1 /* 2 * FP/SIMD context switching and fault handling 3 * 4 * Copyright (C) 2012 ARM Ltd. 5 * Author: Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/bottom_half.h> 21 #include <linux/cpu.h> 22 #include <linux/cpu_pm.h> 23 #include <linux/kernel.h> 24 #include <linux/init.h> 25 #include <linux/percpu.h> 26 #include <linux/preempt.h> 27 #include <linux/sched/signal.h> 28 #include <linux/signal.h> 29 30 #include <asm/fpsimd.h> 31 #include <asm/cputype.h> 32 #include <asm/simd.h> 33 34 #define FPEXC_IOF (1 << 0) 35 #define FPEXC_DZF (1 << 1) 36 #define FPEXC_OFF (1 << 2) 37 #define FPEXC_UFF (1 << 3) 38 #define FPEXC_IXF (1 << 4) 39 #define FPEXC_IDF (1 << 7) 40 41 /* 42 * In order to reduce the number of times the FPSIMD state is needlessly saved 43 * and restored, we need to keep track of two things: 44 * (a) for each task, we need to remember which CPU was the last one to have 45 * the task's FPSIMD state loaded into its FPSIMD registers; 46 * (b) for each CPU, we need to remember which task's userland FPSIMD state has 47 * been loaded into its FPSIMD registers most recently, or whether it has 48 * been used to perform kernel mode NEON in the meantime. 49 * 50 * For (a), we add a 'cpu' field to struct fpsimd_state, which gets updated to 51 * the id of the current CPU every time the state is loaded onto a CPU. For (b), 52 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the 53 * address of the userland FPSIMD state of the task that was loaded onto the CPU 54 * the most recently, or NULL if kernel mode NEON has been performed after that. 55 * 56 * With this in place, we no longer have to restore the next FPSIMD state right 57 * when switching between tasks. Instead, we can defer this check to userland 58 * resume, at which time we verify whether the CPU's fpsimd_last_state and the 59 * task's fpsimd_state.cpu are still mutually in sync. If this is the case, we 60 * can omit the FPSIMD restore. 61 * 62 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to 63 * indicate whether or not the userland FPSIMD state of the current task is 64 * present in the registers. The flag is set unless the FPSIMD registers of this 65 * CPU currently contain the most recent userland FPSIMD state of the current 66 * task. 67 * 68 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may 69 * save the task's FPSIMD context back to task_struct from softirq context. 70 * To prevent this from racing with the manipulation of the task's FPSIMD state 71 * from task context and thereby corrupting the state, it is necessary to 72 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE 73 * flag with local_bh_disable() unless softirqs are already masked. 74 * 75 * For a certain task, the sequence may look something like this: 76 * - the task gets scheduled in; if both the task's fpsimd_state.cpu field 77 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu 78 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is 79 * cleared, otherwise it is set; 80 * 81 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's 82 * userland FPSIMD state is copied from memory to the registers, the task's 83 * fpsimd_state.cpu field is set to the id of the current CPU, the current 84 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the 85 * TIF_FOREIGN_FPSTATE flag is cleared; 86 * 87 * - the task executes an ordinary syscall; upon return to userland, the 88 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is 89 * restored; 90 * 91 * - the task executes a syscall which executes some NEON instructions; this is 92 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD 93 * register contents to memory, clears the fpsimd_last_state per-cpu variable 94 * and sets the TIF_FOREIGN_FPSTATE flag; 95 * 96 * - the task gets preempted after kernel_neon_end() is called; as we have not 97 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so 98 * whatever is in the FPSIMD registers is not saved to memory, but discarded. 99 */ 100 static DEFINE_PER_CPU(struct fpsimd_state *, fpsimd_last_state); 101 102 /* 103 * Trapped FP/ASIMD access. 104 */ 105 void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs) 106 { 107 /* TODO: implement lazy context saving/restoring */ 108 WARN_ON(1); 109 } 110 111 /* 112 * Raise a SIGFPE for the current process. 113 */ 114 void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs) 115 { 116 siginfo_t info; 117 unsigned int si_code = 0; 118 119 if (esr & FPEXC_IOF) 120 si_code = FPE_FLTINV; 121 else if (esr & FPEXC_DZF) 122 si_code = FPE_FLTDIV; 123 else if (esr & FPEXC_OFF) 124 si_code = FPE_FLTOVF; 125 else if (esr & FPEXC_UFF) 126 si_code = FPE_FLTUND; 127 else if (esr & FPEXC_IXF) 128 si_code = FPE_FLTRES; 129 130 memset(&info, 0, sizeof(info)); 131 info.si_signo = SIGFPE; 132 info.si_code = si_code; 133 info.si_addr = (void __user *)instruction_pointer(regs); 134 135 send_sig_info(SIGFPE, &info, current); 136 } 137 138 void fpsimd_thread_switch(struct task_struct *next) 139 { 140 if (!system_supports_fpsimd()) 141 return; 142 /* 143 * Save the current FPSIMD state to memory, but only if whatever is in 144 * the registers is in fact the most recent userland FPSIMD state of 145 * 'current'. 146 */ 147 if (current->mm && !test_thread_flag(TIF_FOREIGN_FPSTATE)) 148 fpsimd_save_state(¤t->thread.fpsimd_state); 149 150 if (next->mm) { 151 /* 152 * If we are switching to a task whose most recent userland 153 * FPSIMD state is already in the registers of *this* cpu, 154 * we can skip loading the state from memory. Otherwise, set 155 * the TIF_FOREIGN_FPSTATE flag so the state will be loaded 156 * upon the next return to userland. 157 */ 158 struct fpsimd_state *st = &next->thread.fpsimd_state; 159 160 if (__this_cpu_read(fpsimd_last_state) == st 161 && st->cpu == smp_processor_id()) 162 clear_ti_thread_flag(task_thread_info(next), 163 TIF_FOREIGN_FPSTATE); 164 else 165 set_ti_thread_flag(task_thread_info(next), 166 TIF_FOREIGN_FPSTATE); 167 } 168 } 169 170 void fpsimd_flush_thread(void) 171 { 172 if (!system_supports_fpsimd()) 173 return; 174 175 local_bh_disable(); 176 177 memset(¤t->thread.fpsimd_state, 0, sizeof(struct fpsimd_state)); 178 fpsimd_flush_task_state(current); 179 set_thread_flag(TIF_FOREIGN_FPSTATE); 180 181 local_bh_enable(); 182 } 183 184 /* 185 * Save the userland FPSIMD state of 'current' to memory, but only if the state 186 * currently held in the registers does in fact belong to 'current' 187 */ 188 void fpsimd_preserve_current_state(void) 189 { 190 if (!system_supports_fpsimd()) 191 return; 192 193 local_bh_disable(); 194 195 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) 196 fpsimd_save_state(¤t->thread.fpsimd_state); 197 198 local_bh_enable(); 199 } 200 201 /* 202 * Load the userland FPSIMD state of 'current' from memory, but only if the 203 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD 204 * state of 'current' 205 */ 206 void fpsimd_restore_current_state(void) 207 { 208 if (!system_supports_fpsimd()) 209 return; 210 211 local_bh_disable(); 212 213 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { 214 struct fpsimd_state *st = ¤t->thread.fpsimd_state; 215 216 fpsimd_load_state(st); 217 __this_cpu_write(fpsimd_last_state, st); 218 st->cpu = smp_processor_id(); 219 } 220 221 local_bh_enable(); 222 } 223 224 /* 225 * Load an updated userland FPSIMD state for 'current' from memory and set the 226 * flag that indicates that the FPSIMD register contents are the most recent 227 * FPSIMD state of 'current' 228 */ 229 void fpsimd_update_current_state(struct fpsimd_state *state) 230 { 231 if (!system_supports_fpsimd()) 232 return; 233 234 local_bh_disable(); 235 236 fpsimd_load_state(state); 237 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { 238 struct fpsimd_state *st = ¤t->thread.fpsimd_state; 239 240 __this_cpu_write(fpsimd_last_state, st); 241 st->cpu = smp_processor_id(); 242 } 243 244 local_bh_enable(); 245 } 246 247 /* 248 * Invalidate live CPU copies of task t's FPSIMD state 249 */ 250 void fpsimd_flush_task_state(struct task_struct *t) 251 { 252 t->thread.fpsimd_state.cpu = NR_CPUS; 253 } 254 255 #ifdef CONFIG_KERNEL_MODE_NEON 256 257 DEFINE_PER_CPU(bool, kernel_neon_busy); 258 EXPORT_PER_CPU_SYMBOL(kernel_neon_busy); 259 260 /* 261 * Kernel-side NEON support functions 262 */ 263 264 /* 265 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling 266 * context 267 * 268 * Must not be called unless may_use_simd() returns true. 269 * Task context in the FPSIMD registers is saved back to memory as necessary. 270 * 271 * A matching call to kernel_neon_end() must be made before returning from the 272 * calling context. 273 * 274 * The caller may freely use the FPSIMD registers until kernel_neon_end() is 275 * called. 276 */ 277 void kernel_neon_begin(void) 278 { 279 if (WARN_ON(!system_supports_fpsimd())) 280 return; 281 282 BUG_ON(!may_use_simd()); 283 284 local_bh_disable(); 285 286 __this_cpu_write(kernel_neon_busy, true); 287 288 /* Save unsaved task fpsimd state, if any: */ 289 if (current->mm && !test_and_set_thread_flag(TIF_FOREIGN_FPSTATE)) 290 fpsimd_save_state(¤t->thread.fpsimd_state); 291 292 /* Invalidate any task state remaining in the fpsimd regs: */ 293 __this_cpu_write(fpsimd_last_state, NULL); 294 295 preempt_disable(); 296 297 local_bh_enable(); 298 } 299 EXPORT_SYMBOL(kernel_neon_begin); 300 301 /* 302 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task 303 * 304 * Must be called from a context in which kernel_neon_begin() was previously 305 * called, with no call to kernel_neon_end() in the meantime. 306 * 307 * The caller must not use the FPSIMD registers after this function is called, 308 * unless kernel_neon_begin() is called again in the meantime. 309 */ 310 void kernel_neon_end(void) 311 { 312 bool busy; 313 314 if (!system_supports_fpsimd()) 315 return; 316 317 busy = __this_cpu_xchg(kernel_neon_busy, false); 318 WARN_ON(!busy); /* No matching kernel_neon_begin()? */ 319 320 preempt_enable(); 321 } 322 EXPORT_SYMBOL(kernel_neon_end); 323 324 #ifdef CONFIG_EFI 325 326 static DEFINE_PER_CPU(struct fpsimd_state, efi_fpsimd_state); 327 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used); 328 329 /* 330 * EFI runtime services support functions 331 * 332 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call. 333 * This means that for EFI (and only for EFI), we have to assume that FPSIMD 334 * is always used rather than being an optional accelerator. 335 * 336 * These functions provide the necessary support for ensuring FPSIMD 337 * save/restore in the contexts from which EFI is used. 338 * 339 * Do not use them for any other purpose -- if tempted to do so, you are 340 * either doing something wrong or you need to propose some refactoring. 341 */ 342 343 /* 344 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call 345 */ 346 void __efi_fpsimd_begin(void) 347 { 348 if (!system_supports_fpsimd()) 349 return; 350 351 WARN_ON(preemptible()); 352 353 if (may_use_simd()) 354 kernel_neon_begin(); 355 else { 356 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state)); 357 __this_cpu_write(efi_fpsimd_state_used, true); 358 } 359 } 360 361 /* 362 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call 363 */ 364 void __efi_fpsimd_end(void) 365 { 366 if (!system_supports_fpsimd()) 367 return; 368 369 if (__this_cpu_xchg(efi_fpsimd_state_used, false)) 370 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state)); 371 else 372 kernel_neon_end(); 373 } 374 375 #endif /* CONFIG_EFI */ 376 377 #endif /* CONFIG_KERNEL_MODE_NEON */ 378 379 #ifdef CONFIG_CPU_PM 380 static int fpsimd_cpu_pm_notifier(struct notifier_block *self, 381 unsigned long cmd, void *v) 382 { 383 switch (cmd) { 384 case CPU_PM_ENTER: 385 if (current->mm && !test_thread_flag(TIF_FOREIGN_FPSTATE)) 386 fpsimd_save_state(¤t->thread.fpsimd_state); 387 this_cpu_write(fpsimd_last_state, NULL); 388 break; 389 case CPU_PM_EXIT: 390 if (current->mm) 391 set_thread_flag(TIF_FOREIGN_FPSTATE); 392 break; 393 case CPU_PM_ENTER_FAILED: 394 default: 395 return NOTIFY_DONE; 396 } 397 return NOTIFY_OK; 398 } 399 400 static struct notifier_block fpsimd_cpu_pm_notifier_block = { 401 .notifier_call = fpsimd_cpu_pm_notifier, 402 }; 403 404 static void __init fpsimd_pm_init(void) 405 { 406 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block); 407 } 408 409 #else 410 static inline void fpsimd_pm_init(void) { } 411 #endif /* CONFIG_CPU_PM */ 412 413 #ifdef CONFIG_HOTPLUG_CPU 414 static int fpsimd_cpu_dead(unsigned int cpu) 415 { 416 per_cpu(fpsimd_last_state, cpu) = NULL; 417 return 0; 418 } 419 420 static inline void fpsimd_hotplug_init(void) 421 { 422 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead", 423 NULL, fpsimd_cpu_dead); 424 } 425 426 #else 427 static inline void fpsimd_hotplug_init(void) { } 428 #endif 429 430 /* 431 * FP/SIMD support code initialisation. 432 */ 433 static int __init fpsimd_init(void) 434 { 435 if (elf_hwcap & HWCAP_FP) { 436 fpsimd_pm_init(); 437 fpsimd_hotplug_init(); 438 } else { 439 pr_notice("Floating-point is not implemented\n"); 440 } 441 442 if (!(elf_hwcap & HWCAP_ASIMD)) 443 pr_notice("Advanced SIMD is not implemented\n"); 444 445 return 0; 446 } 447 late_initcall(fpsimd_init); 448