1 /* 2 * FP/SIMD context switching and fault handling 3 * 4 * Copyright (C) 2012 ARM Ltd. 5 * Author: Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/bitmap.h> 21 #include <linux/bottom_half.h> 22 #include <linux/bug.h> 23 #include <linux/cache.h> 24 #include <linux/compat.h> 25 #include <linux/cpu.h> 26 #include <linux/cpu_pm.h> 27 #include <linux/kernel.h> 28 #include <linux/linkage.h> 29 #include <linux/irqflags.h> 30 #include <linux/init.h> 31 #include <linux/percpu.h> 32 #include <linux/prctl.h> 33 #include <linux/preempt.h> 34 #include <linux/prctl.h> 35 #include <linux/ptrace.h> 36 #include <linux/sched/signal.h> 37 #include <linux/sched/task_stack.h> 38 #include <linux/signal.h> 39 #include <linux/slab.h> 40 #include <linux/sysctl.h> 41 42 #include <asm/esr.h> 43 #include <asm/fpsimd.h> 44 #include <asm/cpufeature.h> 45 #include <asm/cputype.h> 46 #include <asm/simd.h> 47 #include <asm/sigcontext.h> 48 #include <asm/sysreg.h> 49 #include <asm/traps.h> 50 51 #define FPEXC_IOF (1 << 0) 52 #define FPEXC_DZF (1 << 1) 53 #define FPEXC_OFF (1 << 2) 54 #define FPEXC_UFF (1 << 3) 55 #define FPEXC_IXF (1 << 4) 56 #define FPEXC_IDF (1 << 7) 57 58 /* 59 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.) 60 * 61 * In order to reduce the number of times the FPSIMD state is needlessly saved 62 * and restored, we need to keep track of two things: 63 * (a) for each task, we need to remember which CPU was the last one to have 64 * the task's FPSIMD state loaded into its FPSIMD registers; 65 * (b) for each CPU, we need to remember which task's userland FPSIMD state has 66 * been loaded into its FPSIMD registers most recently, or whether it has 67 * been used to perform kernel mode NEON in the meantime. 68 * 69 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to 70 * the id of the current CPU every time the state is loaded onto a CPU. For (b), 71 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the 72 * address of the userland FPSIMD state of the task that was loaded onto the CPU 73 * the most recently, or NULL if kernel mode NEON has been performed after that. 74 * 75 * With this in place, we no longer have to restore the next FPSIMD state right 76 * when switching between tasks. Instead, we can defer this check to userland 77 * resume, at which time we verify whether the CPU's fpsimd_last_state and the 78 * task's fpsimd_cpu are still mutually in sync. If this is the case, we 79 * can omit the FPSIMD restore. 80 * 81 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to 82 * indicate whether or not the userland FPSIMD state of the current task is 83 * present in the registers. The flag is set unless the FPSIMD registers of this 84 * CPU currently contain the most recent userland FPSIMD state of the current 85 * task. 86 * 87 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may 88 * save the task's FPSIMD context back to task_struct from softirq context. 89 * To prevent this from racing with the manipulation of the task's FPSIMD state 90 * from task context and thereby corrupting the state, it is necessary to 91 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE 92 * flag with local_bh_disable() unless softirqs are already masked. 93 * 94 * For a certain task, the sequence may look something like this: 95 * - the task gets scheduled in; if both the task's fpsimd_cpu field 96 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu 97 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is 98 * cleared, otherwise it is set; 99 * 100 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's 101 * userland FPSIMD state is copied from memory to the registers, the task's 102 * fpsimd_cpu field is set to the id of the current CPU, the current 103 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the 104 * TIF_FOREIGN_FPSTATE flag is cleared; 105 * 106 * - the task executes an ordinary syscall; upon return to userland, the 107 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is 108 * restored; 109 * 110 * - the task executes a syscall which executes some NEON instructions; this is 111 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD 112 * register contents to memory, clears the fpsimd_last_state per-cpu variable 113 * and sets the TIF_FOREIGN_FPSTATE flag; 114 * 115 * - the task gets preempted after kernel_neon_end() is called; as we have not 116 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so 117 * whatever is in the FPSIMD registers is not saved to memory, but discarded. 118 */ 119 struct fpsimd_last_state_struct { 120 struct user_fpsimd_state *st; 121 bool sve_in_use; 122 }; 123 124 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state); 125 126 /* Default VL for tasks that don't set it explicitly: */ 127 static int sve_default_vl = -1; 128 129 #ifdef CONFIG_ARM64_SVE 130 131 /* Maximum supported vector length across all CPUs (initially poisoned) */ 132 int __ro_after_init sve_max_vl = -1; 133 /* Set of available vector lengths, as vq_to_bit(vq): */ 134 static __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX); 135 static void __percpu *efi_sve_state; 136 137 #else /* ! CONFIG_ARM64_SVE */ 138 139 /* Dummy declaration for code that will be optimised out: */ 140 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX); 141 extern void __percpu *efi_sve_state; 142 143 #endif /* ! CONFIG_ARM64_SVE */ 144 145 /* 146 * Call __sve_free() directly only if you know task can't be scheduled 147 * or preempted. 148 */ 149 static void __sve_free(struct task_struct *task) 150 { 151 kfree(task->thread.sve_state); 152 task->thread.sve_state = NULL; 153 } 154 155 static void sve_free(struct task_struct *task) 156 { 157 WARN_ON(test_tsk_thread_flag(task, TIF_SVE)); 158 159 __sve_free(task); 160 } 161 162 163 /* Offset of FFR in the SVE register dump */ 164 static size_t sve_ffr_offset(int vl) 165 { 166 return SVE_SIG_FFR_OFFSET(sve_vq_from_vl(vl)) - SVE_SIG_REGS_OFFSET; 167 } 168 169 static void *sve_pffr(struct task_struct *task) 170 { 171 return (char *)task->thread.sve_state + 172 sve_ffr_offset(task->thread.sve_vl); 173 } 174 175 static void change_cpacr(u64 val, u64 mask) 176 { 177 u64 cpacr = read_sysreg(CPACR_EL1); 178 u64 new = (cpacr & ~mask) | val; 179 180 if (new != cpacr) 181 write_sysreg(new, CPACR_EL1); 182 } 183 184 static void sve_user_disable(void) 185 { 186 change_cpacr(0, CPACR_EL1_ZEN_EL0EN); 187 } 188 189 static void sve_user_enable(void) 190 { 191 change_cpacr(CPACR_EL1_ZEN_EL0EN, CPACR_EL1_ZEN_EL0EN); 192 } 193 194 /* 195 * TIF_SVE controls whether a task can use SVE without trapping while 196 * in userspace, and also the way a task's FPSIMD/SVE state is stored 197 * in thread_struct. 198 * 199 * The kernel uses this flag to track whether a user task is actively 200 * using SVE, and therefore whether full SVE register state needs to 201 * be tracked. If not, the cheaper FPSIMD context handling code can 202 * be used instead of the more costly SVE equivalents. 203 * 204 * * TIF_SVE set: 205 * 206 * The task can execute SVE instructions while in userspace without 207 * trapping to the kernel. 208 * 209 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the 210 * corresponding Zn), P0-P15 and FFR are encoded in in 211 * task->thread.sve_state, formatted appropriately for vector 212 * length task->thread.sve_vl. 213 * 214 * task->thread.sve_state must point to a valid buffer at least 215 * sve_state_size(task) bytes in size. 216 * 217 * During any syscall, the kernel may optionally clear TIF_SVE and 218 * discard the vector state except for the FPSIMD subset. 219 * 220 * * TIF_SVE clear: 221 * 222 * An attempt by the user task to execute an SVE instruction causes 223 * do_sve_acc() to be called, which does some preparation and then 224 * sets TIF_SVE. 225 * 226 * When stored, FPSIMD registers V0-V31 are encoded in 227 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are 228 * logically zero but not stored anywhere; P0-P15 and FFR are not 229 * stored and have unspecified values from userspace's point of 230 * view. For hygiene purposes, the kernel zeroes them on next use, 231 * but userspace is discouraged from relying on this. 232 * 233 * task->thread.sve_state does not need to be non-NULL, valid or any 234 * particular size: it must not be dereferenced. 235 * 236 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state 237 * irrespective of whether TIF_SVE is clear or set, since these are 238 * not vector length dependent. 239 */ 240 241 /* 242 * Update current's FPSIMD/SVE registers from thread_struct. 243 * 244 * This function should be called only when the FPSIMD/SVE state in 245 * thread_struct is known to be up to date, when preparing to enter 246 * userspace. 247 * 248 * Softirqs (and preemption) must be disabled. 249 */ 250 static void task_fpsimd_load(void) 251 { 252 WARN_ON(!in_softirq() && !irqs_disabled()); 253 254 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 255 sve_load_state(sve_pffr(current), 256 ¤t->thread.uw.fpsimd_state.fpsr, 257 sve_vq_from_vl(current->thread.sve_vl) - 1); 258 else 259 fpsimd_load_state(¤t->thread.uw.fpsimd_state); 260 261 if (system_supports_sve()) { 262 /* Toggle SVE trapping for userspace if needed */ 263 if (test_thread_flag(TIF_SVE)) 264 sve_user_enable(); 265 else 266 sve_user_disable(); 267 268 /* Serialised by exception return to user */ 269 } 270 } 271 272 /* 273 * Ensure current's FPSIMD/SVE storage in thread_struct is up to date 274 * with respect to the CPU registers. 275 * 276 * Softirqs (and preemption) must be disabled. 277 */ 278 static void task_fpsimd_save(void) 279 { 280 WARN_ON(!in_softirq() && !irqs_disabled()); 281 282 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 283 if (system_supports_sve() && test_thread_flag(TIF_SVE)) { 284 if (WARN_ON(sve_get_vl() != current->thread.sve_vl)) { 285 /* 286 * Can't save the user regs, so current would 287 * re-enter user with corrupt state. 288 * There's no way to recover, so kill it: 289 */ 290 force_signal_inject(SIGKILL, SI_KERNEL, 0); 291 return; 292 } 293 294 sve_save_state(sve_pffr(current), 295 ¤t->thread.uw.fpsimd_state.fpsr); 296 } else 297 fpsimd_save_state(¤t->thread.uw.fpsimd_state); 298 } 299 } 300 301 /* 302 * Helpers to translate bit indices in sve_vq_map to VQ values (and 303 * vice versa). This allows find_next_bit() to be used to find the 304 * _maximum_ VQ not exceeding a certain value. 305 */ 306 307 static unsigned int vq_to_bit(unsigned int vq) 308 { 309 return SVE_VQ_MAX - vq; 310 } 311 312 static unsigned int bit_to_vq(unsigned int bit) 313 { 314 if (WARN_ON(bit >= SVE_VQ_MAX)) 315 bit = SVE_VQ_MAX - 1; 316 317 return SVE_VQ_MAX - bit; 318 } 319 320 /* 321 * All vector length selection from userspace comes through here. 322 * We're on a slow path, so some sanity-checks are included. 323 * If things go wrong there's a bug somewhere, but try to fall back to a 324 * safe choice. 325 */ 326 static unsigned int find_supported_vector_length(unsigned int vl) 327 { 328 int bit; 329 int max_vl = sve_max_vl; 330 331 if (WARN_ON(!sve_vl_valid(vl))) 332 vl = SVE_VL_MIN; 333 334 if (WARN_ON(!sve_vl_valid(max_vl))) 335 max_vl = SVE_VL_MIN; 336 337 if (vl > max_vl) 338 vl = max_vl; 339 340 bit = find_next_bit(sve_vq_map, SVE_VQ_MAX, 341 vq_to_bit(sve_vq_from_vl(vl))); 342 return sve_vl_from_vq(bit_to_vq(bit)); 343 } 344 345 #ifdef CONFIG_SYSCTL 346 347 static int sve_proc_do_default_vl(struct ctl_table *table, int write, 348 void __user *buffer, size_t *lenp, 349 loff_t *ppos) 350 { 351 int ret; 352 int vl = sve_default_vl; 353 struct ctl_table tmp_table = { 354 .data = &vl, 355 .maxlen = sizeof(vl), 356 }; 357 358 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); 359 if (ret || !write) 360 return ret; 361 362 /* Writing -1 has the special meaning "set to max": */ 363 if (vl == -1) { 364 /* Fail safe if sve_max_vl wasn't initialised */ 365 if (WARN_ON(!sve_vl_valid(sve_max_vl))) 366 vl = SVE_VL_MIN; 367 else 368 vl = sve_max_vl; 369 370 goto chosen; 371 } 372 373 if (!sve_vl_valid(vl)) 374 return -EINVAL; 375 376 vl = find_supported_vector_length(vl); 377 chosen: 378 sve_default_vl = vl; 379 return 0; 380 } 381 382 static struct ctl_table sve_default_vl_table[] = { 383 { 384 .procname = "sve_default_vector_length", 385 .mode = 0644, 386 .proc_handler = sve_proc_do_default_vl, 387 }, 388 { } 389 }; 390 391 static int __init sve_sysctl_init(void) 392 { 393 if (system_supports_sve()) 394 if (!register_sysctl("abi", sve_default_vl_table)) 395 return -EINVAL; 396 397 return 0; 398 } 399 400 #else /* ! CONFIG_SYSCTL */ 401 static int __init sve_sysctl_init(void) { return 0; } 402 #endif /* ! CONFIG_SYSCTL */ 403 404 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \ 405 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET)) 406 407 /* 408 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to 409 * task->thread.sve_state. 410 * 411 * Task can be a non-runnable task, or current. In the latter case, 412 * softirqs (and preemption) must be disabled. 413 * task->thread.sve_state must point to at least sve_state_size(task) 414 * bytes of allocated kernel memory. 415 * task->thread.uw.fpsimd_state must be up to date before calling this 416 * function. 417 */ 418 static void fpsimd_to_sve(struct task_struct *task) 419 { 420 unsigned int vq; 421 void *sst = task->thread.sve_state; 422 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 423 unsigned int i; 424 425 if (!system_supports_sve()) 426 return; 427 428 vq = sve_vq_from_vl(task->thread.sve_vl); 429 for (i = 0; i < 32; ++i) 430 memcpy(ZREG(sst, vq, i), &fst->vregs[i], 431 sizeof(fst->vregs[i])); 432 } 433 434 /* 435 * Transfer the SVE state in task->thread.sve_state to 436 * task->thread.uw.fpsimd_state. 437 * 438 * Task can be a non-runnable task, or current. In the latter case, 439 * softirqs (and preemption) must be disabled. 440 * task->thread.sve_state must point to at least sve_state_size(task) 441 * bytes of allocated kernel memory. 442 * task->thread.sve_state must be up to date before calling this function. 443 */ 444 static void sve_to_fpsimd(struct task_struct *task) 445 { 446 unsigned int vq; 447 void const *sst = task->thread.sve_state; 448 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state; 449 unsigned int i; 450 451 if (!system_supports_sve()) 452 return; 453 454 vq = sve_vq_from_vl(task->thread.sve_vl); 455 for (i = 0; i < 32; ++i) 456 memcpy(&fst->vregs[i], ZREG(sst, vq, i), 457 sizeof(fst->vregs[i])); 458 } 459 460 #ifdef CONFIG_ARM64_SVE 461 462 /* 463 * Return how many bytes of memory are required to store the full SVE 464 * state for task, given task's currently configured vector length. 465 */ 466 size_t sve_state_size(struct task_struct const *task) 467 { 468 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl)); 469 } 470 471 /* 472 * Ensure that task->thread.sve_state is allocated and sufficiently large. 473 * 474 * This function should be used only in preparation for replacing 475 * task->thread.sve_state with new data. The memory is always zeroed 476 * here to prevent stale data from showing through: this is done in 477 * the interest of testability and predictability: except in the 478 * do_sve_acc() case, there is no ABI requirement to hide stale data 479 * written previously be task. 480 */ 481 void sve_alloc(struct task_struct *task) 482 { 483 if (task->thread.sve_state) { 484 memset(task->thread.sve_state, 0, sve_state_size(current)); 485 return; 486 } 487 488 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */ 489 task->thread.sve_state = 490 kzalloc(sve_state_size(task), GFP_KERNEL); 491 492 /* 493 * If future SVE revisions can have larger vectors though, 494 * this may cease to be true: 495 */ 496 BUG_ON(!task->thread.sve_state); 497 } 498 499 500 /* 501 * Ensure that task->thread.sve_state is up to date with respect to 502 * the user task, irrespective of when SVE is in use or not. 503 * 504 * This should only be called by ptrace. task must be non-runnable. 505 * task->thread.sve_state must point to at least sve_state_size(task) 506 * bytes of allocated kernel memory. 507 */ 508 void fpsimd_sync_to_sve(struct task_struct *task) 509 { 510 if (!test_tsk_thread_flag(task, TIF_SVE)) 511 fpsimd_to_sve(task); 512 } 513 514 /* 515 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to 516 * the user task, irrespective of whether SVE is in use or not. 517 * 518 * This should only be called by ptrace. task must be non-runnable. 519 * task->thread.sve_state must point to at least sve_state_size(task) 520 * bytes of allocated kernel memory. 521 */ 522 void sve_sync_to_fpsimd(struct task_struct *task) 523 { 524 if (test_tsk_thread_flag(task, TIF_SVE)) 525 sve_to_fpsimd(task); 526 } 527 528 /* 529 * Ensure that task->thread.sve_state is up to date with respect to 530 * the task->thread.uw.fpsimd_state. 531 * 532 * This should only be called by ptrace to merge new FPSIMD register 533 * values into a task for which SVE is currently active. 534 * task must be non-runnable. 535 * task->thread.sve_state must point to at least sve_state_size(task) 536 * bytes of allocated kernel memory. 537 * task->thread.uw.fpsimd_state must already have been initialised with 538 * the new FPSIMD register values to be merged in. 539 */ 540 void sve_sync_from_fpsimd_zeropad(struct task_struct *task) 541 { 542 unsigned int vq; 543 void *sst = task->thread.sve_state; 544 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 545 unsigned int i; 546 547 if (!test_tsk_thread_flag(task, TIF_SVE)) 548 return; 549 550 vq = sve_vq_from_vl(task->thread.sve_vl); 551 552 memset(sst, 0, SVE_SIG_REGS_SIZE(vq)); 553 554 for (i = 0; i < 32; ++i) 555 memcpy(ZREG(sst, vq, i), &fst->vregs[i], 556 sizeof(fst->vregs[i])); 557 } 558 559 int sve_set_vector_length(struct task_struct *task, 560 unsigned long vl, unsigned long flags) 561 { 562 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT | 563 PR_SVE_SET_VL_ONEXEC)) 564 return -EINVAL; 565 566 if (!sve_vl_valid(vl)) 567 return -EINVAL; 568 569 /* 570 * Clamp to the maximum vector length that VL-agnostic SVE code can 571 * work with. A flag may be assigned in the future to allow setting 572 * of larger vector lengths without confusing older software. 573 */ 574 if (vl > SVE_VL_ARCH_MAX) 575 vl = SVE_VL_ARCH_MAX; 576 577 vl = find_supported_vector_length(vl); 578 579 if (flags & (PR_SVE_VL_INHERIT | 580 PR_SVE_SET_VL_ONEXEC)) 581 task->thread.sve_vl_onexec = vl; 582 else 583 /* Reset VL to system default on next exec: */ 584 task->thread.sve_vl_onexec = 0; 585 586 /* Only actually set the VL if not deferred: */ 587 if (flags & PR_SVE_SET_VL_ONEXEC) 588 goto out; 589 590 if (vl == task->thread.sve_vl) 591 goto out; 592 593 /* 594 * To ensure the FPSIMD bits of the SVE vector registers are preserved, 595 * write any live register state back to task_struct, and convert to a 596 * non-SVE thread. 597 */ 598 if (task == current) { 599 local_bh_disable(); 600 601 task_fpsimd_save(); 602 set_thread_flag(TIF_FOREIGN_FPSTATE); 603 } 604 605 fpsimd_flush_task_state(task); 606 if (test_and_clear_tsk_thread_flag(task, TIF_SVE)) 607 sve_to_fpsimd(task); 608 609 if (task == current) 610 local_bh_enable(); 611 612 /* 613 * Force reallocation of task SVE state to the correct size 614 * on next use: 615 */ 616 sve_free(task); 617 618 task->thread.sve_vl = vl; 619 620 out: 621 if (flags & PR_SVE_VL_INHERIT) 622 set_tsk_thread_flag(task, TIF_SVE_VL_INHERIT); 623 else 624 clear_tsk_thread_flag(task, TIF_SVE_VL_INHERIT); 625 626 return 0; 627 } 628 629 /* 630 * Encode the current vector length and flags for return. 631 * This is only required for prctl(): ptrace has separate fields 632 * 633 * flags are as for sve_set_vector_length(). 634 */ 635 static int sve_prctl_status(unsigned long flags) 636 { 637 int ret; 638 639 if (flags & PR_SVE_SET_VL_ONEXEC) 640 ret = current->thread.sve_vl_onexec; 641 else 642 ret = current->thread.sve_vl; 643 644 if (test_thread_flag(TIF_SVE_VL_INHERIT)) 645 ret |= PR_SVE_VL_INHERIT; 646 647 return ret; 648 } 649 650 /* PR_SVE_SET_VL */ 651 int sve_set_current_vl(unsigned long arg) 652 { 653 unsigned long vl, flags; 654 int ret; 655 656 vl = arg & PR_SVE_VL_LEN_MASK; 657 flags = arg & ~vl; 658 659 if (!system_supports_sve()) 660 return -EINVAL; 661 662 ret = sve_set_vector_length(current, vl, flags); 663 if (ret) 664 return ret; 665 666 return sve_prctl_status(flags); 667 } 668 669 /* PR_SVE_GET_VL */ 670 int sve_get_current_vl(void) 671 { 672 if (!system_supports_sve()) 673 return -EINVAL; 674 675 return sve_prctl_status(0); 676 } 677 678 /* 679 * Bitmap for temporary storage of the per-CPU set of supported vector lengths 680 * during secondary boot. 681 */ 682 static DECLARE_BITMAP(sve_secondary_vq_map, SVE_VQ_MAX); 683 684 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX)) 685 { 686 unsigned int vq, vl; 687 unsigned long zcr; 688 689 bitmap_zero(map, SVE_VQ_MAX); 690 691 zcr = ZCR_ELx_LEN_MASK; 692 zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr; 693 694 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) { 695 write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */ 696 vl = sve_get_vl(); 697 vq = sve_vq_from_vl(vl); /* skip intervening lengths */ 698 set_bit(vq_to_bit(vq), map); 699 } 700 } 701 702 void __init sve_init_vq_map(void) 703 { 704 sve_probe_vqs(sve_vq_map); 705 } 706 707 /* 708 * If we haven't committed to the set of supported VQs yet, filter out 709 * those not supported by the current CPU. 710 */ 711 void sve_update_vq_map(void) 712 { 713 sve_probe_vqs(sve_secondary_vq_map); 714 bitmap_and(sve_vq_map, sve_vq_map, sve_secondary_vq_map, SVE_VQ_MAX); 715 } 716 717 /* Check whether the current CPU supports all VQs in the committed set */ 718 int sve_verify_vq_map(void) 719 { 720 int ret = 0; 721 722 sve_probe_vqs(sve_secondary_vq_map); 723 bitmap_andnot(sve_secondary_vq_map, sve_vq_map, sve_secondary_vq_map, 724 SVE_VQ_MAX); 725 if (!bitmap_empty(sve_secondary_vq_map, SVE_VQ_MAX)) { 726 pr_warn("SVE: cpu%d: Required vector length(s) missing\n", 727 smp_processor_id()); 728 ret = -EINVAL; 729 } 730 731 return ret; 732 } 733 734 static void __init sve_efi_setup(void) 735 { 736 if (!IS_ENABLED(CONFIG_EFI)) 737 return; 738 739 /* 740 * alloc_percpu() warns and prints a backtrace if this goes wrong. 741 * This is evidence of a crippled system and we are returning void, 742 * so no attempt is made to handle this situation here. 743 */ 744 if (!sve_vl_valid(sve_max_vl)) 745 goto fail; 746 747 efi_sve_state = __alloc_percpu( 748 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES); 749 if (!efi_sve_state) 750 goto fail; 751 752 return; 753 754 fail: 755 panic("Cannot allocate percpu memory for EFI SVE save/restore"); 756 } 757 758 /* 759 * Enable SVE for EL1. 760 * Intended for use by the cpufeatures code during CPU boot. 761 */ 762 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p) 763 { 764 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1); 765 isb(); 766 } 767 768 void __init sve_setup(void) 769 { 770 u64 zcr; 771 772 if (!system_supports_sve()) 773 return; 774 775 /* 776 * The SVE architecture mandates support for 128-bit vectors, 777 * so sve_vq_map must have at least SVE_VQ_MIN set. 778 * If something went wrong, at least try to patch it up: 779 */ 780 if (WARN_ON(!test_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map))) 781 set_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map); 782 783 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); 784 sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1); 785 786 /* 787 * Sanity-check that the max VL we determined through CPU features 788 * corresponds properly to sve_vq_map. If not, do our best: 789 */ 790 if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl))) 791 sve_max_vl = find_supported_vector_length(sve_max_vl); 792 793 /* 794 * For the default VL, pick the maximum supported value <= 64. 795 * VL == 64 is guaranteed not to grow the signal frame. 796 */ 797 sve_default_vl = find_supported_vector_length(64); 798 799 pr_info("SVE: maximum available vector length %u bytes per vector\n", 800 sve_max_vl); 801 pr_info("SVE: default vector length %u bytes per vector\n", 802 sve_default_vl); 803 804 sve_efi_setup(); 805 } 806 807 /* 808 * Called from the put_task_struct() path, which cannot get here 809 * unless dead_task is really dead and not schedulable. 810 */ 811 void fpsimd_release_task(struct task_struct *dead_task) 812 { 813 __sve_free(dead_task); 814 } 815 816 #endif /* CONFIG_ARM64_SVE */ 817 818 /* 819 * Trapped SVE access 820 * 821 * Storage is allocated for the full SVE state, the current FPSIMD 822 * register contents are migrated across, and TIF_SVE is set so that 823 * the SVE access trap will be disabled the next time this task 824 * reaches ret_to_user. 825 * 826 * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load() 827 * would have disabled the SVE access trap for userspace during 828 * ret_to_user, making an SVE access trap impossible in that case. 829 */ 830 asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs) 831 { 832 /* Even if we chose not to use SVE, the hardware could still trap: */ 833 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) { 834 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc); 835 return; 836 } 837 838 sve_alloc(current); 839 840 local_bh_disable(); 841 842 task_fpsimd_save(); 843 fpsimd_to_sve(current); 844 845 /* Force ret_to_user to reload the registers: */ 846 fpsimd_flush_task_state(current); 847 set_thread_flag(TIF_FOREIGN_FPSTATE); 848 849 if (test_and_set_thread_flag(TIF_SVE)) 850 WARN_ON(1); /* SVE access shouldn't have trapped */ 851 852 local_bh_enable(); 853 } 854 855 /* 856 * Trapped FP/ASIMD access. 857 */ 858 asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs) 859 { 860 /* TODO: implement lazy context saving/restoring */ 861 WARN_ON(1); 862 } 863 864 /* 865 * Raise a SIGFPE for the current process. 866 */ 867 asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs) 868 { 869 siginfo_t info; 870 unsigned int si_code = FPE_FLTUNK; 871 872 if (esr & ESR_ELx_FP_EXC_TFV) { 873 if (esr & FPEXC_IOF) 874 si_code = FPE_FLTINV; 875 else if (esr & FPEXC_DZF) 876 si_code = FPE_FLTDIV; 877 else if (esr & FPEXC_OFF) 878 si_code = FPE_FLTOVF; 879 else if (esr & FPEXC_UFF) 880 si_code = FPE_FLTUND; 881 else if (esr & FPEXC_IXF) 882 si_code = FPE_FLTRES; 883 } 884 885 memset(&info, 0, sizeof(info)); 886 info.si_signo = SIGFPE; 887 info.si_code = si_code; 888 info.si_addr = (void __user *)instruction_pointer(regs); 889 890 send_sig_info(SIGFPE, &info, current); 891 } 892 893 void fpsimd_thread_switch(struct task_struct *next) 894 { 895 if (!system_supports_fpsimd()) 896 return; 897 /* 898 * Save the current FPSIMD state to memory, but only if whatever is in 899 * the registers is in fact the most recent userland FPSIMD state of 900 * 'current'. 901 */ 902 if (current->mm) 903 task_fpsimd_save(); 904 905 if (next->mm) { 906 /* 907 * If we are switching to a task whose most recent userland 908 * FPSIMD state is already in the registers of *this* cpu, 909 * we can skip loading the state from memory. Otherwise, set 910 * the TIF_FOREIGN_FPSTATE flag so the state will be loaded 911 * upon the next return to userland. 912 */ 913 if (__this_cpu_read(fpsimd_last_state.st) == 914 &next->thread.uw.fpsimd_state 915 && next->thread.fpsimd_cpu == smp_processor_id()) 916 clear_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE); 917 else 918 set_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE); 919 } 920 } 921 922 void fpsimd_flush_thread(void) 923 { 924 int vl, supported_vl; 925 926 if (!system_supports_fpsimd()) 927 return; 928 929 local_bh_disable(); 930 931 memset(¤t->thread.uw.fpsimd_state, 0, 932 sizeof(current->thread.uw.fpsimd_state)); 933 fpsimd_flush_task_state(current); 934 935 if (system_supports_sve()) { 936 clear_thread_flag(TIF_SVE); 937 sve_free(current); 938 939 /* 940 * Reset the task vector length as required. 941 * This is where we ensure that all user tasks have a valid 942 * vector length configured: no kernel task can become a user 943 * task without an exec and hence a call to this function. 944 * By the time the first call to this function is made, all 945 * early hardware probing is complete, so sve_default_vl 946 * should be valid. 947 * If a bug causes this to go wrong, we make some noise and 948 * try to fudge thread.sve_vl to a safe value here. 949 */ 950 vl = current->thread.sve_vl_onexec ? 951 current->thread.sve_vl_onexec : sve_default_vl; 952 953 if (WARN_ON(!sve_vl_valid(vl))) 954 vl = SVE_VL_MIN; 955 956 supported_vl = find_supported_vector_length(vl); 957 if (WARN_ON(supported_vl != vl)) 958 vl = supported_vl; 959 960 current->thread.sve_vl = vl; 961 962 /* 963 * If the task is not set to inherit, ensure that the vector 964 * length will be reset by a subsequent exec: 965 */ 966 if (!test_thread_flag(TIF_SVE_VL_INHERIT)) 967 current->thread.sve_vl_onexec = 0; 968 } 969 970 set_thread_flag(TIF_FOREIGN_FPSTATE); 971 972 local_bh_enable(); 973 } 974 975 /* 976 * Save the userland FPSIMD state of 'current' to memory, but only if the state 977 * currently held in the registers does in fact belong to 'current' 978 */ 979 void fpsimd_preserve_current_state(void) 980 { 981 if (!system_supports_fpsimd()) 982 return; 983 984 local_bh_disable(); 985 task_fpsimd_save(); 986 local_bh_enable(); 987 } 988 989 /* 990 * Like fpsimd_preserve_current_state(), but ensure that 991 * current->thread.uw.fpsimd_state is updated so that it can be copied to 992 * the signal frame. 993 */ 994 void fpsimd_signal_preserve_current_state(void) 995 { 996 fpsimd_preserve_current_state(); 997 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 998 sve_to_fpsimd(current); 999 } 1000 1001 /* 1002 * Associate current's FPSIMD context with this cpu 1003 * Preemption must be disabled when calling this function. 1004 */ 1005 static void fpsimd_bind_to_cpu(void) 1006 { 1007 struct fpsimd_last_state_struct *last = 1008 this_cpu_ptr(&fpsimd_last_state); 1009 1010 last->st = ¤t->thread.uw.fpsimd_state; 1011 last->sve_in_use = test_thread_flag(TIF_SVE); 1012 current->thread.fpsimd_cpu = smp_processor_id(); 1013 } 1014 1015 /* 1016 * Load the userland FPSIMD state of 'current' from memory, but only if the 1017 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD 1018 * state of 'current' 1019 */ 1020 void fpsimd_restore_current_state(void) 1021 { 1022 if (!system_supports_fpsimd()) 1023 return; 1024 1025 local_bh_disable(); 1026 1027 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { 1028 task_fpsimd_load(); 1029 fpsimd_bind_to_cpu(); 1030 } 1031 1032 local_bh_enable(); 1033 } 1034 1035 /* 1036 * Load an updated userland FPSIMD state for 'current' from memory and set the 1037 * flag that indicates that the FPSIMD register contents are the most recent 1038 * FPSIMD state of 'current' 1039 */ 1040 void fpsimd_update_current_state(struct user_fpsimd_state const *state) 1041 { 1042 if (!system_supports_fpsimd()) 1043 return; 1044 1045 local_bh_disable(); 1046 1047 current->thread.uw.fpsimd_state = *state; 1048 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 1049 fpsimd_to_sve(current); 1050 1051 task_fpsimd_load(); 1052 1053 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) 1054 fpsimd_bind_to_cpu(); 1055 1056 local_bh_enable(); 1057 } 1058 1059 /* 1060 * Invalidate live CPU copies of task t's FPSIMD state 1061 */ 1062 void fpsimd_flush_task_state(struct task_struct *t) 1063 { 1064 t->thread.fpsimd_cpu = NR_CPUS; 1065 } 1066 1067 static inline void fpsimd_flush_cpu_state(void) 1068 { 1069 __this_cpu_write(fpsimd_last_state.st, NULL); 1070 } 1071 1072 /* 1073 * Invalidate any task SVE state currently held in this CPU's regs. 1074 * 1075 * This is used to prevent the kernel from trying to reuse SVE register data 1076 * that is detroyed by KVM guest enter/exit. This function should go away when 1077 * KVM SVE support is implemented. Don't use it for anything else. 1078 */ 1079 #ifdef CONFIG_ARM64_SVE 1080 void sve_flush_cpu_state(void) 1081 { 1082 struct fpsimd_last_state_struct const *last = 1083 this_cpu_ptr(&fpsimd_last_state); 1084 1085 if (last->st && last->sve_in_use) 1086 fpsimd_flush_cpu_state(); 1087 } 1088 #endif /* CONFIG_ARM64_SVE */ 1089 1090 #ifdef CONFIG_KERNEL_MODE_NEON 1091 1092 DEFINE_PER_CPU(bool, kernel_neon_busy); 1093 EXPORT_PER_CPU_SYMBOL(kernel_neon_busy); 1094 1095 /* 1096 * Kernel-side NEON support functions 1097 */ 1098 1099 /* 1100 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling 1101 * context 1102 * 1103 * Must not be called unless may_use_simd() returns true. 1104 * Task context in the FPSIMD registers is saved back to memory as necessary. 1105 * 1106 * A matching call to kernel_neon_end() must be made before returning from the 1107 * calling context. 1108 * 1109 * The caller may freely use the FPSIMD registers until kernel_neon_end() is 1110 * called. 1111 */ 1112 void kernel_neon_begin(void) 1113 { 1114 if (WARN_ON(!system_supports_fpsimd())) 1115 return; 1116 1117 BUG_ON(!may_use_simd()); 1118 1119 local_bh_disable(); 1120 1121 __this_cpu_write(kernel_neon_busy, true); 1122 1123 /* Save unsaved task fpsimd state, if any: */ 1124 if (current->mm) { 1125 task_fpsimd_save(); 1126 set_thread_flag(TIF_FOREIGN_FPSTATE); 1127 } 1128 1129 /* Invalidate any task state remaining in the fpsimd regs: */ 1130 fpsimd_flush_cpu_state(); 1131 1132 preempt_disable(); 1133 1134 local_bh_enable(); 1135 } 1136 EXPORT_SYMBOL(kernel_neon_begin); 1137 1138 /* 1139 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task 1140 * 1141 * Must be called from a context in which kernel_neon_begin() was previously 1142 * called, with no call to kernel_neon_end() in the meantime. 1143 * 1144 * The caller must not use the FPSIMD registers after this function is called, 1145 * unless kernel_neon_begin() is called again in the meantime. 1146 */ 1147 void kernel_neon_end(void) 1148 { 1149 bool busy; 1150 1151 if (!system_supports_fpsimd()) 1152 return; 1153 1154 busy = __this_cpu_xchg(kernel_neon_busy, false); 1155 WARN_ON(!busy); /* No matching kernel_neon_begin()? */ 1156 1157 preempt_enable(); 1158 } 1159 EXPORT_SYMBOL(kernel_neon_end); 1160 1161 #ifdef CONFIG_EFI 1162 1163 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state); 1164 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used); 1165 static DEFINE_PER_CPU(bool, efi_sve_state_used); 1166 1167 /* 1168 * EFI runtime services support functions 1169 * 1170 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call. 1171 * This means that for EFI (and only for EFI), we have to assume that FPSIMD 1172 * is always used rather than being an optional accelerator. 1173 * 1174 * These functions provide the necessary support for ensuring FPSIMD 1175 * save/restore in the contexts from which EFI is used. 1176 * 1177 * Do not use them for any other purpose -- if tempted to do so, you are 1178 * either doing something wrong or you need to propose some refactoring. 1179 */ 1180 1181 /* 1182 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call 1183 */ 1184 void __efi_fpsimd_begin(void) 1185 { 1186 if (!system_supports_fpsimd()) 1187 return; 1188 1189 WARN_ON(preemptible()); 1190 1191 if (may_use_simd()) { 1192 kernel_neon_begin(); 1193 } else { 1194 /* 1195 * If !efi_sve_state, SVE can't be in use yet and doesn't need 1196 * preserving: 1197 */ 1198 if (system_supports_sve() && likely(efi_sve_state)) { 1199 char *sve_state = this_cpu_ptr(efi_sve_state); 1200 1201 __this_cpu_write(efi_sve_state_used, true); 1202 1203 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl), 1204 &this_cpu_ptr(&efi_fpsimd_state)->fpsr); 1205 } else { 1206 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state)); 1207 } 1208 1209 __this_cpu_write(efi_fpsimd_state_used, true); 1210 } 1211 } 1212 1213 /* 1214 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call 1215 */ 1216 void __efi_fpsimd_end(void) 1217 { 1218 if (!system_supports_fpsimd()) 1219 return; 1220 1221 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) { 1222 kernel_neon_end(); 1223 } else { 1224 if (system_supports_sve() && 1225 likely(__this_cpu_read(efi_sve_state_used))) { 1226 char const *sve_state = this_cpu_ptr(efi_sve_state); 1227 1228 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl), 1229 &this_cpu_ptr(&efi_fpsimd_state)->fpsr, 1230 sve_vq_from_vl(sve_get_vl()) - 1); 1231 1232 __this_cpu_write(efi_sve_state_used, false); 1233 } else { 1234 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state)); 1235 } 1236 } 1237 } 1238 1239 #endif /* CONFIG_EFI */ 1240 1241 #endif /* CONFIG_KERNEL_MODE_NEON */ 1242 1243 #ifdef CONFIG_CPU_PM 1244 static int fpsimd_cpu_pm_notifier(struct notifier_block *self, 1245 unsigned long cmd, void *v) 1246 { 1247 switch (cmd) { 1248 case CPU_PM_ENTER: 1249 if (current->mm) 1250 task_fpsimd_save(); 1251 fpsimd_flush_cpu_state(); 1252 break; 1253 case CPU_PM_EXIT: 1254 if (current->mm) 1255 set_thread_flag(TIF_FOREIGN_FPSTATE); 1256 break; 1257 case CPU_PM_ENTER_FAILED: 1258 default: 1259 return NOTIFY_DONE; 1260 } 1261 return NOTIFY_OK; 1262 } 1263 1264 static struct notifier_block fpsimd_cpu_pm_notifier_block = { 1265 .notifier_call = fpsimd_cpu_pm_notifier, 1266 }; 1267 1268 static void __init fpsimd_pm_init(void) 1269 { 1270 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block); 1271 } 1272 1273 #else 1274 static inline void fpsimd_pm_init(void) { } 1275 #endif /* CONFIG_CPU_PM */ 1276 1277 #ifdef CONFIG_HOTPLUG_CPU 1278 static int fpsimd_cpu_dead(unsigned int cpu) 1279 { 1280 per_cpu(fpsimd_last_state.st, cpu) = NULL; 1281 return 0; 1282 } 1283 1284 static inline void fpsimd_hotplug_init(void) 1285 { 1286 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead", 1287 NULL, fpsimd_cpu_dead); 1288 } 1289 1290 #else 1291 static inline void fpsimd_hotplug_init(void) { } 1292 #endif 1293 1294 /* 1295 * FP/SIMD support code initialisation. 1296 */ 1297 static int __init fpsimd_init(void) 1298 { 1299 if (elf_hwcap & HWCAP_FP) { 1300 fpsimd_pm_init(); 1301 fpsimd_hotplug_init(); 1302 } else { 1303 pr_notice("Floating-point is not implemented\n"); 1304 } 1305 1306 if (!(elf_hwcap & HWCAP_ASIMD)) 1307 pr_notice("Advanced SIMD is not implemented\n"); 1308 1309 return sve_sysctl_init(); 1310 } 1311 core_initcall(fpsimd_init); 1312