	task->thread.vl[type] = vl;
285 }
286 
287 unsigned int task_get_vl_onexec(const struct task_struct *task,
288 				enum vec_type type)
289 {
290 	return task->thread.vl_onexec[type];
291 }
292 
293 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
294 			unsigned long vl)
295 {
296 	task->thread.vl_onexec[type] = vl;
297 }
298 
299 /*
300  * TIF_SME controls whether a task can use SME without trapping while
301  * in userspace, when TIF_SME is set then we must have storage
302  * alocated in sve_state and za_state to store the contents of both ZA
303  * and the SVE registers for both streaming and non-streaming modes.
304  *
305  * If both SVCR.ZA and SVCR.SM are disabled then at any point we
306  * may disable TIF_SME and reenable traps.
307  */
308 
309 
310 /*
311  * TIF_SVE controls whether a task can use SVE without trapping while
312  * in userspace, and also (together with TIF_SME) the way a task's
313  * FPSIMD/SVE state is stored in thread_struct.
314  *
315  * The kernel uses this flag to track whether a user task is actively
316  * using SVE, and therefore whether full SVE register state needs to
317  * be tracked.  If not, the cheaper FPSIMD context handling code can
318  * be used instead of the more costly SVE equivalents.
319  *
320  *  * TIF_SVE or SVCR.SM set:
321  *
322  *    The task can execute SVE instructions while in userspace without
323  *    trapping to the kernel.
324  *
325  *    During any syscall, the kernel may optionally clear TIF_SVE and
326  *    discard the vector state except for the FPSIMD subset.
327  *
328  *  * TIF_SVE clear:
329  *
330  *    An attempt by the user task to execute an SVE instruction causes
331  *    do_sve_acc() to be called, which does some preparation and then
332  *    sets TIF_SVE.
333  *
334  * During any syscall, the kernel may optionally clear TIF_SVE and
335  * discard the vector state except for the FPSIMD subset.
336  *
337  * The data will be stored in one of two formats:
338  *
339  *  * FPSIMD only - FP_STATE_FPSIMD:
340  *
341  *    When the FPSIMD only state stored task->thread.fp_type is set to
342  *    FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
343  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
344  *    logically zero but not stored anywhere; P0-P15 and FFR are not
345  *    stored and have unspecified values from userspace's point of
346  *    view.  For hygiene purposes, the kernel zeroes them on next use,
347  *    but userspace is discouraged from relying on this.
348  *
349  *    task->thread.sve_state does not need to be non-NULL, valid or any
350  *    particular size: it must not be dereferenced and any data stored
351  *    there should be considered stale and not referenced.
352  *
353  *  * SVE state - FP_STATE_SVE:
354  *
355  *    When the full SVE state is stored task->thread.fp_type is set to
356  *    FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
357  *    corresponding Zn), P0-P15 and FFR are encoded in in
358  *    task->thread.sve_state, formatted appropriately for vector
359  *    length task->thread.sve_vl or, if SVCR.SM is set,
360  *    task->thread.sme_vl. The storage for the vector registers in
361  *    task->thread.uw.fpsimd_state should be ignored.
362  *
363  *    task->thread.sve_state must point to a valid buffer at least
364  *    sve_state_size(task) bytes in size. The data stored in
365  *    task->thread.uw.fpsimd_state.vregs should be considered stale
366  *    and not referenced.
367  *
368  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
369  *    irrespective of whether TIF_SVE is clear or set, since these are
370  *    not vector length dependent.
371  */
372 
373 /*
374  * Update current's FPSIMD/SVE registers from thread_struct.
375  *
376  * This function should be called only when the FPSIMD/SVE state in
377  * thread_struct is known to be up to date, when preparing to enter
378  * userspace.
379  */
380 static void task_fpsimd_load(void)
381 {
382 	bool restore_sve_regs = false;
383 	bool restore_ffr;
384 
385 	WARN_ON(!system_supports_fpsimd());
386 	WARN_ON(!have_cpu_fpsimd_context());
387 
388 	if (system_supports_sve() || system_supports_sme()) {
389 		switch (current->thread.fp_type) {
390 		case FP_STATE_FPSIMD:
391 			/* Stop tracking SVE for this task until next use. */
392 			if (test_and_clear_thread_flag(TIF_SVE))
393 				sve_user_disable();
394 			break;
395 		case FP_STATE_SVE:
396 			if (!thread_sm_enabled(&current->thread) &&
397 			    !WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE)))
398 				sve_user_enable();
399 
400 			if (test_thread_flag(TIF_SVE))
401 				sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
402 
403 			restore_sve_regs = true;
404 			restore_ffr = true;
405 			break;
406 		default:
407 			/*
408 			 * This indicates either a bug in
409 			 * fpsimd_save() or memory corruption, we
410 			 * should always record an explicit format
411 			 * when we save. We always at least have the
412 			 * memory allocated for FPSMID registers so
413 			 * try that and hope for the best.
414 			 */
415 			WARN_ON_ONCE(1);
416 			clear_thread_flag(TIF_SVE);
417 			break;
418 		}
419 	}
420 
421 	/* Restore SME, override SVE register configuration if needed */
422 	if (system_supports_sme()) {
423 		unsigned long sme_vl = task_get_sme_vl(current);
424 
425 		/* Ensure VL is set up for restoring data */
426 		if (test_thread_flag(TIF_SME))
427 			sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
428 
429 		write_sysreg_s(current->thread.svcr, SYS_SVCR);
430 
431 		if (thread_za_enabled(&current->thread))
432 			za_load_state(current->thread.za_state);
433 
434 		if (thread_sm_enabled(&current->thread))
435 			restore_ffr = system_supports_fa64();
436 	}
437 
438 	if (restore_sve_regs) {
439 		WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
440 		sve_load_state(sve_pffr(&current->thread),
441 			       &current->thread.uw.fpsimd_state.fpsr,
442 			       restore_ffr);
443 	} else {
444 		WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
445 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
446 	}
447 }
448 
449 /*
450  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
451  * date with respect to the CPU registers. Note carefully that the
452  * current context is the context last bound to the CPU stored in
453  * last, if KVM is involved this may be the guest VM context rather
454  * than the host thread for the VM pointed to by current. This means
455  * that we must always reference the state storage via last rather
456  * than via current, if we are saving KVM state then it will have
457  * ensured that the type of registers to save is set in last->to_save.
458  */
459 static void fpsimd_save(void)
460 {
461 	struct cpu_fp_state const *last =
462 		this_cpu_ptr(&fpsimd_last_state);
463 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
464 	bool save_sve_regs = false;
465 	bool save_ffr;
466 	unsigned int vl;
467 
468 	WARN_ON(!system_supports_fpsimd());
469 	WARN_ON(!have_cpu_fpsimd_context());
470 
471 	if (test_thread_flag(TIF_FOREIGN_FPSTATE))
472 		return;
473 
474 	/*
475 	 * If a task is in a syscall the ABI allows us to only
476 	 * preserve the state shared with FPSIMD so don't bother
477 	 * saving the full SVE state in that case.
478 	 */
479 	if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE) &&
480 	     !in_syscall(current_pt_regs())) ||
481 	    last->to_save == FP_STATE_SVE) {
482 		save_sve_regs = true;
483 		save_ffr = true;
484 		vl = last->sve_vl;
485 	}
486 
487 	if (system_supports_sme()) {
488 		u64 *svcr = last->svcr;
489 
490 		*svcr = read_sysreg_s(SYS_SVCR);
491 
492 		if (*svcr & SVCR_ZA_MASK)
493 			za_save_state(last->za_state);
494 
495 		/* If we are in streaming mode override regular SVE. */
496 		if (*svcr & SVCR_SM_MASK) {
497 			save_sve_regs = true;
498 			save_ffr = system_supports_fa64();
499 			vl = last->sme_vl;
500 		}
501 	}
502 
503 	if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
504 		/* Get the configured VL from RDVL, will account for SM */
505 		if (WARN_ON(sve_get_vl() != vl)) {
506 			/*
507 			 * Can't save the user regs, so current would
508 			 * re-enter user with corrupt state.
509 			 * There's no way to recover, so kill it:
510 			 */
511 			force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
512 			return;
513 		}
514 
515 		sve_save_state((char *)last->sve_state +
516 					sve_ffr_offset(vl),
517 			       &last->st->fpsr, save_ffr);
518 		*last->fp_type = FP_STATE_SVE;
519 	} else {
520 		fpsimd_save_state(last->st);
521 		*last->fp_type = FP_STATE_FPSIMD;
522 	}
523 }
524 
525 /*
526  * All vector length selection from userspace comes through here.
527  * We're on a slow path, so some sanity-checks are included.
528  * If things go wrong there's a bug somewhere, but try to fall back to a
529  * safe choice.
530  */
531 static unsigned int find_supported_vector_length(enum vec_type type,
532 						 unsigned int vl)
533 {
534 	struct vl_info *info = &vl_info[type];
535 	int bit;
536 	int max_vl = info->max_vl;
537 
538 	if (WARN_ON(!sve_vl_valid(vl)))
539 		vl = info->min_vl;
540 
541 	if (WARN_ON(!sve_vl_valid(max_vl)))
542 		max_vl = info->min_vl;
543 
544 	if (vl > max_vl)
545 		vl = max_vl;
546 	if (vl < info->min_vl)
547 		vl = info->min_vl;
548 
549 	bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
550 			    __vq_to_bit(sve_vq_from_vl(vl)));
551 	return sve_vl_from_vq(__bit_to_vq(bit));
552 }
553 
554 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
555 
556 static int vec_proc_do_default_vl(struct ctl_table *table, int write,
557 				  void *buffer, size_t *lenp, loff_t *ppos)
558 {
559 	struct vl_info *info = table->extra1;
560 	enum vec_type type = info->type;
561 	int ret;
562 	int vl = get_default_vl(type);
563 	struct ctl_table tmp_table = {
564 		.data = &vl,
565 		.maxlen = sizeof(vl),
566 	};
567 
568 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
569 	if (ret || !write)
570 		return ret;
571 
572 	/* Writing -1 has the special meaning "set to max": */
573 	if (vl == -1)
574 		vl = info->max_vl;
575 
576 	if (!sve_vl_valid(vl))
577 		return -EINVAL;
578 
579 	set_default_vl(type, find_supported_vector_length(type, vl));
580 	return 0;
581 }
582 
583 static struct ctl_table sve_default_vl_table[] = {
584 	{
585 		.procname	= "sve_default_vector_length",
586 		.mode		= 0644,
587 		.proc_handler	= vec_proc_do_default_vl,
588 		.extra1		= &vl_info[ARM64_VEC_SVE],
589 	},
590 	{ }
591 };
592 
593 static int __init sve_sysctl_init(void)
594 {
595 	if (system_supports_sve())
596 		if (!register_sysctl("abi", sve_default_vl_table))
597 			return -EINVAL;
598 
599 	return 0;
600 }
601 
602 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
603 static int __init sve_sysctl_init(void) { return 0; }
604 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
605 
606 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
607 static struct ctl_table sme_default_vl_table[] = {
608 	{
609 		.procname	= "sme_default_vector_length",
610 		.mode		= 0644,
611 		.proc_handler	= vec_proc_do_default_vl,
612 		.extra1		= &vl_info[ARM64_VEC_SME],
613 	},
614 	{ }
615 };
616 
617 static int __init sme_sysctl_init(void)
618 {
619 	if (system_supports_sme())
620 		if (!register_sysctl("abi", sme_default_vl_table))
621 			return -EINVAL;
622 
623 	return 0;
624 }
625 
626 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
627 static int __init sme_sysctl_init(void) { return 0; }
628 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
629 
630 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
631 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
632 
633 #ifdef CONFIG_CPU_BIG_ENDIAN
634 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
635 {
636 	u64 a = swab64(x);
637 	u64 b = swab64(x >> 64);
638 
639 	return ((__uint128_t)a << 64) | b;
640 }
641 #else
642 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
643 {
644 	return x;
645 }
646 #endif
647 
648 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
649 
650 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
651 			    unsigned int vq)
652 {
653 	unsigned int i;
654 	__uint128_t *p;
655 
656 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
657 		p = (__uint128_t *)ZREG(sst, vq, i);
658 		*p = arm64_cpu_to_le128(fst->vregs[i]);
659 	}
660 }
661 
662 /*
663  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
664  * task->thread.sve_state.
665  *
666  * Task can be a non-runnable task, or current.  In the latter case,
667  * the caller must have ownership of the cpu FPSIMD context before calling
668  * this function.
669  * task->thread.sve_state must point to at least sve_state_size(task)
670  * bytes of allocated kernel memory.
671  * task->thread.uw.fpsimd_state must be up to date before calling this
672  * function.
673  */
674 static void fpsimd_to_sve(struct task_struct *task)
675 {
676 	unsigned int vq;
677 	void *sst = task->thread.sve_state;
678 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
679 
680 	if (!system_supports_sve())
681 		return;
682 
683 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
684 	__fpsimd_to_sve(sst, fst, vq);
685 }
686 
687 /*
688  * Transfer the SVE state in task->thread.sve_state to
689  * task->thread.uw.fpsimd_state.
690  *
691  * Task can be a non-runnable task, or current.  In the latter case,
692  * the caller must have ownership of the cpu FPSIMD context before calling
693  * this function.
694  * task->thread.sve_state must point to at least sve_state_size(task)
695  * bytes of allocated kernel memory.
696  * task->thread.sve_state must be up to date before calling this function.
697  */
698 static void sve_to_fpsimd(struct task_struct *task)
699 {
700 	unsigned int vq, vl;
701 	void const *sst = task->thread.sve_state;
702 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
703 	unsigned int i;
704 	__uint128_t const *p;
705 
706 	if (!system_supports_sve())
707 		return;
708 
709 	vl = thread_get_cur_vl(&task->thread);
710 	vq = sve_vq_from_vl(vl);
711 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
712 		p = (__uint128_t const *)ZREG(sst, vq, i);
713 		fst->vregs[i] = arm64_le128_to_cpu(*p);
714 	}
715 }
716 
717 #ifdef CONFIG_ARM64_SVE
718 /*
719  * Call __sve_free() directly only if you know task can't be scheduled
720  * or preempted.
721  */
722 static void __sve_free(struct task_struct *task)
723 {
724 	kfree(task->thread.sve_state);
725 	task->thread.sve_state = NULL;
726 }
727 
728 static void sve_free(struct task_struct *task)
729 {
730 	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
731 
732 	__sve_free(task);
733 }
734 
735 /*
736  * Return how many bytes of memory are required to store the full SVE
737  * state for task, given task's currently configured vector length.
738  */
739 size_t sve_state_size(struct task_struct const *task)
740 {
741 	unsigned int vl = 0;
742 
743 	if (system_supports_sve())
744 		vl = task_get_sve_vl(task);
745 	if (system_supports_sme())
746 		vl = max(vl, task_get_sme_vl(task));
747 
748 	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
749 }
750 
751 /*
752  * Ensure that task->thread.sve_state is allocated and sufficiently large.
753  *
754  * This function should be used only in preparation for replacing
755  * task->thread.sve_state with new data.  The memory is always zeroed
756  * here to prevent stale data from showing through: this is done in
757  * the interest of testability and predictability: except in the
758  * do_sve_acc() case, there is no ABI requirement to hide stale data
759  * written previously be task.
760  */
761 void sve_alloc(struct task_struct *task, bool flush)
762 {
763 	if (task->thread.sve_state) {
764 		if (flush)
765 			memset(task->thread.sve_state, 0,
766 			       sve_state_size(task));
767 		return;
768 	}
769 
770 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
771 	task->thread.sve_state =
772 		kzalloc(sve_state_size(task), GFP_KERNEL);
773 }
774 
775 
776 /*
777  * Force the FPSIMD state shared with SVE to be updated in the SVE state
778  * even if the SVE state is the current active state.
779  *
780  * This should only be called by ptrace.  task must be non-runnable.
781  * task->thread.sve_state must point to at least sve_state_size(task)
782  * bytes of allocated kernel memory.
783  */
784 void fpsimd_force_sync_to_sve(struct task_struct *task)
785 {
786 	fpsimd_to_sve(task);
787 }
788 
789 /*
790  * Ensure that task->thread.sve_state is up to date with respect to
791  * the user task, irrespective of when SVE is in use or not.
792  *
793  * This should only be called by ptrace.  task must be non-runnable.
794  * task->thread.sve_state must point to at least sve_state_size(task)
795  * bytes of allocated kernel memory.
796  */
797 void fpsimd_sync_to_sve(struct task_struct *task)
798 {
799 	if (!test_tsk_thread_flag(task, TIF_SVE) &&
800 	    !thread_sm_enabled(&task->thread))
801 		fpsimd_to_sve(task);
802 }
803 
804 /*
805  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
806  * the user task, irrespective of whether SVE is in use or not.
807  *
808  * This should only be called by ptrace.  task must be non-runnable.
809  * task->thread.sve_state must point to at least sve_state_size(task)
810  * bytes of allocated kernel memory.
811  */
812 void sve_sync_to_fpsimd(struct task_struct *task)
813 {
814 	if (task->thread.fp_type == FP_STATE_SVE)
815 		sve_to_fpsimd(task);
816 }
817 
818 /*
819  * Ensure that task->thread.sve_state is up to date with respect to
820  * the task->thread.uw.fpsimd_state.
821  *
822  * This should only be called by ptrace to merge new FPSIMD register
823  * values into a task for which SVE is currently active.
824  * task must be non-runnable.
825  * task->thread.sve_state must point to at least sve_state_size(task)
826  * bytes of allocated kernel memory.
827  * task->thread.uw.fpsimd_state must already have been initialised with
828  * the new FPSIMD register values to be merged in.
829  */
830 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
831 {
832 	unsigned int vq;
833 	void *sst = task->thread.sve_state;
834 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
835 
836 	if (!test_tsk_thread_flag(task, TIF_SVE))
837 		return;
838 
839 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
840 
841 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
842 	__fpsimd_to_sve(sst, fst, vq);
843 }
844 
845 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
846 			  unsigned long vl, unsigned long flags)
847 {
848 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
849 				     PR_SVE_SET_VL_ONEXEC))
850 		return -EINVAL;
851 
852 	if (!sve_vl_valid(vl))
853 		return -EINVAL;
854 
855 	/*
856 	 * Clamp to the maximum vector length that VL-agnostic code
857 	 * can work with.  A flag may be assigned in the future to
858 	 * allow setting of larger vector lengths without confusing
859 	 * older software.
860 	 */
861 	if (vl > VL_ARCH_MAX)
862 		vl = VL_ARCH_MAX;
863 
864 	vl = find_supported_vector_length(type, vl);
865 
866 	if (flags & (PR_SVE_VL_INHERIT |
867 		     PR_SVE_SET_VL_ONEXEC))
868 		task_set_vl_onexec(task, type, vl);
869 	else
870 		/* Reset VL to system default on next exec: */
871 		task_set_vl_onexec(task, type, 0);
872 
873 	/* Only actually set the VL if not deferred: */
874 	if (flags & PR_SVE_SET_VL_ONEXEC)
875 		goto out;
876 
877 	if (vl == task_get_vl(task, type))
878 		goto out;
879 
880 	/*
881 	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
882 	 * write any live register state back to task_struct, and convert to a
883 	 * regular FPSIMD thread.
884 	 */
885 	if (task == current) {
886 		get_cpu_fpsimd_context();
887 
888 		fpsimd_save();
889 	}
890 
891 	fpsimd_flush_task_state(task);
892 	if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
893 	    thread_sm_enabled(&task->thread)) {
894 		sve_to_fpsimd(task);
895 		task->thread.fp_type = FP_STATE_FPSIMD;
896 	}
897 
898 	if (system_supports_sme() && type == ARM64_VEC_SME) {
899 		task->thread.svcr &= ~(SVCR_SM_MASK |
900 				       SVCR_ZA_MASK);
901 		clear_thread_flag(TIF_SME);
902 	}
903 
904 	if (task == current)
905 		put_cpu_fpsimd_context();
906 
907 	/*
908 	 * Force reallocation of task SVE and SME state to the correct
909 	 * size on next use:
910 	 */
911 	sve_free(task);
912 	if (system_supports_sme() && type == ARM64_VEC_SME)
913 		sme_free(task);
914 
915 	task_set_vl(task, type, vl);
916 
917 out:
918 	update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
919 			       flags & PR_SVE_VL_INHERIT);
920 
921 	return 0;
922 }
923 
924 /*
925  * Encode the current vector length and flags for return.
926  * This is only required for prctl(): ptrace has separate fields.
927  * SVE and SME use the same bits for _ONEXEC and _INHERIT.
928  *
929  * flags are as for vec_set_vector_length().
930  */
931 static int vec_prctl_status(enum vec_type type, unsigned long flags)
932 {
933 	int ret;
934 
935 	if (flags & PR_SVE_SET_VL_ONEXEC)
936 		ret = task_get_vl_onexec(current, type);
937 	else
938 		ret = task_get_vl(current, type);
939 
940 	if (test_thread_flag(vec_vl_inherit_flag(type)))
941 		ret |= PR_SVE_VL_INHERIT;
942 
943 	return ret;
944 }
945 
946 /* PR_SVE_SET_VL */
947 int sve_set_current_vl(unsigned long arg)
948 {
949 	unsigned long vl, flags;
950 	int ret;
951 
952 	vl = arg & PR_SVE_VL_LEN_MASK;
953 	flags = arg & ~vl;
954 
955 	if (!system_supports_sve() || is_compat_task())
956 		return -EINVAL;
957 
958 	ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
959 	if (ret)
960 		return ret;
961 
962 	return vec_prctl_status(ARM64_VEC_SVE, flags);
963 }
964 
965 /* PR_SVE_GET_VL */
966 int sve_get_current_vl(void)
967 {
968 	if (!system_supports_sve() || is_compat_task())
969 		return -EINVAL;
970 
971 	return vec_prctl_status(ARM64_VEC_SVE, 0);
972 }
973 
974 #ifdef CONFIG_ARM64_SME
975 /* PR_SME_SET_VL */
976 int sme_set_current_vl(unsigned long arg)
977 {
978 	unsigned long vl, flags;
979 	int ret;
980 
981 	vl = arg & PR_SME_VL_LEN_MASK;
982 	flags = arg & ~vl;
983 
984 	if (!system_supports_sme() || is_compat_task())
985 		return -EINVAL;
986 
987 	ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
988 	if (ret)
989 		return ret;
990 
991 	return vec_prctl_status(ARM64_VEC_SME, flags);
992 }
993 
994 /* PR_SME_GET_VL */
995 int sme_get_current_vl(void)
996 {
997 	if (!system_supports_sme() || is_compat_task())
998 		return -EINVAL;
999 
1000 	return vec_prctl_status(ARM64_VEC_SME, 0);
1001 }
1002 #endif /* CONFIG_ARM64_SME */
1003 
1004 static void vec_probe_vqs(struct vl_info *info,
1005 			  DECLARE_BITMAP(map, SVE_VQ_MAX))
1006 {
1007 	unsigned int vq, vl;
1008 
1009 	bitmap_zero(map, SVE_VQ_MAX);
1010 
1011 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
1012 		write_vl(info->type, vq - 1); /* self-syncing */
1013 
1014 		switch (info->type) {
1015 		case ARM64_VEC_SVE:
1016 			vl = sve_get_vl();
1017 			break;
1018 		case ARM64_VEC_SME:
1019 			vl = sme_get_vl();
1020 			break;
1021 		default:
1022 			vl = 0;
1023 			break;
1024 		}
1025 
1026 		/* Minimum VL identified? */
1027 		if (sve_vq_from_vl(vl) > vq)
1028 			break;
1029 
1030 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
1031 		set_bit(__vq_to_bit(vq), map);
1032 	}
1033 }
1034 
1035 /*
1036  * Initialise the set of known supported VQs for the boot CPU.
1037  * This is called during kernel boot, before secondary CPUs are brought up.
1038  */
1039 void __init vec_init_vq_map(enum vec_type type)
1040 {
1041 	struct vl_info *info = &vl_info[type];
1042 	vec_probe_vqs(info, info->vq_map);
1043 	bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1044 }
1045 
1046 /*
1047  * If we haven't committed to the set of supported VQs yet, filter out
1048  * those not supported by the current CPU.
1049  * This function is called during the bring-up of early secondary CPUs only.
1050  */
1051 void vec_update_vq_map(enum vec_type type)
1052 {
1053 	struct vl_info *info = &vl_info[type];
1054 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1055 
1056 	vec_probe_vqs(info, tmp_map);
1057 	bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1058 	bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1059 		  SVE_VQ_MAX);
1060 }
1061 
1062 /*
1063  * Check whether the current CPU supports all VQs in the committed set.
1064  * This function is called during the bring-up of late secondary CPUs only.
1065  */
1066 int vec_verify_vq_map(enum vec_type type)
1067 {
1068 	struct vl_info *info = &vl_info[type];
1069 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1070 	unsigned long b;
1071 
1072 	vec_probe_vqs(info, tmp_map);
1073 
1074 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1075 	if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1076 		pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1077 			info->name, smp_processor_id());
1078 		return -EINVAL;
1079 	}
1080 
1081 	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1082 		return 0;
1083 
1084 	/*
1085 	 * For KVM, it is necessary to ensure that this CPU doesn't
1086 	 * support any vector length that guests may have probed as
1087 	 * unsupported.
1088 	 */
1089 
1090 	/* Recover the set of supported VQs: */
1091 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1092 	/* Find VQs supported that are not globally supported: */
1093 	bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1094 
1095 	/* Find the lowest such VQ, if any: */
1096 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1097 	if (b >= SVE_VQ_MAX)
1098 		return 0; /* no mismatches */
1099 
1100 	/*
1101 	 * Mismatches above sve_max_virtualisable_vl are fine, since
1102 	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1103 	 */
1104 	if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1105 		pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1106 			info->name, smp_processor_id());
1107 		return -EINVAL;
1108 	}
1109 
1110 	return 0;
1111 }
1112 
1113 static void __init sve_efi_setup(void)
1114 {
1115 	int max_vl = 0;
1116 	int i;
1117 
1118 	if (!IS_ENABLED(CONFIG_EFI))
1119 		return;
1120 
1121 	for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1122 		max_vl = max(vl_info[i].max_vl, max_vl);
1123 
1124 	/*
1125 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1126 	 * This is evidence of a crippled system and we are returning void,
1127 	 * so no attempt is made to handle this situation here.
1128 	 */
1129 	if (!sve_vl_valid(max_vl))
1130 		goto fail;
1131 
1132 	efi_sve_state = __alloc_percpu(
1133 		SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
1134 	if (!efi_sve_state)
1135 		goto fail;
1136 
1137 	return;
1138 
1139 fail:
1140 	panic("Cannot allocate percpu memory for EFI SVE save/restore");
1141 }
1142 
1143 /*
1144  * Enable SVE for EL1.
1145  * Intended for use by the cpufeatures code during CPU boot.
1146  */
1147 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1148 {
1149 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1150 	isb();
1151 }
1152 
1153 /*
1154  * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
1155  * vector length.
1156  *
1157  * Use only if SVE is present.
1158  * This function clobbers the SVE vector length.
1159  */
1160 u64 read_zcr_features(void)
1161 {
1162 	u64 zcr;
1163 	unsigned int vq_max;
1164 
1165 	/*
1166 	 * Set the maximum possible VL, and write zeroes to all other
1167 	 * bits to see if they stick.
1168 	 */
1169 	sve_kernel_enable(NULL);
1170 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
1171 
1172 	zcr = read_sysreg_s(SYS_ZCR_EL1);
1173 	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
1174 	vq_max = sve_vq_from_vl(sve_get_vl());
1175 	zcr |= vq_max - 1; /* set LEN field to maximum effective value */
1176 
1177 	return zcr;
1178 }
1179 
1180 void __init sve_setup(void)
1181 {
1182 	struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1183 	u64 zcr;
1184 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1185 	unsigned long b;
1186 
1187 	if (!system_supports_sve())
1188 		return;
1189 
1190 	/*
1191 	 * The SVE architecture mandates support for 128-bit vectors,
1192 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
1193 	 * If something went wrong, at least try to patch it up:
1194 	 */
1195 	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1196 		set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1197 
1198 	zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1199 	info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
1200 
1201 	/*
1202 	 * Sanity-check that the max VL we determined through CPU features
1203 	 * corresponds properly to sve_vq_map.  If not, do our best:
1204 	 */
1205 	if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
1206 								 info->max_vl)))
1207 		info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
1208 							    info->max_vl);
1209 
1210 	/*
1211 	 * For the default VL, pick the maximum supported value <= 64.
1212 	 * VL == 64 is guaranteed not to grow the signal frame.
1213 	 */
1214 	set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1215 
1216 	bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1217 		      SVE_VQ_MAX);
1218 
1219 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1220 	if (b >= SVE_VQ_MAX)
1221 		/* No non-virtualisable VLs found */
1222 		info->max_virtualisable_vl = SVE_VQ_MAX;
1223 	else if (WARN_ON(b == SVE_VQ_MAX - 1))
1224 		/* No virtualisable VLs?  This is architecturally forbidden. */
1225 		info->max_virtualisable_vl = SVE_VQ_MIN;
1226 	else /* b + 1 < SVE_VQ_MAX */
1227 		info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1228 
1229 	if (info->max_virtualisable_vl > info->max_vl)
1230 		info->max_virtualisable_vl = info->max_vl;
1231 
1232 	pr_info("%s: maximum available vector length %u bytes per vector\n",
1233 		info->name, info->max_vl);
1234 	pr_info("%s: default vector length %u bytes per vector\n",
1235 		info->name, get_sve_default_vl());
1236 
1237 	/* KVM decides whether to support mismatched systems. Just warn here: */
1238 	if (sve_max_virtualisable_vl() < sve_max_vl())
1239 		pr_warn("%s: unvirtualisable vector lengths present\n",
1240 			info->name);
1241 
1242 	sve_efi_setup();
1243 }
1244 
1245 /*
1246  * Called from the put_task_struct() path, which cannot get here
1247  * unless dead_task is really dead and not schedulable.
1248  */
1249 void fpsimd_release_task(struct task_struct *dead_task)
1250 {
1251 	__sve_free(dead_task);
1252 	sme_free(dead_task);
1253 }
1254 
1255 #endif /* CONFIG_ARM64_SVE */
1256 
1257 #ifdef CONFIG_ARM64_SME
1258 
1259 /*
1260  * Ensure that task->thread.za_state is allocated and sufficiently large.
1261  *
1262  * This function should be used only in preparation for replacing
1263  * task->thread.za_state with new data.  The memory is always zeroed
1264  * here to prevent stale data from showing through: this is done in
1265  * the interest of testability and predictability, the architecture
1266  * guarantees that when ZA is enabled it will be zeroed.
1267  */
1268 void sme_alloc(struct task_struct *task)
1269 {
1270 	if (task->thread.za_state) {
1271 		memset(task->thread.za_state, 0, za_state_size(task));
1272 		return;
1273 	}
1274 
1275 	/* This could potentially be up to 64K. */
1276 	task->thread.za_state =
1277 		kzalloc(za_state_size(task), GFP_KERNEL);
1278 }
1279 
1280 static void sme_free(struct task_struct *task)
1281 {
1282 	kfree(task->thread.za_state);
1283 	task->thread.za_state = NULL;
1284 }
1285 
1286 void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1287 {
1288 	/* Set priority for all PEs to architecturally defined minimum */
1289 	write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1290 		       SYS_SMPRI_EL1);
1291 
1292 	/* Allow SME in kernel */
1293 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1294 	isb();
1295 
1296 	/* Allow EL0 to access TPIDR2 */
1297 	write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1298 	isb();
1299 }
1300 
1301 /*
1302  * This must be called after sme_kernel_enable(), we rely on the
1303  * feature table being sorted to ensure this.
1304  */
1305 void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1306 {
1307 	/* Allow use of FA64 */
1308 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1309 		       SYS_SMCR_EL1);
1310 }
1311 
1312 /*
1313  * Read the pseudo-SMCR used by cpufeatures to identify the supported
1314  * vector length.
1315  *
1316  * Use only if SME is present.
1317  * This function clobbers the SME vector length.
1318  */
1319 u64 read_smcr_features(void)
1320 {
1321 	u64 smcr;
1322 	unsigned int vq_max;
1323 
1324 	sme_kernel_enable(NULL);
1325 	sme_smstart_sm();
1326 
1327 	/*
1328 	 * Set the maximum possible VL.
1329 	 */
1330 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
1331 		       SYS_SMCR_EL1);
1332 
1333 	smcr = read_sysreg_s(SYS_SMCR_EL1);
1334 	smcr &= ~(u64)SMCR_ELx_LEN_MASK; /* Only the LEN field */
1335 	vq_max = sve_vq_from_vl(sve_get_vl());
1336 	smcr |= vq_max - 1; /* set LEN field to maximum effective value */
1337 
1338 	sme_smstop_sm();
1339 
1340 	return smcr;
1341 }
1342 
1343 void __init sme_setup(void)
1344 {
1345 	struct vl_info *info = &vl_info[ARM64_VEC_SME];
1346 	u64 smcr;
1347 	int min_bit;
1348 
1349 	if (!system_supports_sme())
1350 		return;
1351 
1352 	/*
1353 	 * SME doesn't require any particular vector length be
1354 	 * supported but it does require at least one.  We should have
1355 	 * disabled the feature entirely while bringing up CPUs but
1356 	 * let's double check here.
1357 	 */
1358 	WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1359 
1360 	min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1361 	info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1362 
1363 	smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
1364 	info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
1365 
1366 	/*
1367 	 * Sanity-check that the max VL we determined through CPU features
1368 	 * corresponds properly to sme_vq_map.  If not, do our best:
1369 	 */
1370 	if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
1371 								 info->max_vl)))
1372 		info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
1373 							    info->max_vl);
1374 
1375 	WARN_ON(info->min_vl > info->max_vl);
1376 
1377 	/*
1378 	 * For the default VL, pick the maximum supported value <= 32
1379 	 * (256 bits) if there is one since this is guaranteed not to
1380 	 * grow the signal frame when in streaming mode, otherwise the
1381 	 * minimum available VL will be used.
1382 	 */
1383 	set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1384 
1385 	pr_info("SME: minimum available vector length %u bytes per vector\n",
1386 		info->min_vl);
1387 	pr_info("SME: maximum available vector length %u bytes per vector\n",
1388 		info->max_vl);
1389 	pr_info("SME: default vector length %u bytes per vector\n",
1390 		get_sme_default_vl());
1391 }
1392 
1393 #endif /* CONFIG_ARM64_SME */
1394 
1395 static void sve_init_regs(void)
1396 {
1397 	/*
1398 	 * Convert the FPSIMD state to SVE, zeroing all the state that
1399 	 * is not shared with FPSIMD. If (as is likely) the current
1400 	 * state is live in the registers then do this there and
1401 	 * update our metadata for the current task including
1402 	 * disabling the trap, otherwise update our in-memory copy.
1403 	 * We are guaranteed to not be in streaming mode, we can only
1404 	 * take a SVE trap when not in streaming mode and we can't be
1405 	 * in streaming mode when taking a SME trap.
1406 	 */
1407 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1408 		unsigned long vq_minus_one =
1409 			sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1410 		sve_set_vq(vq_minus_one);
1411 		sve_flush_live(true, vq_minus_one);
1412 		fpsimd_bind_task_to_cpu();
1413 	} else {
1414 		fpsimd_to_sve(current);
1415 		current->thread.fp_type = FP_STATE_SVE;
1416 	}
1417 }
1418 
1419 /*
1420  * Trapped SVE access
1421  *
1422  * Storage is allocated for the full SVE state, the current FPSIMD
1423  * register contents are migrated across, and the access trap is
1424  * disabled.
1425  *
1426  * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1427  * would have disabled the SVE access trap for userspace during
1428  * ret_to_user, making an SVE access trap impossible in that case.
1429  */
1430 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1431 {
1432 	/* Even if we chose not to use SVE, the hardware could still trap: */
1433 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1434 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1435 		return;
1436 	}
1437 
1438 	sve_alloc(current, true);
1439 	if (!current->thread.sve_state) {
1440 		force_sig(SIGKILL);
1441 		return;
1442 	}
1443 
1444 	get_cpu_fpsimd_context();
1445 
1446 	if (test_and_set_thread_flag(TIF_SVE))
1447 		WARN_ON(1); /* SVE access shouldn't have trapped */
1448 
1449 	/*
1450 	 * Even if the task can have used streaming mode we can only
1451 	 * generate SVE access traps in normal SVE mode and
1452 	 * transitioning out of streaming mode may discard any
1453 	 * streaming mode state.  Always clear the high bits to avoid
1454 	 * any potential errors tracking what is properly initialised.
1455 	 */
1456 	sve_init_regs();
1457 
1458 	put_cpu_fpsimd_context();
1459 }
1460 
1461 /*
1462  * Trapped SME access
1463  *
1464  * Storage is allocated for the full SVE and SME state, the current
1465  * FPSIMD register contents are migrated to SVE if SVE is not already
1466  * active, and the access trap is disabled.
1467  *
1468  * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1469  * would have disabled the SME access trap for userspace during
1470  * ret_to_user, making an SVE access trap impossible in that case.
1471  */
1472 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1473 {
1474 	/* Even if we chose not to use SME, the hardware could still trap: */
1475 	if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1476 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1477 		return;
1478 	}
1479 
1480 	/*
1481 	 * If this not a trap due to SME being disabled then something
1482 	 * is being used in the wrong mode, report as SIGILL.
1483 	 */
1484 	if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
1485 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1486 		return;
1487 	}
1488 
1489 	sve_alloc(current, false);
1490 	sme_alloc(current);
1491 	if (!current->thread.sve_state || !current->thread.za_state) {
1492 		force_sig(SIGKILL);
1493 		return;
1494 	}
1495 
1496 	get_cpu_fpsimd_context();
1497 
1498 	/* With TIF_SME userspace shouldn't generate any traps */
1499 	if (test_and_set_thread_flag(TIF_SME))
1500 		WARN_ON(1);
1501 
1502 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1503 		unsigned long vq_minus_one =
1504 			sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1505 		sme_set_vq(vq_minus_one);
1506 
1507 		fpsimd_bind_task_to_cpu();
1508 	}
1509 
1510 	put_cpu_fpsimd_context();
1511 }
1512 
1513 /*
1514  * Trapped FP/ASIMD access.
1515  */
1516 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1517 {
1518 	/* TODO: implement lazy context saving/restoring */
1519 	WARN_ON(1);
1520 }
1521 
1522 /*
1523  * Raise a SIGFPE for the current process.
1524  */
1525 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1526 {
1527 	unsigned int si_code = FPE_FLTUNK;
1528 
1529 	if (esr & ESR_ELx_FP_EXC_TFV) {
1530 		if (esr & FPEXC_IOF)
1531 			si_code = FPE_FLTINV;
1532 		else if (esr & FPEXC_DZF)
1533 			si_code = FPE_FLTDIV;
1534 		else if (esr & FPEXC_OFF)
1535 			si_code = FPE_FLTOVF;
1536 		else if (esr & FPEXC_UFF)
1537 			si_code = FPE_FLTUND;
1538 		else if (esr & FPEXC_IXF)
1539 			si_code = FPE_FLTRES;
1540 	}
1541 
1542 	send_sig_fault(SIGFPE, si_code,
1543 		       (void __user *)instruction_pointer(regs),
1544 		       current);
1545 }
1546 
1547 void fpsimd_thread_switch(struct task_struct *next)
1548 {
1549 	bool wrong_task, wrong_cpu;
1550 
1551 	if (!system_supports_fpsimd())
1552 		return;
1553 
1554 	__get_cpu_fpsimd_context();
1555 
1556 	/* Save unsaved fpsimd state, if any: */
1557 	fpsimd_save();
1558 
1559 	/*
1560 	 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1561 	 * state.  For kernel threads, FPSIMD registers are never loaded
1562 	 * and wrong_task and wrong_cpu will always be true.
1563 	 */
1564 	wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1565 					&next->thread.uw.fpsimd_state;
1566 	wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1567 
1568 	update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1569 			       wrong_task || wrong_cpu);
1570 
1571 	__put_cpu_fpsimd_context();
1572 }
1573 
1574 static void fpsimd_flush_thread_vl(enum vec_type type)
1575 {
1576 	int vl, supported_vl;
1577 
1578 	/*
1579 	 * Reset the task vector length as required.  This is where we
1580 	 * ensure that all user tasks have a valid vector length
1581 	 * configured: no kernel task can become a user task without
1582 	 * an exec and hence a call to this function.  By the time the
1583 	 * first call to this function is made, all early hardware
1584 	 * probing is complete, so __sve_default_vl should be valid.
1585 	 * If a bug causes this to go wrong, we make some noise and
1586 	 * try to fudge thread.sve_vl to a safe value here.
1587 	 */
1588 	vl = task_get_vl_onexec(current, type);
1589 	if (!vl)
1590 		vl = get_default_vl(type);
1591 
1592 	if (WARN_ON(!sve_vl_valid(vl)))
1593 		vl = vl_info[type].min_vl;
1594 
1595 	supported_vl = find_supported_vector_length(type, vl);
1596 	if (WARN_ON(supported_vl != vl))
1597 		vl = supported_vl;
1598 
1599 	task_set_vl(current, type, vl);
1600 
1601 	/*
1602 	 * If the task is not set to inherit, ensure that the vector
1603 	 * length will be reset by a subsequent exec:
1604 	 */
1605 	if (!test_thread_flag(vec_vl_inherit_flag(type)))
1606 		task_set_vl_onexec(current, type, 0);
1607 }
1608 
1609 void fpsimd_flush_thread(void)
1610 {
1611 	void *sve_state = NULL;
1612 	void *za_state = NULL;
1613 
1614 	if (!system_supports_fpsimd())
1615 		return;
1616 
1617 	get_cpu_fpsimd_context();
1618 
1619 	fpsimd_flush_task_state(current);
1620 	memset(&current->thread.uw.fpsimd_state, 0,
1621 	       sizeof(current->thread.uw.fpsimd_state));
1622 
1623 	if (system_supports_sve()) {
1624 		clear_thread_flag(TIF_SVE);
1625 
1626 		/* Defer kfree() while in atomic context */
1627 		sve_state = current->thread.sve_state;
1628 		current->thread.sve_state = NULL;
1629 
1630 		fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1631 	}
1632 
1633 	if (system_supports_sme()) {
1634 		clear_thread_flag(TIF_SME);
1635 
1636 		/* Defer kfree() while in atomic context */
1637 		za_state = current->thread.za_state;
1638 		current->thread.za_state = NULL;
1639 
1640 		fpsimd_flush_thread_vl(ARM64_VEC_SME);
1641 		current->thread.svcr = 0;
1642 	}
1643 
1644 	current->thread.fp_type = FP_STATE_FPSIMD;
1645 
1646 	put_cpu_fpsimd_context();
1647 	kfree(sve_state);
1648 	kfree(za_state);
1649 }
1650 
1651 /*
1652  * Save the userland FPSIMD state of 'current' to memory, but only if the state
1653  * currently held in the registers does in fact belong to 'current'
1654  */
1655 void fpsimd_preserve_current_state(void)
1656 {
1657 	if (!system_supports_fpsimd())
1658 		return;
1659 
1660 	get_cpu_fpsimd_context();
1661 	fpsimd_save();
1662 	put_cpu_fpsimd_context();
1663 }
1664 
1665 /*
1666  * Like fpsimd_preserve_current_state(), but ensure that
1667  * current->thread.uw.fpsimd_state is updated so that it can be copied to
1668  * the signal frame.
1669  */
1670 void fpsimd_signal_preserve_current_state(void)
1671 {
1672 	fpsimd_preserve_current_state();
1673 	if (test_thread_flag(TIF_SVE))
1674 		sve_to_fpsimd(current);
1675 }
1676 
1677 /*
1678  * Called by KVM when entering the guest.
1679  */
1680 void fpsimd_kvm_prepare(void)
1681 {
1682 	if (!system_supports_sve())
1683 		return;
1684 
1685 	/*
1686 	 * KVM does not save host SVE state since we can only enter
1687 	 * the guest from a syscall so the ABI means that only the
1688 	 * non-saved SVE state needs to be saved.  If we have left
1689 	 * SVE enabled for performance reasons then update the task
1690 	 * state to be FPSIMD only.
1691 	 */
1692 	get_cpu_fpsimd_context();
1693 
1694 	if (test_and_clear_thread_flag(TIF_SVE)) {
1695 		sve_to_fpsimd(current);
1696 		current->thread.fp_type = FP_STATE_FPSIMD;
1697 	}
1698 
1699 	put_cpu_fpsimd_context();
1700 }
1701 
1702 /*
1703  * Associate current's FPSIMD context with this cpu
1704  * The caller must have ownership of the cpu FPSIMD context before calling
1705  * this function.
1706  */
1707 static void fpsimd_bind_task_to_cpu(void)
1708 {
1709 	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1710 
1711 	WARN_ON(!system_supports_fpsimd());
1712 	last->st = &current->thread.uw.fpsimd_state;
1713 	last->sve_state = current->thread.sve_state;
1714 	last->za_state = current->thread.za_state;
1715 	last->sve_vl = task_get_sve_vl(current);
1716 	last->sme_vl = task_get_sme_vl(current);
1717 	last->svcr = &current->thread.svcr;
1718 	last->fp_type = &current->thread.fp_type;
1719 	last->to_save = FP_STATE_CURRENT;
1720 	current->thread.fpsimd_cpu = smp_processor_id();
1721 
1722 	/*
1723 	 * Toggle SVE and SME trapping for userspace if needed, these
1724 	 * are serialsied by ret_to_user().
1725 	 */
1726 	if (system_supports_sme()) {
1727 		if (test_thread_flag(TIF_SME))
1728 			sme_user_enable();
1729 		else
1730 			sme_user_disable();
1731 	}
1732 
1733 	if (system_supports_sve()) {
1734 		if (test_thread_flag(TIF_SVE))
1735 			sve_user_enable();
1736 		else
1737 			sve_user_disable();
1738 	}
1739 }
1740 
1741 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
1742 {
1743 	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1744 
1745 	WARN_ON(!system_supports_fpsimd());
1746 	WARN_ON(!in_softirq() && !irqs_disabled());
1747 
1748 	*last = *state;
1749 }
1750 
1751 /*
1752  * Load the userland FPSIMD state of 'current' from memory, but only if the
1753  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1754  * state of 'current'.  This is called when we are preparing to return to
1755  * userspace to ensure that userspace sees a good register state.
1756  */
1757 void fpsimd_restore_current_state(void)
1758 {
1759 	/*
1760 	 * For the tasks that were created before we detected the absence of
1761 	 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1762 	 * e.g, init. This could be then inherited by the children processes.
1763 	 * If we later detect that the system doesn't support FP/SIMD,
1764 	 * we must clear the flag for  all the tasks to indicate that the
1765 	 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1766 	 * do_notify_resume().
1767 	 */
1768 	if (!system_supports_fpsimd()) {
1769 		clear_thread_flag(TIF_FOREIGN_FPSTATE);
1770 		return;
1771 	}
1772 
1773 	get_cpu_fpsimd_context();
1774 
1775 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1776 		task_fpsimd_load();
1777 		fpsimd_bind_task_to_cpu();
1778 	}
1779 
1780 	put_cpu_fpsimd_context();
1781 }
1782 
1783 /*
1784  * Load an updated userland FPSIMD state for 'current' from memory and set the
1785  * flag that indicates that the FPSIMD register contents are the most recent
1786  * FPSIMD state of 'current'. This is used by the signal code to restore the
1787  * register state when returning from a signal handler in FPSIMD only cases,
1788  * any SVE context will be discarded.
1789  */
1790 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1791 {
1792 	if (WARN_ON(!system_supports_fpsimd()))
1793 		return;
1794 
1795 	get_cpu_fpsimd_context();
1796 
1797 	current->thread.uw.fpsimd_state = *state;
1798 	if (test_thread_flag(TIF_SVE))
1799 		fpsimd_to_sve(current);
1800 
1801 	task_fpsimd_load();
1802 	fpsimd_bind_task_to_cpu();
1803 
1804 	clear_thread_flag(TIF_FOREIGN_FPSTATE);
1805 
1806 	put_cpu_fpsimd_context();
1807 }
1808 
1809 /*
1810  * Invalidate live CPU copies of task t's FPSIMD state
1811  *
1812  * This function may be called with preemption enabled.  The barrier()
1813  * ensures that the assignment to fpsimd_cpu is visible to any
1814  * preemption/softirq that could race with set_tsk_thread_flag(), so
1815  * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1816  *
1817  * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1818  * subsequent code.
1819  */
1820 void fpsimd_flush_task_state(struct task_struct *t)
1821 {
1822 	t->thread.fpsimd_cpu = NR_CPUS;
1823 	/*
1824 	 * If we don't support fpsimd, bail out after we have
1825 	 * reset the fpsimd_cpu for this task and clear the
1826 	 * FPSTATE.
1827 	 */
1828 	if (!system_supports_fpsimd())
1829 		return;
1830 	barrier();
1831 	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1832 
1833 	barrier();
1834 }
1835 
1836 /*
1837  * Invalidate any task's FPSIMD state that is present on this cpu.
1838  * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1839  * before calling this function.
1840  */
1841 static void fpsimd_flush_cpu_state(void)
1842 {
1843 	WARN_ON(!system_supports_fpsimd());
1844 	__this_cpu_write(fpsimd_last_state.st, NULL);
1845 
1846 	/*
1847 	 * Leaving streaming mode enabled will cause issues for any kernel
1848 	 * NEON and leaving streaming mode or ZA enabled may increase power
1849 	 * consumption.
1850 	 */
1851 	if (system_supports_sme())
1852 		sme_smstop();
1853 
1854 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1855 }
1856 
1857 /*
1858  * Save the FPSIMD state to memory and invalidate cpu view.
1859  * This function must be called with preemption disabled.
1860  */
1861 void fpsimd_save_and_flush_cpu_state(void)
1862 {
1863 	if (!system_supports_fpsimd())
1864 		return;
1865 	WARN_ON(preemptible());
1866 	__get_cpu_fpsimd_context();
1867 	fpsimd_save();
1868 	fpsimd_flush_cpu_state();
1869 	__put_cpu_fpsimd_context();
1870 }
1871 
1872 #ifdef CONFIG_KERNEL_MODE_NEON
1873 
1874 /*
1875  * Kernel-side NEON support functions
1876  */
1877 
1878 /*
1879  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1880  * context
1881  *
1882  * Must not be called unless may_use_simd() returns true.
1883  * Task context in the FPSIMD registers is saved back to memory as necessary.
1884  *
1885  * A matching call to kernel_neon_end() must be made before returning from the
1886  * calling context.
1887  *
1888  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1889  * called.
1890  */
1891 void kernel_neon_begin(void)
1892 {
1893 	if (WARN_ON(!system_supports_fpsimd()))
1894 		return;
1895 
1896 	BUG_ON(!may_use_simd());
1897 
1898 	get_cpu_fpsimd_context();
1899 
1900 	/* Save unsaved fpsimd state, if any: */
1901 	fpsimd_save();
1902 
1903 	/* Invalidate any task state remaining in the fpsimd regs: */
1904 	fpsimd_flush_cpu_state();
1905 }
1906 EXPORT_SYMBOL_GPL(kernel_neon_begin);
1907 
1908 /*
1909  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1910  *
1911  * Must be called from a context in which kernel_neon_begin() was previously
1912  * called, with no call to kernel_neon_end() in the meantime.
1913  *
1914  * The caller must not use the FPSIMD registers after this function is called,
1915  * unless kernel_neon_begin() is called again in the meantime.
1916  */
1917 void kernel_neon_end(void)
1918 {
1919 	if (!system_supports_fpsimd())
1920 		return;
1921 
1922 	put_cpu_fpsimd_context();
1923 }
1924 EXPORT_SYMBOL_GPL(kernel_neon_end);
1925 
1926 #ifdef CONFIG_EFI
1927 
1928 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1929 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1930 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1931 static DEFINE_PER_CPU(bool, efi_sm_state);
1932 
1933 /*
1934  * EFI runtime services support functions
1935  *
1936  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1937  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1938  * is always used rather than being an optional accelerator.
1939  *
1940  * These functions provide the necessary support for ensuring FPSIMD
1941  * save/restore in the contexts from which EFI is used.
1942  *
1943  * Do not use them for any other purpose -- if tempted to do so, you are
1944  * either doing something wrong or you need to propose some refactoring.
1945  */
1946 
1947 /*
1948  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1949  */
1950 void __efi_fpsimd_begin(void)
1951 {
1952 	if (!system_supports_fpsimd())
1953 		return;
1954 
1955 	WARN_ON(preemptible());
1956 
1957 	if (may_use_simd()) {
1958 		kernel_neon_begin();
1959 	} else {
1960 		/*
1961 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1962 		 * preserving:
1963 		 */
1964 		if (system_supports_sve() && likely(efi_sve_state)) {
1965 			char *sve_state = this_cpu_ptr(efi_sve_state);
1966 			bool ffr = true;
1967 			u64 svcr;
1968 
1969 			__this_cpu_write(efi_sve_state_used, true);
1970 
1971 			if (system_supports_sme()) {
1972 				svcr = read_sysreg_s(SYS_SVCR);
1973 
1974 				__this_cpu_write(efi_sm_state,
1975 						 svcr & SVCR_SM_MASK);
1976 
1977 				/*
1978 				 * Unless we have FA64 FFR does not
1979 				 * exist in streaming mode.
1980 				 */
1981 				if (!system_supports_fa64())
1982 					ffr = !(svcr & SVCR_SM_MASK);
1983 			}
1984 
1985 			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
1986 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1987 				       ffr);
1988 
1989 			if (system_supports_sme())
1990 				sysreg_clear_set_s(SYS_SVCR,
1991 						   SVCR_SM_MASK, 0);
1992 
1993 		} else {
1994 			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1995 		}
1996 
1997 		__this_cpu_write(efi_fpsimd_state_used, true);
1998 	}
1999 }
2000 
2001 /*
2002  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
2003  */
2004 void __efi_fpsimd_end(void)
2005 {
2006 	if (!system_supports_fpsimd())
2007 		return;
2008 
2009 	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
2010 		kernel_neon_end();
2011 	} else {
2012 		if (system_supports_sve() &&
2013 		    likely(__this_cpu_read(efi_sve_state_used))) {
2014 			char const *sve_state = this_cpu_ptr(efi_sve_state);
2015 			bool ffr = true;
2016 
2017 			/*
2018 			 * Restore streaming mode; EFI calls are
2019 			 * normal function calls so should not return in
2020 			 * streaming mode.
2021 			 */
2022 			if (system_supports_sme()) {
2023 				if (__this_cpu_read(efi_sm_state)) {
2024 					sysreg_clear_set_s(SYS_SVCR,
2025 							   0,
2026 							   SVCR_SM_MASK);
2027 
2028 					/*
2029 					 * Unless we have FA64 FFR does not
2030 					 * exist in streaming mode.
2031 					 */
2032 					if (!system_supports_fa64())
2033 						ffr = false;
2034 				}
2035 			}
2036 
2037 			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
2038 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2039 				       ffr);
2040 
2041 			__this_cpu_write(efi_sve_state_used, false);
2042 		} else {
2043 			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
2044 		}
2045 	}
2046 }
2047 
2048 #endif /* CONFIG_EFI */
2049 
2050 #endif /* CONFIG_KERNEL_MODE_NEON */
2051 
2052 #ifdef CONFIG_CPU_PM
2053 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
2054 				  unsigned long cmd, void *v)
2055 {
2056 	switch (cmd) {
2057 	case CPU_PM_ENTER:
2058 		fpsimd_save_and_flush_cpu_state();
2059 		break;
2060 	case CPU_PM_EXIT:
2061 		break;
2062 	case CPU_PM_ENTER_FAILED:
2063 	default:
2064 		return NOTIFY_DONE;
2065 	}
2066 	return NOTIFY_OK;
2067 }
2068 
2069 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2070 	.notifier_call = fpsimd_cpu_pm_notifier,
2071 };
2072 
2073 static void __init fpsimd_pm_init(void)
2074 {
2075 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2076 }
2077 
2078 #else
2079 static inline void fpsimd_pm_init(void) { }
2080 #endif /* CONFIG_CPU_PM */
2081 
2082 #ifdef CONFIG_HOTPLUG_CPU
2083 static int fpsimd_cpu_dead(unsigned int cpu)
2084 {
2085 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
2086 	return 0;
2087 }
2088 
2089 static inline void fpsimd_hotplug_init(void)
2090 {
2091 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2092 				  NULL, fpsimd_cpu_dead);
2093 }
2094 
2095 #else
2096 static inline void fpsimd_hotplug_init(void) { }
2097 #endif
2098 
2099 /*
2100  * FP/SIMD support code initialisation.
2101  */
2102 static int __init fpsimd_init(void)
2103 {
2104 	if (cpu_have_named_feature(FP)) {
2105 		fpsimd_pm_init();
2106 		fpsimd_hotplug_init();
2107 	} else {
2108 		pr_notice("Floating-point is not implemented\n");
2109 	}
2110 
2111 	if (!cpu_have_named_feature(ASIMD))
2112 		pr_notice("Advanced SIMD is not implemented\n");
2113 
2114 
2115 	if (cpu_have_named_feature(SME) && !cpu_have_named_feature(SVE))
2116 		pr_notice("SME is implemented but not SVE\n");
2117 
2118 	sve_sysctl_init();
2119 	sme_sysctl_init();
2120 
2121 	return 0;
2122 }
2123 core_initcall(fpsimd_init);
2124