xref: /openbmc/linux/arch/arm64/kernel/fpsimd.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * FP/SIMD context switching and fault handling
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/bitmap.h>
21 #include <linux/bottom_half.h>
22 #include <linux/bug.h>
23 #include <linux/cache.h>
24 #include <linux/compat.h>
25 #include <linux/cpu.h>
26 #include <linux/cpu_pm.h>
27 #include <linux/kernel.h>
28 #include <linux/linkage.h>
29 #include <linux/irqflags.h>
30 #include <linux/init.h>
31 #include <linux/percpu.h>
32 #include <linux/prctl.h>
33 #include <linux/preempt.h>
34 #include <linux/prctl.h>
35 #include <linux/ptrace.h>
36 #include <linux/sched/signal.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/signal.h>
39 #include <linux/slab.h>
40 #include <linux/sysctl.h>
41 
42 #include <asm/esr.h>
43 #include <asm/fpsimd.h>
44 #include <asm/cpufeature.h>
45 #include <asm/cputype.h>
46 #include <asm/simd.h>
47 #include <asm/sigcontext.h>
48 #include <asm/sysreg.h>
49 #include <asm/traps.h>
50 
51 #define FPEXC_IOF	(1 << 0)
52 #define FPEXC_DZF	(1 << 1)
53 #define FPEXC_OFF	(1 << 2)
54 #define FPEXC_UFF	(1 << 3)
55 #define FPEXC_IXF	(1 << 4)
56 #define FPEXC_IDF	(1 << 7)
57 
58 /*
59  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
60  *
61  * In order to reduce the number of times the FPSIMD state is needlessly saved
62  * and restored, we need to keep track of two things:
63  * (a) for each task, we need to remember which CPU was the last one to have
64  *     the task's FPSIMD state loaded into its FPSIMD registers;
65  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
66  *     been loaded into its FPSIMD registers most recently, or whether it has
67  *     been used to perform kernel mode NEON in the meantime.
68  *
69  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
70  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
71  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
72  * address of the userland FPSIMD state of the task that was loaded onto the CPU
73  * the most recently, or NULL if kernel mode NEON has been performed after that.
74  *
75  * With this in place, we no longer have to restore the next FPSIMD state right
76  * when switching between tasks. Instead, we can defer this check to userland
77  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
78  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
79  * can omit the FPSIMD restore.
80  *
81  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
82  * indicate whether or not the userland FPSIMD state of the current task is
83  * present in the registers. The flag is set unless the FPSIMD registers of this
84  * CPU currently contain the most recent userland FPSIMD state of the current
85  * task.
86  *
87  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
88  * save the task's FPSIMD context back to task_struct from softirq context.
89  * To prevent this from racing with the manipulation of the task's FPSIMD state
90  * from task context and thereby corrupting the state, it is necessary to
91  * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
92  * flag with local_bh_disable() unless softirqs are already masked.
93  *
94  * For a certain task, the sequence may look something like this:
95  * - the task gets scheduled in; if both the task's fpsimd_cpu field
96  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
97  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
98  *   cleared, otherwise it is set;
99  *
100  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
101  *   userland FPSIMD state is copied from memory to the registers, the task's
102  *   fpsimd_cpu field is set to the id of the current CPU, the current
103  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
104  *   TIF_FOREIGN_FPSTATE flag is cleared;
105  *
106  * - the task executes an ordinary syscall; upon return to userland, the
107  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
108  *   restored;
109  *
110  * - the task executes a syscall which executes some NEON instructions; this is
111  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
112  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
113  *   and sets the TIF_FOREIGN_FPSTATE flag;
114  *
115  * - the task gets preempted after kernel_neon_end() is called; as we have not
116  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
117  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
118  */
119 struct fpsimd_last_state_struct {
120 	struct user_fpsimd_state *st;
121 	bool sve_in_use;
122 };
123 
124 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
125 
126 /* Default VL for tasks that don't set it explicitly: */
127 static int sve_default_vl = -1;
128 
129 #ifdef CONFIG_ARM64_SVE
130 
131 /* Maximum supported vector length across all CPUs (initially poisoned) */
132 int __ro_after_init sve_max_vl = -1;
133 /* Set of available vector lengths, as vq_to_bit(vq): */
134 static __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
135 static void __percpu *efi_sve_state;
136 
137 #else /* ! CONFIG_ARM64_SVE */
138 
139 /* Dummy declaration for code that will be optimised out: */
140 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
141 extern void __percpu *efi_sve_state;
142 
143 #endif /* ! CONFIG_ARM64_SVE */
144 
145 /*
146  * Call __sve_free() directly only if you know task can't be scheduled
147  * or preempted.
148  */
149 static void __sve_free(struct task_struct *task)
150 {
151 	kfree(task->thread.sve_state);
152 	task->thread.sve_state = NULL;
153 }
154 
155 static void sve_free(struct task_struct *task)
156 {
157 	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
158 
159 	__sve_free(task);
160 }
161 
162 
163 /* Offset of FFR in the SVE register dump */
164 static size_t sve_ffr_offset(int vl)
165 {
166 	return SVE_SIG_FFR_OFFSET(sve_vq_from_vl(vl)) - SVE_SIG_REGS_OFFSET;
167 }
168 
169 static void *sve_pffr(struct task_struct *task)
170 {
171 	return (char *)task->thread.sve_state +
172 		sve_ffr_offset(task->thread.sve_vl);
173 }
174 
175 static void change_cpacr(u64 val, u64 mask)
176 {
177 	u64 cpacr = read_sysreg(CPACR_EL1);
178 	u64 new = (cpacr & ~mask) | val;
179 
180 	if (new != cpacr)
181 		write_sysreg(new, CPACR_EL1);
182 }
183 
184 static void sve_user_disable(void)
185 {
186 	change_cpacr(0, CPACR_EL1_ZEN_EL0EN);
187 }
188 
189 static void sve_user_enable(void)
190 {
191 	change_cpacr(CPACR_EL1_ZEN_EL0EN, CPACR_EL1_ZEN_EL0EN);
192 }
193 
194 /*
195  * TIF_SVE controls whether a task can use SVE without trapping while
196  * in userspace, and also the way a task's FPSIMD/SVE state is stored
197  * in thread_struct.
198  *
199  * The kernel uses this flag to track whether a user task is actively
200  * using SVE, and therefore whether full SVE register state needs to
201  * be tracked.  If not, the cheaper FPSIMD context handling code can
202  * be used instead of the more costly SVE equivalents.
203  *
204  *  * TIF_SVE set:
205  *
206  *    The task can execute SVE instructions while in userspace without
207  *    trapping to the kernel.
208  *
209  *    When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
210  *    corresponding Zn), P0-P15 and FFR are encoded in in
211  *    task->thread.sve_state, formatted appropriately for vector
212  *    length task->thread.sve_vl.
213  *
214  *    task->thread.sve_state must point to a valid buffer at least
215  *    sve_state_size(task) bytes in size.
216  *
217  *    During any syscall, the kernel may optionally clear TIF_SVE and
218  *    discard the vector state except for the FPSIMD subset.
219  *
220  *  * TIF_SVE clear:
221  *
222  *    An attempt by the user task to execute an SVE instruction causes
223  *    do_sve_acc() to be called, which does some preparation and then
224  *    sets TIF_SVE.
225  *
226  *    When stored, FPSIMD registers V0-V31 are encoded in
227  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
228  *    logically zero but not stored anywhere; P0-P15 and FFR are not
229  *    stored and have unspecified values from userspace's point of
230  *    view.  For hygiene purposes, the kernel zeroes them on next use,
231  *    but userspace is discouraged from relying on this.
232  *
233  *    task->thread.sve_state does not need to be non-NULL, valid or any
234  *    particular size: it must not be dereferenced.
235  *
236  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
237  *    irrespective of whether TIF_SVE is clear or set, since these are
238  *    not vector length dependent.
239  */
240 
241 /*
242  * Update current's FPSIMD/SVE registers from thread_struct.
243  *
244  * This function should be called only when the FPSIMD/SVE state in
245  * thread_struct is known to be up to date, when preparing to enter
246  * userspace.
247  *
248  * Softirqs (and preemption) must be disabled.
249  */
250 static void task_fpsimd_load(void)
251 {
252 	WARN_ON(!in_softirq() && !irqs_disabled());
253 
254 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
255 		sve_load_state(sve_pffr(current),
256 			       &current->thread.uw.fpsimd_state.fpsr,
257 			       sve_vq_from_vl(current->thread.sve_vl) - 1);
258 	else
259 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
260 
261 	if (system_supports_sve()) {
262 		/* Toggle SVE trapping for userspace if needed */
263 		if (test_thread_flag(TIF_SVE))
264 			sve_user_enable();
265 		else
266 			sve_user_disable();
267 
268 		/* Serialised by exception return to user */
269 	}
270 }
271 
272 /*
273  * Ensure current's FPSIMD/SVE storage in thread_struct is up to date
274  * with respect to the CPU registers.
275  *
276  * Softirqs (and preemption) must be disabled.
277  */
278 static void task_fpsimd_save(void)
279 {
280 	WARN_ON(!in_softirq() && !irqs_disabled());
281 
282 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
283 		if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
284 			if (WARN_ON(sve_get_vl() != current->thread.sve_vl)) {
285 				/*
286 				 * Can't save the user regs, so current would
287 				 * re-enter user with corrupt state.
288 				 * There's no way to recover, so kill it:
289 				 */
290 				force_signal_inject(SIGKILL, SI_KERNEL, 0);
291 				return;
292 			}
293 
294 			sve_save_state(sve_pffr(current),
295 				       &current->thread.uw.fpsimd_state.fpsr);
296 		} else
297 			fpsimd_save_state(&current->thread.uw.fpsimd_state);
298 	}
299 }
300 
301 /*
302  * Helpers to translate bit indices in sve_vq_map to VQ values (and
303  * vice versa).  This allows find_next_bit() to be used to find the
304  * _maximum_ VQ not exceeding a certain value.
305  */
306 
307 static unsigned int vq_to_bit(unsigned int vq)
308 {
309 	return SVE_VQ_MAX - vq;
310 }
311 
312 static unsigned int bit_to_vq(unsigned int bit)
313 {
314 	if (WARN_ON(bit >= SVE_VQ_MAX))
315 		bit = SVE_VQ_MAX - 1;
316 
317 	return SVE_VQ_MAX - bit;
318 }
319 
320 /*
321  * All vector length selection from userspace comes through here.
322  * We're on a slow path, so some sanity-checks are included.
323  * If things go wrong there's a bug somewhere, but try to fall back to a
324  * safe choice.
325  */
326 static unsigned int find_supported_vector_length(unsigned int vl)
327 {
328 	int bit;
329 	int max_vl = sve_max_vl;
330 
331 	if (WARN_ON(!sve_vl_valid(vl)))
332 		vl = SVE_VL_MIN;
333 
334 	if (WARN_ON(!sve_vl_valid(max_vl)))
335 		max_vl = SVE_VL_MIN;
336 
337 	if (vl > max_vl)
338 		vl = max_vl;
339 
340 	bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
341 			    vq_to_bit(sve_vq_from_vl(vl)));
342 	return sve_vl_from_vq(bit_to_vq(bit));
343 }
344 
345 #ifdef CONFIG_SYSCTL
346 
347 static int sve_proc_do_default_vl(struct ctl_table *table, int write,
348 				  void __user *buffer, size_t *lenp,
349 				  loff_t *ppos)
350 {
351 	int ret;
352 	int vl = sve_default_vl;
353 	struct ctl_table tmp_table = {
354 		.data = &vl,
355 		.maxlen = sizeof(vl),
356 	};
357 
358 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
359 	if (ret || !write)
360 		return ret;
361 
362 	/* Writing -1 has the special meaning "set to max": */
363 	if (vl == -1) {
364 		/* Fail safe if sve_max_vl wasn't initialised */
365 		if (WARN_ON(!sve_vl_valid(sve_max_vl)))
366 			vl = SVE_VL_MIN;
367 		else
368 			vl = sve_max_vl;
369 
370 		goto chosen;
371 	}
372 
373 	if (!sve_vl_valid(vl))
374 		return -EINVAL;
375 
376 	vl = find_supported_vector_length(vl);
377 chosen:
378 	sve_default_vl = vl;
379 	return 0;
380 }
381 
382 static struct ctl_table sve_default_vl_table[] = {
383 	{
384 		.procname	= "sve_default_vector_length",
385 		.mode		= 0644,
386 		.proc_handler	= sve_proc_do_default_vl,
387 	},
388 	{ }
389 };
390 
391 static int __init sve_sysctl_init(void)
392 {
393 	if (system_supports_sve())
394 		if (!register_sysctl("abi", sve_default_vl_table))
395 			return -EINVAL;
396 
397 	return 0;
398 }
399 
400 #else /* ! CONFIG_SYSCTL */
401 static int __init sve_sysctl_init(void) { return 0; }
402 #endif /* ! CONFIG_SYSCTL */
403 
404 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
405 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
406 
407 /*
408  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
409  * task->thread.sve_state.
410  *
411  * Task can be a non-runnable task, or current.  In the latter case,
412  * softirqs (and preemption) must be disabled.
413  * task->thread.sve_state must point to at least sve_state_size(task)
414  * bytes of allocated kernel memory.
415  * task->thread.uw.fpsimd_state must be up to date before calling this
416  * function.
417  */
418 static void fpsimd_to_sve(struct task_struct *task)
419 {
420 	unsigned int vq;
421 	void *sst = task->thread.sve_state;
422 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
423 	unsigned int i;
424 
425 	if (!system_supports_sve())
426 		return;
427 
428 	vq = sve_vq_from_vl(task->thread.sve_vl);
429 	for (i = 0; i < 32; ++i)
430 		memcpy(ZREG(sst, vq, i), &fst->vregs[i],
431 		       sizeof(fst->vregs[i]));
432 }
433 
434 /*
435  * Transfer the SVE state in task->thread.sve_state to
436  * task->thread.uw.fpsimd_state.
437  *
438  * Task can be a non-runnable task, or current.  In the latter case,
439  * softirqs (and preemption) must be disabled.
440  * task->thread.sve_state must point to at least sve_state_size(task)
441  * bytes of allocated kernel memory.
442  * task->thread.sve_state must be up to date before calling this function.
443  */
444 static void sve_to_fpsimd(struct task_struct *task)
445 {
446 	unsigned int vq;
447 	void const *sst = task->thread.sve_state;
448 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
449 	unsigned int i;
450 
451 	if (!system_supports_sve())
452 		return;
453 
454 	vq = sve_vq_from_vl(task->thread.sve_vl);
455 	for (i = 0; i < 32; ++i)
456 		memcpy(&fst->vregs[i], ZREG(sst, vq, i),
457 		       sizeof(fst->vregs[i]));
458 }
459 
460 #ifdef CONFIG_ARM64_SVE
461 
462 /*
463  * Return how many bytes of memory are required to store the full SVE
464  * state for task, given task's currently configured vector length.
465  */
466 size_t sve_state_size(struct task_struct const *task)
467 {
468 	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
469 }
470 
471 /*
472  * Ensure that task->thread.sve_state is allocated and sufficiently large.
473  *
474  * This function should be used only in preparation for replacing
475  * task->thread.sve_state with new data.  The memory is always zeroed
476  * here to prevent stale data from showing through: this is done in
477  * the interest of testability and predictability: except in the
478  * do_sve_acc() case, there is no ABI requirement to hide stale data
479  * written previously be task.
480  */
481 void sve_alloc(struct task_struct *task)
482 {
483 	if (task->thread.sve_state) {
484 		memset(task->thread.sve_state, 0, sve_state_size(current));
485 		return;
486 	}
487 
488 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
489 	task->thread.sve_state =
490 		kzalloc(sve_state_size(task), GFP_KERNEL);
491 
492 	/*
493 	 * If future SVE revisions can have larger vectors though,
494 	 * this may cease to be true:
495 	 */
496 	BUG_ON(!task->thread.sve_state);
497 }
498 
499 
500 /*
501  * Ensure that task->thread.sve_state is up to date with respect to
502  * the user task, irrespective of when SVE is in use or not.
503  *
504  * This should only be called by ptrace.  task must be non-runnable.
505  * task->thread.sve_state must point to at least sve_state_size(task)
506  * bytes of allocated kernel memory.
507  */
508 void fpsimd_sync_to_sve(struct task_struct *task)
509 {
510 	if (!test_tsk_thread_flag(task, TIF_SVE))
511 		fpsimd_to_sve(task);
512 }
513 
514 /*
515  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
516  * the user task, irrespective of whether SVE is in use or not.
517  *
518  * This should only be called by ptrace.  task must be non-runnable.
519  * task->thread.sve_state must point to at least sve_state_size(task)
520  * bytes of allocated kernel memory.
521  */
522 void sve_sync_to_fpsimd(struct task_struct *task)
523 {
524 	if (test_tsk_thread_flag(task, TIF_SVE))
525 		sve_to_fpsimd(task);
526 }
527 
528 /*
529  * Ensure that task->thread.sve_state is up to date with respect to
530  * the task->thread.uw.fpsimd_state.
531  *
532  * This should only be called by ptrace to merge new FPSIMD register
533  * values into a task for which SVE is currently active.
534  * task must be non-runnable.
535  * task->thread.sve_state must point to at least sve_state_size(task)
536  * bytes of allocated kernel memory.
537  * task->thread.uw.fpsimd_state must already have been initialised with
538  * the new FPSIMD register values to be merged in.
539  */
540 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
541 {
542 	unsigned int vq;
543 	void *sst = task->thread.sve_state;
544 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
545 	unsigned int i;
546 
547 	if (!test_tsk_thread_flag(task, TIF_SVE))
548 		return;
549 
550 	vq = sve_vq_from_vl(task->thread.sve_vl);
551 
552 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
553 
554 	for (i = 0; i < 32; ++i)
555 		memcpy(ZREG(sst, vq, i), &fst->vregs[i],
556 		       sizeof(fst->vregs[i]));
557 }
558 
559 int sve_set_vector_length(struct task_struct *task,
560 			  unsigned long vl, unsigned long flags)
561 {
562 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
563 				     PR_SVE_SET_VL_ONEXEC))
564 		return -EINVAL;
565 
566 	if (!sve_vl_valid(vl))
567 		return -EINVAL;
568 
569 	/*
570 	 * Clamp to the maximum vector length that VL-agnostic SVE code can
571 	 * work with.  A flag may be assigned in the future to allow setting
572 	 * of larger vector lengths without confusing older software.
573 	 */
574 	if (vl > SVE_VL_ARCH_MAX)
575 		vl = SVE_VL_ARCH_MAX;
576 
577 	vl = find_supported_vector_length(vl);
578 
579 	if (flags & (PR_SVE_VL_INHERIT |
580 		     PR_SVE_SET_VL_ONEXEC))
581 		task->thread.sve_vl_onexec = vl;
582 	else
583 		/* Reset VL to system default on next exec: */
584 		task->thread.sve_vl_onexec = 0;
585 
586 	/* Only actually set the VL if not deferred: */
587 	if (flags & PR_SVE_SET_VL_ONEXEC)
588 		goto out;
589 
590 	if (vl == task->thread.sve_vl)
591 		goto out;
592 
593 	/*
594 	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
595 	 * write any live register state back to task_struct, and convert to a
596 	 * non-SVE thread.
597 	 */
598 	if (task == current) {
599 		local_bh_disable();
600 
601 		task_fpsimd_save();
602 		set_thread_flag(TIF_FOREIGN_FPSTATE);
603 	}
604 
605 	fpsimd_flush_task_state(task);
606 	if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
607 		sve_to_fpsimd(task);
608 
609 	if (task == current)
610 		local_bh_enable();
611 
612 	/*
613 	 * Force reallocation of task SVE state to the correct size
614 	 * on next use:
615 	 */
616 	sve_free(task);
617 
618 	task->thread.sve_vl = vl;
619 
620 out:
621 	if (flags & PR_SVE_VL_INHERIT)
622 		set_tsk_thread_flag(task, TIF_SVE_VL_INHERIT);
623 	else
624 		clear_tsk_thread_flag(task, TIF_SVE_VL_INHERIT);
625 
626 	return 0;
627 }
628 
629 /*
630  * Encode the current vector length and flags for return.
631  * This is only required for prctl(): ptrace has separate fields
632  *
633  * flags are as for sve_set_vector_length().
634  */
635 static int sve_prctl_status(unsigned long flags)
636 {
637 	int ret;
638 
639 	if (flags & PR_SVE_SET_VL_ONEXEC)
640 		ret = current->thread.sve_vl_onexec;
641 	else
642 		ret = current->thread.sve_vl;
643 
644 	if (test_thread_flag(TIF_SVE_VL_INHERIT))
645 		ret |= PR_SVE_VL_INHERIT;
646 
647 	return ret;
648 }
649 
650 /* PR_SVE_SET_VL */
651 int sve_set_current_vl(unsigned long arg)
652 {
653 	unsigned long vl, flags;
654 	int ret;
655 
656 	vl = arg & PR_SVE_VL_LEN_MASK;
657 	flags = arg & ~vl;
658 
659 	if (!system_supports_sve())
660 		return -EINVAL;
661 
662 	ret = sve_set_vector_length(current, vl, flags);
663 	if (ret)
664 		return ret;
665 
666 	return sve_prctl_status(flags);
667 }
668 
669 /* PR_SVE_GET_VL */
670 int sve_get_current_vl(void)
671 {
672 	if (!system_supports_sve())
673 		return -EINVAL;
674 
675 	return sve_prctl_status(0);
676 }
677 
678 /*
679  * Bitmap for temporary storage of the per-CPU set of supported vector lengths
680  * during secondary boot.
681  */
682 static DECLARE_BITMAP(sve_secondary_vq_map, SVE_VQ_MAX);
683 
684 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
685 {
686 	unsigned int vq, vl;
687 	unsigned long zcr;
688 
689 	bitmap_zero(map, SVE_VQ_MAX);
690 
691 	zcr = ZCR_ELx_LEN_MASK;
692 	zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
693 
694 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
695 		write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
696 		vl = sve_get_vl();
697 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
698 		set_bit(vq_to_bit(vq), map);
699 	}
700 }
701 
702 void __init sve_init_vq_map(void)
703 {
704 	sve_probe_vqs(sve_vq_map);
705 }
706 
707 /*
708  * If we haven't committed to the set of supported VQs yet, filter out
709  * those not supported by the current CPU.
710  */
711 void sve_update_vq_map(void)
712 {
713 	sve_probe_vqs(sve_secondary_vq_map);
714 	bitmap_and(sve_vq_map, sve_vq_map, sve_secondary_vq_map, SVE_VQ_MAX);
715 }
716 
717 /* Check whether the current CPU supports all VQs in the committed set */
718 int sve_verify_vq_map(void)
719 {
720 	int ret = 0;
721 
722 	sve_probe_vqs(sve_secondary_vq_map);
723 	bitmap_andnot(sve_secondary_vq_map, sve_vq_map, sve_secondary_vq_map,
724 		      SVE_VQ_MAX);
725 	if (!bitmap_empty(sve_secondary_vq_map, SVE_VQ_MAX)) {
726 		pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
727 			smp_processor_id());
728 		ret = -EINVAL;
729 	}
730 
731 	return ret;
732 }
733 
734 static void __init sve_efi_setup(void)
735 {
736 	if (!IS_ENABLED(CONFIG_EFI))
737 		return;
738 
739 	/*
740 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
741 	 * This is evidence of a crippled system and we are returning void,
742 	 * so no attempt is made to handle this situation here.
743 	 */
744 	if (!sve_vl_valid(sve_max_vl))
745 		goto fail;
746 
747 	efi_sve_state = __alloc_percpu(
748 		SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
749 	if (!efi_sve_state)
750 		goto fail;
751 
752 	return;
753 
754 fail:
755 	panic("Cannot allocate percpu memory for EFI SVE save/restore");
756 }
757 
758 /*
759  * Enable SVE for EL1.
760  * Intended for use by the cpufeatures code during CPU boot.
761  */
762 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
763 {
764 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
765 	isb();
766 }
767 
768 void __init sve_setup(void)
769 {
770 	u64 zcr;
771 
772 	if (!system_supports_sve())
773 		return;
774 
775 	/*
776 	 * The SVE architecture mandates support for 128-bit vectors,
777 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
778 	 * If something went wrong, at least try to patch it up:
779 	 */
780 	if (WARN_ON(!test_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
781 		set_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map);
782 
783 	zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
784 	sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
785 
786 	/*
787 	 * Sanity-check that the max VL we determined through CPU features
788 	 * corresponds properly to sve_vq_map.  If not, do our best:
789 	 */
790 	if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
791 		sve_max_vl = find_supported_vector_length(sve_max_vl);
792 
793 	/*
794 	 * For the default VL, pick the maximum supported value <= 64.
795 	 * VL == 64 is guaranteed not to grow the signal frame.
796 	 */
797 	sve_default_vl = find_supported_vector_length(64);
798 
799 	pr_info("SVE: maximum available vector length %u bytes per vector\n",
800 		sve_max_vl);
801 	pr_info("SVE: default vector length %u bytes per vector\n",
802 		sve_default_vl);
803 
804 	sve_efi_setup();
805 }
806 
807 /*
808  * Called from the put_task_struct() path, which cannot get here
809  * unless dead_task is really dead and not schedulable.
810  */
811 void fpsimd_release_task(struct task_struct *dead_task)
812 {
813 	__sve_free(dead_task);
814 }
815 
816 #endif /* CONFIG_ARM64_SVE */
817 
818 /*
819  * Trapped SVE access
820  *
821  * Storage is allocated for the full SVE state, the current FPSIMD
822  * register contents are migrated across, and TIF_SVE is set so that
823  * the SVE access trap will be disabled the next time this task
824  * reaches ret_to_user.
825  *
826  * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
827  * would have disabled the SVE access trap for userspace during
828  * ret_to_user, making an SVE access trap impossible in that case.
829  */
830 asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
831 {
832 	/* Even if we chose not to use SVE, the hardware could still trap: */
833 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
834 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
835 		return;
836 	}
837 
838 	sve_alloc(current);
839 
840 	local_bh_disable();
841 
842 	task_fpsimd_save();
843 	fpsimd_to_sve(current);
844 
845 	/* Force ret_to_user to reload the registers: */
846 	fpsimd_flush_task_state(current);
847 	set_thread_flag(TIF_FOREIGN_FPSTATE);
848 
849 	if (test_and_set_thread_flag(TIF_SVE))
850 		WARN_ON(1); /* SVE access shouldn't have trapped */
851 
852 	local_bh_enable();
853 }
854 
855 /*
856  * Trapped FP/ASIMD access.
857  */
858 asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
859 {
860 	/* TODO: implement lazy context saving/restoring */
861 	WARN_ON(1);
862 }
863 
864 /*
865  * Raise a SIGFPE for the current process.
866  */
867 asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
868 {
869 	siginfo_t info;
870 	unsigned int si_code = FPE_FLTUNK;
871 
872 	if (esr & ESR_ELx_FP_EXC_TFV) {
873 		if (esr & FPEXC_IOF)
874 			si_code = FPE_FLTINV;
875 		else if (esr & FPEXC_DZF)
876 			si_code = FPE_FLTDIV;
877 		else if (esr & FPEXC_OFF)
878 			si_code = FPE_FLTOVF;
879 		else if (esr & FPEXC_UFF)
880 			si_code = FPE_FLTUND;
881 		else if (esr & FPEXC_IXF)
882 			si_code = FPE_FLTRES;
883 	}
884 
885 	memset(&info, 0, sizeof(info));
886 	info.si_signo = SIGFPE;
887 	info.si_code = si_code;
888 	info.si_addr = (void __user *)instruction_pointer(regs);
889 
890 	send_sig_info(SIGFPE, &info, current);
891 }
892 
893 void fpsimd_thread_switch(struct task_struct *next)
894 {
895 	if (!system_supports_fpsimd())
896 		return;
897 	/*
898 	 * Save the current FPSIMD state to memory, but only if whatever is in
899 	 * the registers is in fact the most recent userland FPSIMD state of
900 	 * 'current'.
901 	 */
902 	if (current->mm)
903 		task_fpsimd_save();
904 
905 	if (next->mm) {
906 		/*
907 		 * If we are switching to a task whose most recent userland
908 		 * FPSIMD state is already in the registers of *this* cpu,
909 		 * we can skip loading the state from memory. Otherwise, set
910 		 * the TIF_FOREIGN_FPSTATE flag so the state will be loaded
911 		 * upon the next return to userland.
912 		 */
913 		if (__this_cpu_read(fpsimd_last_state.st) ==
914 			&next->thread.uw.fpsimd_state
915 		    && next->thread.fpsimd_cpu == smp_processor_id())
916 			clear_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE);
917 		else
918 			set_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE);
919 	}
920 }
921 
922 void fpsimd_flush_thread(void)
923 {
924 	int vl, supported_vl;
925 
926 	if (!system_supports_fpsimd())
927 		return;
928 
929 	local_bh_disable();
930 
931 	memset(&current->thread.uw.fpsimd_state, 0,
932 	       sizeof(current->thread.uw.fpsimd_state));
933 	fpsimd_flush_task_state(current);
934 
935 	if (system_supports_sve()) {
936 		clear_thread_flag(TIF_SVE);
937 		sve_free(current);
938 
939 		/*
940 		 * Reset the task vector length as required.
941 		 * This is where we ensure that all user tasks have a valid
942 		 * vector length configured: no kernel task can become a user
943 		 * task without an exec and hence a call to this function.
944 		 * By the time the first call to this function is made, all
945 		 * early hardware probing is complete, so sve_default_vl
946 		 * should be valid.
947 		 * If a bug causes this to go wrong, we make some noise and
948 		 * try to fudge thread.sve_vl to a safe value here.
949 		 */
950 		vl = current->thread.sve_vl_onexec ?
951 			current->thread.sve_vl_onexec : sve_default_vl;
952 
953 		if (WARN_ON(!sve_vl_valid(vl)))
954 			vl = SVE_VL_MIN;
955 
956 		supported_vl = find_supported_vector_length(vl);
957 		if (WARN_ON(supported_vl != vl))
958 			vl = supported_vl;
959 
960 		current->thread.sve_vl = vl;
961 
962 		/*
963 		 * If the task is not set to inherit, ensure that the vector
964 		 * length will be reset by a subsequent exec:
965 		 */
966 		if (!test_thread_flag(TIF_SVE_VL_INHERIT))
967 			current->thread.sve_vl_onexec = 0;
968 	}
969 
970 	set_thread_flag(TIF_FOREIGN_FPSTATE);
971 
972 	local_bh_enable();
973 }
974 
975 /*
976  * Save the userland FPSIMD state of 'current' to memory, but only if the state
977  * currently held in the registers does in fact belong to 'current'
978  */
979 void fpsimd_preserve_current_state(void)
980 {
981 	if (!system_supports_fpsimd())
982 		return;
983 
984 	local_bh_disable();
985 	task_fpsimd_save();
986 	local_bh_enable();
987 }
988 
989 /*
990  * Like fpsimd_preserve_current_state(), but ensure that
991  * current->thread.uw.fpsimd_state is updated so that it can be copied to
992  * the signal frame.
993  */
994 void fpsimd_signal_preserve_current_state(void)
995 {
996 	fpsimd_preserve_current_state();
997 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
998 		sve_to_fpsimd(current);
999 }
1000 
1001 /*
1002  * Associate current's FPSIMD context with this cpu
1003  * Preemption must be disabled when calling this function.
1004  */
1005 static void fpsimd_bind_to_cpu(void)
1006 {
1007 	struct fpsimd_last_state_struct *last =
1008 		this_cpu_ptr(&fpsimd_last_state);
1009 
1010 	last->st = &current->thread.uw.fpsimd_state;
1011 	last->sve_in_use = test_thread_flag(TIF_SVE);
1012 	current->thread.fpsimd_cpu = smp_processor_id();
1013 }
1014 
1015 /*
1016  * Load the userland FPSIMD state of 'current' from memory, but only if the
1017  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1018  * state of 'current'
1019  */
1020 void fpsimd_restore_current_state(void)
1021 {
1022 	if (!system_supports_fpsimd())
1023 		return;
1024 
1025 	local_bh_disable();
1026 
1027 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1028 		task_fpsimd_load();
1029 		fpsimd_bind_to_cpu();
1030 	}
1031 
1032 	local_bh_enable();
1033 }
1034 
1035 /*
1036  * Load an updated userland FPSIMD state for 'current' from memory and set the
1037  * flag that indicates that the FPSIMD register contents are the most recent
1038  * FPSIMD state of 'current'
1039  */
1040 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1041 {
1042 	if (!system_supports_fpsimd())
1043 		return;
1044 
1045 	local_bh_disable();
1046 
1047 	current->thread.uw.fpsimd_state = *state;
1048 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
1049 		fpsimd_to_sve(current);
1050 
1051 	task_fpsimd_load();
1052 
1053 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE))
1054 		fpsimd_bind_to_cpu();
1055 
1056 	local_bh_enable();
1057 }
1058 
1059 /*
1060  * Invalidate live CPU copies of task t's FPSIMD state
1061  */
1062 void fpsimd_flush_task_state(struct task_struct *t)
1063 {
1064 	t->thread.fpsimd_cpu = NR_CPUS;
1065 }
1066 
1067 static inline void fpsimd_flush_cpu_state(void)
1068 {
1069 	__this_cpu_write(fpsimd_last_state.st, NULL);
1070 }
1071 
1072 /*
1073  * Invalidate any task SVE state currently held in this CPU's regs.
1074  *
1075  * This is used to prevent the kernel from trying to reuse SVE register data
1076  * that is detroyed by KVM guest enter/exit.  This function should go away when
1077  * KVM SVE support is implemented.  Don't use it for anything else.
1078  */
1079 #ifdef CONFIG_ARM64_SVE
1080 void sve_flush_cpu_state(void)
1081 {
1082 	struct fpsimd_last_state_struct const *last =
1083 		this_cpu_ptr(&fpsimd_last_state);
1084 
1085 	if (last->st && last->sve_in_use)
1086 		fpsimd_flush_cpu_state();
1087 }
1088 #endif /* CONFIG_ARM64_SVE */
1089 
1090 #ifdef CONFIG_KERNEL_MODE_NEON
1091 
1092 DEFINE_PER_CPU(bool, kernel_neon_busy);
1093 EXPORT_PER_CPU_SYMBOL(kernel_neon_busy);
1094 
1095 /*
1096  * Kernel-side NEON support functions
1097  */
1098 
1099 /*
1100  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1101  * context
1102  *
1103  * Must not be called unless may_use_simd() returns true.
1104  * Task context in the FPSIMD registers is saved back to memory as necessary.
1105  *
1106  * A matching call to kernel_neon_end() must be made before returning from the
1107  * calling context.
1108  *
1109  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1110  * called.
1111  */
1112 void kernel_neon_begin(void)
1113 {
1114 	if (WARN_ON(!system_supports_fpsimd()))
1115 		return;
1116 
1117 	BUG_ON(!may_use_simd());
1118 
1119 	local_bh_disable();
1120 
1121 	__this_cpu_write(kernel_neon_busy, true);
1122 
1123 	/* Save unsaved task fpsimd state, if any: */
1124 	if (current->mm) {
1125 		task_fpsimd_save();
1126 		set_thread_flag(TIF_FOREIGN_FPSTATE);
1127 	}
1128 
1129 	/* Invalidate any task state remaining in the fpsimd regs: */
1130 	fpsimd_flush_cpu_state();
1131 
1132 	preempt_disable();
1133 
1134 	local_bh_enable();
1135 }
1136 EXPORT_SYMBOL(kernel_neon_begin);
1137 
1138 /*
1139  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1140  *
1141  * Must be called from a context in which kernel_neon_begin() was previously
1142  * called, with no call to kernel_neon_end() in the meantime.
1143  *
1144  * The caller must not use the FPSIMD registers after this function is called,
1145  * unless kernel_neon_begin() is called again in the meantime.
1146  */
1147 void kernel_neon_end(void)
1148 {
1149 	bool busy;
1150 
1151 	if (!system_supports_fpsimd())
1152 		return;
1153 
1154 	busy = __this_cpu_xchg(kernel_neon_busy, false);
1155 	WARN_ON(!busy);	/* No matching kernel_neon_begin()? */
1156 
1157 	preempt_enable();
1158 }
1159 EXPORT_SYMBOL(kernel_neon_end);
1160 
1161 #ifdef CONFIG_EFI
1162 
1163 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1164 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1165 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1166 
1167 /*
1168  * EFI runtime services support functions
1169  *
1170  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1171  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1172  * is always used rather than being an optional accelerator.
1173  *
1174  * These functions provide the necessary support for ensuring FPSIMD
1175  * save/restore in the contexts from which EFI is used.
1176  *
1177  * Do not use them for any other purpose -- if tempted to do so, you are
1178  * either doing something wrong or you need to propose some refactoring.
1179  */
1180 
1181 /*
1182  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1183  */
1184 void __efi_fpsimd_begin(void)
1185 {
1186 	if (!system_supports_fpsimd())
1187 		return;
1188 
1189 	WARN_ON(preemptible());
1190 
1191 	if (may_use_simd()) {
1192 		kernel_neon_begin();
1193 	} else {
1194 		/*
1195 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1196 		 * preserving:
1197 		 */
1198 		if (system_supports_sve() && likely(efi_sve_state)) {
1199 			char *sve_state = this_cpu_ptr(efi_sve_state);
1200 
1201 			__this_cpu_write(efi_sve_state_used, true);
1202 
1203 			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
1204 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
1205 		} else {
1206 			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1207 		}
1208 
1209 		__this_cpu_write(efi_fpsimd_state_used, true);
1210 	}
1211 }
1212 
1213 /*
1214  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1215  */
1216 void __efi_fpsimd_end(void)
1217 {
1218 	if (!system_supports_fpsimd())
1219 		return;
1220 
1221 	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1222 		kernel_neon_end();
1223 	} else {
1224 		if (system_supports_sve() &&
1225 		    likely(__this_cpu_read(efi_sve_state_used))) {
1226 			char const *sve_state = this_cpu_ptr(efi_sve_state);
1227 
1228 			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
1229 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1230 				       sve_vq_from_vl(sve_get_vl()) - 1);
1231 
1232 			__this_cpu_write(efi_sve_state_used, false);
1233 		} else {
1234 			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1235 		}
1236 	}
1237 }
1238 
1239 #endif /* CONFIG_EFI */
1240 
1241 #endif /* CONFIG_KERNEL_MODE_NEON */
1242 
1243 #ifdef CONFIG_CPU_PM
1244 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1245 				  unsigned long cmd, void *v)
1246 {
1247 	switch (cmd) {
1248 	case CPU_PM_ENTER:
1249 		if (current->mm)
1250 			task_fpsimd_save();
1251 		fpsimd_flush_cpu_state();
1252 		break;
1253 	case CPU_PM_EXIT:
1254 		if (current->mm)
1255 			set_thread_flag(TIF_FOREIGN_FPSTATE);
1256 		break;
1257 	case CPU_PM_ENTER_FAILED:
1258 	default:
1259 		return NOTIFY_DONE;
1260 	}
1261 	return NOTIFY_OK;
1262 }
1263 
1264 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1265 	.notifier_call = fpsimd_cpu_pm_notifier,
1266 };
1267 
1268 static void __init fpsimd_pm_init(void)
1269 {
1270 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1271 }
1272 
1273 #else
1274 static inline void fpsimd_pm_init(void) { }
1275 #endif /* CONFIG_CPU_PM */
1276 
1277 #ifdef CONFIG_HOTPLUG_CPU
1278 static int fpsimd_cpu_dead(unsigned int cpu)
1279 {
1280 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
1281 	return 0;
1282 }
1283 
1284 static inline void fpsimd_hotplug_init(void)
1285 {
1286 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1287 				  NULL, fpsimd_cpu_dead);
1288 }
1289 
1290 #else
1291 static inline void fpsimd_hotplug_init(void) { }
1292 #endif
1293 
1294 /*
1295  * FP/SIMD support code initialisation.
1296  */
1297 static int __init fpsimd_init(void)
1298 {
1299 	if (elf_hwcap & HWCAP_FP) {
1300 		fpsimd_pm_init();
1301 		fpsimd_hotplug_init();
1302 	} else {
1303 		pr_notice("Floating-point is not implemented\n");
1304 	}
1305 
1306 	if (!(elf_hwcap & HWCAP_ASIMD))
1307 		pr_notice("Advanced SIMD is not implemented\n");
1308 
1309 	return sve_sysctl_init();
1310 }
1311 core_initcall(fpsimd_init);
1312