1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * FP/SIMD context switching and fault handling 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * Author: Catalin Marinas <catalin.marinas@arm.com> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/bitops.h> 11 #include <linux/bottom_half.h> 12 #include <linux/bug.h> 13 #include <linux/cache.h> 14 #include <linux/compat.h> 15 #include <linux/cpu.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/kernel.h> 18 #include <linux/linkage.h> 19 #include <linux/irqflags.h> 20 #include <linux/init.h> 21 #include <linux/percpu.h> 22 #include <linux/prctl.h> 23 #include <linux/preempt.h> 24 #include <linux/ptrace.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/signal.h> 28 #include <linux/slab.h> 29 #include <linux/stddef.h> 30 #include <linux/sysctl.h> 31 #include <linux/swab.h> 32 33 #include <asm/esr.h> 34 #include <asm/fpsimd.h> 35 #include <asm/cpufeature.h> 36 #include <asm/cputype.h> 37 #include <asm/processor.h> 38 #include <asm/simd.h> 39 #include <asm/sigcontext.h> 40 #include <asm/sysreg.h> 41 #include <asm/traps.h> 42 #include <asm/virt.h> 43 44 #define FPEXC_IOF (1 << 0) 45 #define FPEXC_DZF (1 << 1) 46 #define FPEXC_OFF (1 << 2) 47 #define FPEXC_UFF (1 << 3) 48 #define FPEXC_IXF (1 << 4) 49 #define FPEXC_IDF (1 << 7) 50 51 /* 52 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.) 53 * 54 * In order to reduce the number of times the FPSIMD state is needlessly saved 55 * and restored, we need to keep track of two things: 56 * (a) for each task, we need to remember which CPU was the last one to have 57 * the task's FPSIMD state loaded into its FPSIMD registers; 58 * (b) for each CPU, we need to remember which task's userland FPSIMD state has 59 * been loaded into its FPSIMD registers most recently, or whether it has 60 * been used to perform kernel mode NEON in the meantime. 61 * 62 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to 63 * the id of the current CPU every time the state is loaded onto a CPU. For (b), 64 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the 65 * address of the userland FPSIMD state of the task that was loaded onto the CPU 66 * the most recently, or NULL if kernel mode NEON has been performed after that. 67 * 68 * With this in place, we no longer have to restore the next FPSIMD state right 69 * when switching between tasks. Instead, we can defer this check to userland 70 * resume, at which time we verify whether the CPU's fpsimd_last_state and the 71 * task's fpsimd_cpu are still mutually in sync. If this is the case, we 72 * can omit the FPSIMD restore. 73 * 74 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to 75 * indicate whether or not the userland FPSIMD state of the current task is 76 * present in the registers. The flag is set unless the FPSIMD registers of this 77 * CPU currently contain the most recent userland FPSIMD state of the current 78 * task. 79 * 80 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may 81 * save the task's FPSIMD context back to task_struct from softirq context. 82 * To prevent this from racing with the manipulation of the task's FPSIMD state 83 * from task context and thereby corrupting the state, it is necessary to 84 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE 85 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to 86 * run but prevent them to use FPSIMD. 87 * 88 * For a certain task, the sequence may look something like this: 89 * - the task gets scheduled in; if both the task's fpsimd_cpu field 90 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu 91 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is 92 * cleared, otherwise it is set; 93 * 94 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's 95 * userland FPSIMD state is copied from memory to the registers, the task's 96 * fpsimd_cpu field is set to the id of the current CPU, the current 97 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the 98 * TIF_FOREIGN_FPSTATE flag is cleared; 99 * 100 * - the task executes an ordinary syscall; upon return to userland, the 101 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is 102 * restored; 103 * 104 * - the task executes a syscall which executes some NEON instructions; this is 105 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD 106 * register contents to memory, clears the fpsimd_last_state per-cpu variable 107 * and sets the TIF_FOREIGN_FPSTATE flag; 108 * 109 * - the task gets preempted after kernel_neon_end() is called; as we have not 110 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so 111 * whatever is in the FPSIMD registers is not saved to memory, but discarded. 112 */ 113 struct fpsimd_last_state_struct { 114 struct user_fpsimd_state *st; 115 void *sve_state; 116 unsigned int sve_vl; 117 }; 118 119 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state); 120 121 /* Default VL for tasks that don't set it explicitly: */ 122 static int sve_default_vl = -1; 123 124 #ifdef CONFIG_ARM64_SVE 125 126 /* Maximum supported vector length across all CPUs (initially poisoned) */ 127 int __ro_after_init sve_max_vl = SVE_VL_MIN; 128 int __ro_after_init sve_max_virtualisable_vl = SVE_VL_MIN; 129 130 /* 131 * Set of available vector lengths, 132 * where length vq encoded as bit __vq_to_bit(vq): 133 */ 134 __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX); 135 /* Set of vector lengths present on at least one cpu: */ 136 static __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX); 137 138 static void __percpu *efi_sve_state; 139 140 #else /* ! CONFIG_ARM64_SVE */ 141 142 /* Dummy declaration for code that will be optimised out: */ 143 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX); 144 extern __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX); 145 extern void __percpu *efi_sve_state; 146 147 #endif /* ! CONFIG_ARM64_SVE */ 148 149 DEFINE_PER_CPU(bool, fpsimd_context_busy); 150 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy); 151 152 static void __get_cpu_fpsimd_context(void) 153 { 154 bool busy = __this_cpu_xchg(fpsimd_context_busy, true); 155 156 WARN_ON(busy); 157 } 158 159 /* 160 * Claim ownership of the CPU FPSIMD context for use by the calling context. 161 * 162 * The caller may freely manipulate the FPSIMD context metadata until 163 * put_cpu_fpsimd_context() is called. 164 * 165 * The double-underscore version must only be called if you know the task 166 * can't be preempted. 167 */ 168 static void get_cpu_fpsimd_context(void) 169 { 170 preempt_disable(); 171 __get_cpu_fpsimd_context(); 172 } 173 174 static void __put_cpu_fpsimd_context(void) 175 { 176 bool busy = __this_cpu_xchg(fpsimd_context_busy, false); 177 178 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */ 179 } 180 181 /* 182 * Release the CPU FPSIMD context. 183 * 184 * Must be called from a context in which get_cpu_fpsimd_context() was 185 * previously called, with no call to put_cpu_fpsimd_context() in the 186 * meantime. 187 */ 188 static void put_cpu_fpsimd_context(void) 189 { 190 __put_cpu_fpsimd_context(); 191 preempt_enable(); 192 } 193 194 static bool have_cpu_fpsimd_context(void) 195 { 196 return !preemptible() && __this_cpu_read(fpsimd_context_busy); 197 } 198 199 /* 200 * Call __sve_free() directly only if you know task can't be scheduled 201 * or preempted. 202 */ 203 static void __sve_free(struct task_struct *task) 204 { 205 kfree(task->thread.sve_state); 206 task->thread.sve_state = NULL; 207 } 208 209 static void sve_free(struct task_struct *task) 210 { 211 WARN_ON(test_tsk_thread_flag(task, TIF_SVE)); 212 213 __sve_free(task); 214 } 215 216 /* 217 * TIF_SVE controls whether a task can use SVE without trapping while 218 * in userspace, and also the way a task's FPSIMD/SVE state is stored 219 * in thread_struct. 220 * 221 * The kernel uses this flag to track whether a user task is actively 222 * using SVE, and therefore whether full SVE register state needs to 223 * be tracked. If not, the cheaper FPSIMD context handling code can 224 * be used instead of the more costly SVE equivalents. 225 * 226 * * TIF_SVE set: 227 * 228 * The task can execute SVE instructions while in userspace without 229 * trapping to the kernel. 230 * 231 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the 232 * corresponding Zn), P0-P15 and FFR are encoded in in 233 * task->thread.sve_state, formatted appropriately for vector 234 * length task->thread.sve_vl. 235 * 236 * task->thread.sve_state must point to a valid buffer at least 237 * sve_state_size(task) bytes in size. 238 * 239 * During any syscall, the kernel may optionally clear TIF_SVE and 240 * discard the vector state except for the FPSIMD subset. 241 * 242 * * TIF_SVE clear: 243 * 244 * An attempt by the user task to execute an SVE instruction causes 245 * do_sve_acc() to be called, which does some preparation and then 246 * sets TIF_SVE. 247 * 248 * When stored, FPSIMD registers V0-V31 are encoded in 249 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are 250 * logically zero but not stored anywhere; P0-P15 and FFR are not 251 * stored and have unspecified values from userspace's point of 252 * view. For hygiene purposes, the kernel zeroes them on next use, 253 * but userspace is discouraged from relying on this. 254 * 255 * task->thread.sve_state does not need to be non-NULL, valid or any 256 * particular size: it must not be dereferenced. 257 * 258 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state 259 * irrespective of whether TIF_SVE is clear or set, since these are 260 * not vector length dependent. 261 */ 262 263 /* 264 * Update current's FPSIMD/SVE registers from thread_struct. 265 * 266 * This function should be called only when the FPSIMD/SVE state in 267 * thread_struct is known to be up to date, when preparing to enter 268 * userspace. 269 */ 270 static void task_fpsimd_load(void) 271 { 272 WARN_ON(!system_supports_fpsimd()); 273 WARN_ON(!have_cpu_fpsimd_context()); 274 275 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 276 sve_load_state(sve_pffr(¤t->thread), 277 ¤t->thread.uw.fpsimd_state.fpsr, 278 sve_vq_from_vl(current->thread.sve_vl) - 1); 279 else 280 fpsimd_load_state(¤t->thread.uw.fpsimd_state); 281 } 282 283 /* 284 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to 285 * date with respect to the CPU registers. 286 */ 287 static void fpsimd_save(void) 288 { 289 struct fpsimd_last_state_struct const *last = 290 this_cpu_ptr(&fpsimd_last_state); 291 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */ 292 293 WARN_ON(!system_supports_fpsimd()); 294 WARN_ON(!have_cpu_fpsimd_context()); 295 296 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 297 if (system_supports_sve() && test_thread_flag(TIF_SVE)) { 298 if (WARN_ON(sve_get_vl() != last->sve_vl)) { 299 /* 300 * Can't save the user regs, so current would 301 * re-enter user with corrupt state. 302 * There's no way to recover, so kill it: 303 */ 304 force_signal_inject(SIGKILL, SI_KERNEL, 0); 305 return; 306 } 307 308 sve_save_state((char *)last->sve_state + 309 sve_ffr_offset(last->sve_vl), 310 &last->st->fpsr); 311 } else 312 fpsimd_save_state(last->st); 313 } 314 } 315 316 /* 317 * All vector length selection from userspace comes through here. 318 * We're on a slow path, so some sanity-checks are included. 319 * If things go wrong there's a bug somewhere, but try to fall back to a 320 * safe choice. 321 */ 322 static unsigned int find_supported_vector_length(unsigned int vl) 323 { 324 int bit; 325 int max_vl = sve_max_vl; 326 327 if (WARN_ON(!sve_vl_valid(vl))) 328 vl = SVE_VL_MIN; 329 330 if (WARN_ON(!sve_vl_valid(max_vl))) 331 max_vl = SVE_VL_MIN; 332 333 if (vl > max_vl) 334 vl = max_vl; 335 336 bit = find_next_bit(sve_vq_map, SVE_VQ_MAX, 337 __vq_to_bit(sve_vq_from_vl(vl))); 338 return sve_vl_from_vq(__bit_to_vq(bit)); 339 } 340 341 #ifdef CONFIG_SYSCTL 342 343 static int sve_proc_do_default_vl(struct ctl_table *table, int write, 344 void *buffer, size_t *lenp, loff_t *ppos) 345 { 346 int ret; 347 int vl = sve_default_vl; 348 struct ctl_table tmp_table = { 349 .data = &vl, 350 .maxlen = sizeof(vl), 351 }; 352 353 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); 354 if (ret || !write) 355 return ret; 356 357 /* Writing -1 has the special meaning "set to max": */ 358 if (vl == -1) 359 vl = sve_max_vl; 360 361 if (!sve_vl_valid(vl)) 362 return -EINVAL; 363 364 sve_default_vl = find_supported_vector_length(vl); 365 return 0; 366 } 367 368 static struct ctl_table sve_default_vl_table[] = { 369 { 370 .procname = "sve_default_vector_length", 371 .mode = 0644, 372 .proc_handler = sve_proc_do_default_vl, 373 }, 374 { } 375 }; 376 377 static int __init sve_sysctl_init(void) 378 { 379 if (system_supports_sve()) 380 if (!register_sysctl("abi", sve_default_vl_table)) 381 return -EINVAL; 382 383 return 0; 384 } 385 386 #else /* ! CONFIG_SYSCTL */ 387 static int __init sve_sysctl_init(void) { return 0; } 388 #endif /* ! CONFIG_SYSCTL */ 389 390 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \ 391 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET)) 392 393 #ifdef CONFIG_CPU_BIG_ENDIAN 394 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 395 { 396 u64 a = swab64(x); 397 u64 b = swab64(x >> 64); 398 399 return ((__uint128_t)a << 64) | b; 400 } 401 #else 402 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 403 { 404 return x; 405 } 406 #endif 407 408 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x) 409 410 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst, 411 unsigned int vq) 412 { 413 unsigned int i; 414 __uint128_t *p; 415 416 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 417 p = (__uint128_t *)ZREG(sst, vq, i); 418 *p = arm64_cpu_to_le128(fst->vregs[i]); 419 } 420 } 421 422 /* 423 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to 424 * task->thread.sve_state. 425 * 426 * Task can be a non-runnable task, or current. In the latter case, 427 * the caller must have ownership of the cpu FPSIMD context before calling 428 * this function. 429 * task->thread.sve_state must point to at least sve_state_size(task) 430 * bytes of allocated kernel memory. 431 * task->thread.uw.fpsimd_state must be up to date before calling this 432 * function. 433 */ 434 static void fpsimd_to_sve(struct task_struct *task) 435 { 436 unsigned int vq; 437 void *sst = task->thread.sve_state; 438 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 439 440 if (!system_supports_sve()) 441 return; 442 443 vq = sve_vq_from_vl(task->thread.sve_vl); 444 __fpsimd_to_sve(sst, fst, vq); 445 } 446 447 /* 448 * Transfer the SVE state in task->thread.sve_state to 449 * task->thread.uw.fpsimd_state. 450 * 451 * Task can be a non-runnable task, or current. In the latter case, 452 * the caller must have ownership of the cpu FPSIMD context before calling 453 * this function. 454 * task->thread.sve_state must point to at least sve_state_size(task) 455 * bytes of allocated kernel memory. 456 * task->thread.sve_state must be up to date before calling this function. 457 */ 458 static void sve_to_fpsimd(struct task_struct *task) 459 { 460 unsigned int vq; 461 void const *sst = task->thread.sve_state; 462 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state; 463 unsigned int i; 464 __uint128_t const *p; 465 466 if (!system_supports_sve()) 467 return; 468 469 vq = sve_vq_from_vl(task->thread.sve_vl); 470 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 471 p = (__uint128_t const *)ZREG(sst, vq, i); 472 fst->vregs[i] = arm64_le128_to_cpu(*p); 473 } 474 } 475 476 #ifdef CONFIG_ARM64_SVE 477 478 /* 479 * Return how many bytes of memory are required to store the full SVE 480 * state for task, given task's currently configured vector length. 481 */ 482 size_t sve_state_size(struct task_struct const *task) 483 { 484 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl)); 485 } 486 487 /* 488 * Ensure that task->thread.sve_state is allocated and sufficiently large. 489 * 490 * This function should be used only in preparation for replacing 491 * task->thread.sve_state with new data. The memory is always zeroed 492 * here to prevent stale data from showing through: this is done in 493 * the interest of testability and predictability: except in the 494 * do_sve_acc() case, there is no ABI requirement to hide stale data 495 * written previously be task. 496 */ 497 void sve_alloc(struct task_struct *task) 498 { 499 if (task->thread.sve_state) { 500 memset(task->thread.sve_state, 0, sve_state_size(current)); 501 return; 502 } 503 504 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */ 505 task->thread.sve_state = 506 kzalloc(sve_state_size(task), GFP_KERNEL); 507 508 /* 509 * If future SVE revisions can have larger vectors though, 510 * this may cease to be true: 511 */ 512 BUG_ON(!task->thread.sve_state); 513 } 514 515 516 /* 517 * Ensure that task->thread.sve_state is up to date with respect to 518 * the user task, irrespective of when SVE is in use or not. 519 * 520 * This should only be called by ptrace. task must be non-runnable. 521 * task->thread.sve_state must point to at least sve_state_size(task) 522 * bytes of allocated kernel memory. 523 */ 524 void fpsimd_sync_to_sve(struct task_struct *task) 525 { 526 if (!test_tsk_thread_flag(task, TIF_SVE)) 527 fpsimd_to_sve(task); 528 } 529 530 /* 531 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to 532 * the user task, irrespective of whether SVE is in use or not. 533 * 534 * This should only be called by ptrace. task must be non-runnable. 535 * task->thread.sve_state must point to at least sve_state_size(task) 536 * bytes of allocated kernel memory. 537 */ 538 void sve_sync_to_fpsimd(struct task_struct *task) 539 { 540 if (test_tsk_thread_flag(task, TIF_SVE)) 541 sve_to_fpsimd(task); 542 } 543 544 /* 545 * Ensure that task->thread.sve_state is up to date with respect to 546 * the task->thread.uw.fpsimd_state. 547 * 548 * This should only be called by ptrace to merge new FPSIMD register 549 * values into a task for which SVE is currently active. 550 * task must be non-runnable. 551 * task->thread.sve_state must point to at least sve_state_size(task) 552 * bytes of allocated kernel memory. 553 * task->thread.uw.fpsimd_state must already have been initialised with 554 * the new FPSIMD register values to be merged in. 555 */ 556 void sve_sync_from_fpsimd_zeropad(struct task_struct *task) 557 { 558 unsigned int vq; 559 void *sst = task->thread.sve_state; 560 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 561 562 if (!test_tsk_thread_flag(task, TIF_SVE)) 563 return; 564 565 vq = sve_vq_from_vl(task->thread.sve_vl); 566 567 memset(sst, 0, SVE_SIG_REGS_SIZE(vq)); 568 __fpsimd_to_sve(sst, fst, vq); 569 } 570 571 int sve_set_vector_length(struct task_struct *task, 572 unsigned long vl, unsigned long flags) 573 { 574 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT | 575 PR_SVE_SET_VL_ONEXEC)) 576 return -EINVAL; 577 578 if (!sve_vl_valid(vl)) 579 return -EINVAL; 580 581 /* 582 * Clamp to the maximum vector length that VL-agnostic SVE code can 583 * work with. A flag may be assigned in the future to allow setting 584 * of larger vector lengths without confusing older software. 585 */ 586 if (vl > SVE_VL_ARCH_MAX) 587 vl = SVE_VL_ARCH_MAX; 588 589 vl = find_supported_vector_length(vl); 590 591 if (flags & (PR_SVE_VL_INHERIT | 592 PR_SVE_SET_VL_ONEXEC)) 593 task->thread.sve_vl_onexec = vl; 594 else 595 /* Reset VL to system default on next exec: */ 596 task->thread.sve_vl_onexec = 0; 597 598 /* Only actually set the VL if not deferred: */ 599 if (flags & PR_SVE_SET_VL_ONEXEC) 600 goto out; 601 602 if (vl == task->thread.sve_vl) 603 goto out; 604 605 /* 606 * To ensure the FPSIMD bits of the SVE vector registers are preserved, 607 * write any live register state back to task_struct, and convert to a 608 * non-SVE thread. 609 */ 610 if (task == current) { 611 get_cpu_fpsimd_context(); 612 613 fpsimd_save(); 614 } 615 616 fpsimd_flush_task_state(task); 617 if (test_and_clear_tsk_thread_flag(task, TIF_SVE)) 618 sve_to_fpsimd(task); 619 620 if (task == current) 621 put_cpu_fpsimd_context(); 622 623 /* 624 * Force reallocation of task SVE state to the correct size 625 * on next use: 626 */ 627 sve_free(task); 628 629 task->thread.sve_vl = vl; 630 631 out: 632 update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT, 633 flags & PR_SVE_VL_INHERIT); 634 635 return 0; 636 } 637 638 /* 639 * Encode the current vector length and flags for return. 640 * This is only required for prctl(): ptrace has separate fields 641 * 642 * flags are as for sve_set_vector_length(). 643 */ 644 static int sve_prctl_status(unsigned long flags) 645 { 646 int ret; 647 648 if (flags & PR_SVE_SET_VL_ONEXEC) 649 ret = current->thread.sve_vl_onexec; 650 else 651 ret = current->thread.sve_vl; 652 653 if (test_thread_flag(TIF_SVE_VL_INHERIT)) 654 ret |= PR_SVE_VL_INHERIT; 655 656 return ret; 657 } 658 659 /* PR_SVE_SET_VL */ 660 int sve_set_current_vl(unsigned long arg) 661 { 662 unsigned long vl, flags; 663 int ret; 664 665 vl = arg & PR_SVE_VL_LEN_MASK; 666 flags = arg & ~vl; 667 668 if (!system_supports_sve()) 669 return -EINVAL; 670 671 ret = sve_set_vector_length(current, vl, flags); 672 if (ret) 673 return ret; 674 675 return sve_prctl_status(flags); 676 } 677 678 /* PR_SVE_GET_VL */ 679 int sve_get_current_vl(void) 680 { 681 if (!system_supports_sve()) 682 return -EINVAL; 683 684 return sve_prctl_status(0); 685 } 686 687 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX)) 688 { 689 unsigned int vq, vl; 690 unsigned long zcr; 691 692 bitmap_zero(map, SVE_VQ_MAX); 693 694 zcr = ZCR_ELx_LEN_MASK; 695 zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr; 696 697 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) { 698 write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */ 699 vl = sve_get_vl(); 700 vq = sve_vq_from_vl(vl); /* skip intervening lengths */ 701 set_bit(__vq_to_bit(vq), map); 702 } 703 } 704 705 /* 706 * Initialise the set of known supported VQs for the boot CPU. 707 * This is called during kernel boot, before secondary CPUs are brought up. 708 */ 709 void __init sve_init_vq_map(void) 710 { 711 sve_probe_vqs(sve_vq_map); 712 bitmap_copy(sve_vq_partial_map, sve_vq_map, SVE_VQ_MAX); 713 } 714 715 /* 716 * If we haven't committed to the set of supported VQs yet, filter out 717 * those not supported by the current CPU. 718 * This function is called during the bring-up of early secondary CPUs only. 719 */ 720 void sve_update_vq_map(void) 721 { 722 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 723 724 sve_probe_vqs(tmp_map); 725 bitmap_and(sve_vq_map, sve_vq_map, tmp_map, SVE_VQ_MAX); 726 bitmap_or(sve_vq_partial_map, sve_vq_partial_map, tmp_map, SVE_VQ_MAX); 727 } 728 729 /* 730 * Check whether the current CPU supports all VQs in the committed set. 731 * This function is called during the bring-up of late secondary CPUs only. 732 */ 733 int sve_verify_vq_map(void) 734 { 735 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 736 unsigned long b; 737 738 sve_probe_vqs(tmp_map); 739 740 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 741 if (bitmap_intersects(tmp_map, sve_vq_map, SVE_VQ_MAX)) { 742 pr_warn("SVE: cpu%d: Required vector length(s) missing\n", 743 smp_processor_id()); 744 return -EINVAL; 745 } 746 747 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available()) 748 return 0; 749 750 /* 751 * For KVM, it is necessary to ensure that this CPU doesn't 752 * support any vector length that guests may have probed as 753 * unsupported. 754 */ 755 756 /* Recover the set of supported VQs: */ 757 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 758 /* Find VQs supported that are not globally supported: */ 759 bitmap_andnot(tmp_map, tmp_map, sve_vq_map, SVE_VQ_MAX); 760 761 /* Find the lowest such VQ, if any: */ 762 b = find_last_bit(tmp_map, SVE_VQ_MAX); 763 if (b >= SVE_VQ_MAX) 764 return 0; /* no mismatches */ 765 766 /* 767 * Mismatches above sve_max_virtualisable_vl are fine, since 768 * no guest is allowed to configure ZCR_EL2.LEN to exceed this: 769 */ 770 if (sve_vl_from_vq(__bit_to_vq(b)) <= sve_max_virtualisable_vl) { 771 pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n", 772 smp_processor_id()); 773 return -EINVAL; 774 } 775 776 return 0; 777 } 778 779 static void __init sve_efi_setup(void) 780 { 781 if (!IS_ENABLED(CONFIG_EFI)) 782 return; 783 784 /* 785 * alloc_percpu() warns and prints a backtrace if this goes wrong. 786 * This is evidence of a crippled system and we are returning void, 787 * so no attempt is made to handle this situation here. 788 */ 789 if (!sve_vl_valid(sve_max_vl)) 790 goto fail; 791 792 efi_sve_state = __alloc_percpu( 793 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES); 794 if (!efi_sve_state) 795 goto fail; 796 797 return; 798 799 fail: 800 panic("Cannot allocate percpu memory for EFI SVE save/restore"); 801 } 802 803 /* 804 * Enable SVE for EL1. 805 * Intended for use by the cpufeatures code during CPU boot. 806 */ 807 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p) 808 { 809 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1); 810 isb(); 811 } 812 813 /* 814 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE 815 * vector length. 816 * 817 * Use only if SVE is present. 818 * This function clobbers the SVE vector length. 819 */ 820 u64 read_zcr_features(void) 821 { 822 u64 zcr; 823 unsigned int vq_max; 824 825 /* 826 * Set the maximum possible VL, and write zeroes to all other 827 * bits to see if they stick. 828 */ 829 sve_kernel_enable(NULL); 830 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1); 831 832 zcr = read_sysreg_s(SYS_ZCR_EL1); 833 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */ 834 vq_max = sve_vq_from_vl(sve_get_vl()); 835 zcr |= vq_max - 1; /* set LEN field to maximum effective value */ 836 837 return zcr; 838 } 839 840 void __init sve_setup(void) 841 { 842 u64 zcr; 843 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 844 unsigned long b; 845 846 if (!system_supports_sve()) 847 return; 848 849 /* 850 * The SVE architecture mandates support for 128-bit vectors, 851 * so sve_vq_map must have at least SVE_VQ_MIN set. 852 * If something went wrong, at least try to patch it up: 853 */ 854 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map))) 855 set_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map); 856 857 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); 858 sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1); 859 860 /* 861 * Sanity-check that the max VL we determined through CPU features 862 * corresponds properly to sve_vq_map. If not, do our best: 863 */ 864 if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl))) 865 sve_max_vl = find_supported_vector_length(sve_max_vl); 866 867 /* 868 * For the default VL, pick the maximum supported value <= 64. 869 * VL == 64 is guaranteed not to grow the signal frame. 870 */ 871 sve_default_vl = find_supported_vector_length(64); 872 873 bitmap_andnot(tmp_map, sve_vq_partial_map, sve_vq_map, 874 SVE_VQ_MAX); 875 876 b = find_last_bit(tmp_map, SVE_VQ_MAX); 877 if (b >= SVE_VQ_MAX) 878 /* No non-virtualisable VLs found */ 879 sve_max_virtualisable_vl = SVE_VQ_MAX; 880 else if (WARN_ON(b == SVE_VQ_MAX - 1)) 881 /* No virtualisable VLs? This is architecturally forbidden. */ 882 sve_max_virtualisable_vl = SVE_VQ_MIN; 883 else /* b + 1 < SVE_VQ_MAX */ 884 sve_max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1)); 885 886 if (sve_max_virtualisable_vl > sve_max_vl) 887 sve_max_virtualisable_vl = sve_max_vl; 888 889 pr_info("SVE: maximum available vector length %u bytes per vector\n", 890 sve_max_vl); 891 pr_info("SVE: default vector length %u bytes per vector\n", 892 sve_default_vl); 893 894 /* KVM decides whether to support mismatched systems. Just warn here: */ 895 if (sve_max_virtualisable_vl < sve_max_vl) 896 pr_warn("SVE: unvirtualisable vector lengths present\n"); 897 898 sve_efi_setup(); 899 } 900 901 /* 902 * Called from the put_task_struct() path, which cannot get here 903 * unless dead_task is really dead and not schedulable. 904 */ 905 void fpsimd_release_task(struct task_struct *dead_task) 906 { 907 __sve_free(dead_task); 908 } 909 910 #endif /* CONFIG_ARM64_SVE */ 911 912 /* 913 * Trapped SVE access 914 * 915 * Storage is allocated for the full SVE state, the current FPSIMD 916 * register contents are migrated across, and TIF_SVE is set so that 917 * the SVE access trap will be disabled the next time this task 918 * reaches ret_to_user. 919 * 920 * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load() 921 * would have disabled the SVE access trap for userspace during 922 * ret_to_user, making an SVE access trap impossible in that case. 923 */ 924 void do_sve_acc(unsigned int esr, struct pt_regs *regs) 925 { 926 /* Even if we chose not to use SVE, the hardware could still trap: */ 927 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) { 928 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc); 929 return; 930 } 931 932 sve_alloc(current); 933 934 get_cpu_fpsimd_context(); 935 936 fpsimd_save(); 937 938 /* Force ret_to_user to reload the registers: */ 939 fpsimd_flush_task_state(current); 940 941 fpsimd_to_sve(current); 942 if (test_and_set_thread_flag(TIF_SVE)) 943 WARN_ON(1); /* SVE access shouldn't have trapped */ 944 945 put_cpu_fpsimd_context(); 946 } 947 948 /* 949 * Trapped FP/ASIMD access. 950 */ 951 void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs) 952 { 953 /* TODO: implement lazy context saving/restoring */ 954 WARN_ON(1); 955 } 956 957 /* 958 * Raise a SIGFPE for the current process. 959 */ 960 void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs) 961 { 962 unsigned int si_code = FPE_FLTUNK; 963 964 if (esr & ESR_ELx_FP_EXC_TFV) { 965 if (esr & FPEXC_IOF) 966 si_code = FPE_FLTINV; 967 else if (esr & FPEXC_DZF) 968 si_code = FPE_FLTDIV; 969 else if (esr & FPEXC_OFF) 970 si_code = FPE_FLTOVF; 971 else if (esr & FPEXC_UFF) 972 si_code = FPE_FLTUND; 973 else if (esr & FPEXC_IXF) 974 si_code = FPE_FLTRES; 975 } 976 977 send_sig_fault(SIGFPE, si_code, 978 (void __user *)instruction_pointer(regs), 979 current); 980 } 981 982 void fpsimd_thread_switch(struct task_struct *next) 983 { 984 bool wrong_task, wrong_cpu; 985 986 if (!system_supports_fpsimd()) 987 return; 988 989 __get_cpu_fpsimd_context(); 990 991 /* Save unsaved fpsimd state, if any: */ 992 fpsimd_save(); 993 994 /* 995 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's 996 * state. For kernel threads, FPSIMD registers are never loaded 997 * and wrong_task and wrong_cpu will always be true. 998 */ 999 wrong_task = __this_cpu_read(fpsimd_last_state.st) != 1000 &next->thread.uw.fpsimd_state; 1001 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id(); 1002 1003 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE, 1004 wrong_task || wrong_cpu); 1005 1006 __put_cpu_fpsimd_context(); 1007 } 1008 1009 void fpsimd_flush_thread(void) 1010 { 1011 int vl, supported_vl; 1012 1013 if (!system_supports_fpsimd()) 1014 return; 1015 1016 get_cpu_fpsimd_context(); 1017 1018 fpsimd_flush_task_state(current); 1019 memset(¤t->thread.uw.fpsimd_state, 0, 1020 sizeof(current->thread.uw.fpsimd_state)); 1021 1022 if (system_supports_sve()) { 1023 clear_thread_flag(TIF_SVE); 1024 sve_free(current); 1025 1026 /* 1027 * Reset the task vector length as required. 1028 * This is where we ensure that all user tasks have a valid 1029 * vector length configured: no kernel task can become a user 1030 * task without an exec and hence a call to this function. 1031 * By the time the first call to this function is made, all 1032 * early hardware probing is complete, so sve_default_vl 1033 * should be valid. 1034 * If a bug causes this to go wrong, we make some noise and 1035 * try to fudge thread.sve_vl to a safe value here. 1036 */ 1037 vl = current->thread.sve_vl_onexec ? 1038 current->thread.sve_vl_onexec : sve_default_vl; 1039 1040 if (WARN_ON(!sve_vl_valid(vl))) 1041 vl = SVE_VL_MIN; 1042 1043 supported_vl = find_supported_vector_length(vl); 1044 if (WARN_ON(supported_vl != vl)) 1045 vl = supported_vl; 1046 1047 current->thread.sve_vl = vl; 1048 1049 /* 1050 * If the task is not set to inherit, ensure that the vector 1051 * length will be reset by a subsequent exec: 1052 */ 1053 if (!test_thread_flag(TIF_SVE_VL_INHERIT)) 1054 current->thread.sve_vl_onexec = 0; 1055 } 1056 1057 put_cpu_fpsimd_context(); 1058 } 1059 1060 /* 1061 * Save the userland FPSIMD state of 'current' to memory, but only if the state 1062 * currently held in the registers does in fact belong to 'current' 1063 */ 1064 void fpsimd_preserve_current_state(void) 1065 { 1066 if (!system_supports_fpsimd()) 1067 return; 1068 1069 get_cpu_fpsimd_context(); 1070 fpsimd_save(); 1071 put_cpu_fpsimd_context(); 1072 } 1073 1074 /* 1075 * Like fpsimd_preserve_current_state(), but ensure that 1076 * current->thread.uw.fpsimd_state is updated so that it can be copied to 1077 * the signal frame. 1078 */ 1079 void fpsimd_signal_preserve_current_state(void) 1080 { 1081 fpsimd_preserve_current_state(); 1082 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 1083 sve_to_fpsimd(current); 1084 } 1085 1086 /* 1087 * Associate current's FPSIMD context with this cpu 1088 * The caller must have ownership of the cpu FPSIMD context before calling 1089 * this function. 1090 */ 1091 void fpsimd_bind_task_to_cpu(void) 1092 { 1093 struct fpsimd_last_state_struct *last = 1094 this_cpu_ptr(&fpsimd_last_state); 1095 1096 WARN_ON(!system_supports_fpsimd()); 1097 last->st = ¤t->thread.uw.fpsimd_state; 1098 last->sve_state = current->thread.sve_state; 1099 last->sve_vl = current->thread.sve_vl; 1100 current->thread.fpsimd_cpu = smp_processor_id(); 1101 1102 if (system_supports_sve()) { 1103 /* Toggle SVE trapping for userspace if needed */ 1104 if (test_thread_flag(TIF_SVE)) 1105 sve_user_enable(); 1106 else 1107 sve_user_disable(); 1108 1109 /* Serialised by exception return to user */ 1110 } 1111 } 1112 1113 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state, 1114 unsigned int sve_vl) 1115 { 1116 struct fpsimd_last_state_struct *last = 1117 this_cpu_ptr(&fpsimd_last_state); 1118 1119 WARN_ON(!system_supports_fpsimd()); 1120 WARN_ON(!in_softirq() && !irqs_disabled()); 1121 1122 last->st = st; 1123 last->sve_state = sve_state; 1124 last->sve_vl = sve_vl; 1125 } 1126 1127 /* 1128 * Load the userland FPSIMD state of 'current' from memory, but only if the 1129 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD 1130 * state of 'current' 1131 */ 1132 void fpsimd_restore_current_state(void) 1133 { 1134 /* 1135 * For the tasks that were created before we detected the absence of 1136 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(), 1137 * e.g, init. This could be then inherited by the children processes. 1138 * If we later detect that the system doesn't support FP/SIMD, 1139 * we must clear the flag for all the tasks to indicate that the 1140 * FPSTATE is clean (as we can't have one) to avoid looping for ever in 1141 * do_notify_resume(). 1142 */ 1143 if (!system_supports_fpsimd()) { 1144 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1145 return; 1146 } 1147 1148 get_cpu_fpsimd_context(); 1149 1150 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { 1151 task_fpsimd_load(); 1152 fpsimd_bind_task_to_cpu(); 1153 } 1154 1155 put_cpu_fpsimd_context(); 1156 } 1157 1158 /* 1159 * Load an updated userland FPSIMD state for 'current' from memory and set the 1160 * flag that indicates that the FPSIMD register contents are the most recent 1161 * FPSIMD state of 'current' 1162 */ 1163 void fpsimd_update_current_state(struct user_fpsimd_state const *state) 1164 { 1165 if (WARN_ON(!system_supports_fpsimd())) 1166 return; 1167 1168 get_cpu_fpsimd_context(); 1169 1170 current->thread.uw.fpsimd_state = *state; 1171 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 1172 fpsimd_to_sve(current); 1173 1174 task_fpsimd_load(); 1175 fpsimd_bind_task_to_cpu(); 1176 1177 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1178 1179 put_cpu_fpsimd_context(); 1180 } 1181 1182 /* 1183 * Invalidate live CPU copies of task t's FPSIMD state 1184 * 1185 * This function may be called with preemption enabled. The barrier() 1186 * ensures that the assignment to fpsimd_cpu is visible to any 1187 * preemption/softirq that could race with set_tsk_thread_flag(), so 1188 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared. 1189 * 1190 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any 1191 * subsequent code. 1192 */ 1193 void fpsimd_flush_task_state(struct task_struct *t) 1194 { 1195 t->thread.fpsimd_cpu = NR_CPUS; 1196 /* 1197 * If we don't support fpsimd, bail out after we have 1198 * reset the fpsimd_cpu for this task and clear the 1199 * FPSTATE. 1200 */ 1201 if (!system_supports_fpsimd()) 1202 return; 1203 barrier(); 1204 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE); 1205 1206 barrier(); 1207 } 1208 1209 /* 1210 * Invalidate any task's FPSIMD state that is present on this cpu. 1211 * The FPSIMD context should be acquired with get_cpu_fpsimd_context() 1212 * before calling this function. 1213 */ 1214 static void fpsimd_flush_cpu_state(void) 1215 { 1216 WARN_ON(!system_supports_fpsimd()); 1217 __this_cpu_write(fpsimd_last_state.st, NULL); 1218 set_thread_flag(TIF_FOREIGN_FPSTATE); 1219 } 1220 1221 /* 1222 * Save the FPSIMD state to memory and invalidate cpu view. 1223 * This function must be called with preemption disabled. 1224 */ 1225 void fpsimd_save_and_flush_cpu_state(void) 1226 { 1227 if (!system_supports_fpsimd()) 1228 return; 1229 WARN_ON(preemptible()); 1230 __get_cpu_fpsimd_context(); 1231 fpsimd_save(); 1232 fpsimd_flush_cpu_state(); 1233 __put_cpu_fpsimd_context(); 1234 } 1235 1236 #ifdef CONFIG_KERNEL_MODE_NEON 1237 1238 /* 1239 * Kernel-side NEON support functions 1240 */ 1241 1242 /* 1243 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling 1244 * context 1245 * 1246 * Must not be called unless may_use_simd() returns true. 1247 * Task context in the FPSIMD registers is saved back to memory as necessary. 1248 * 1249 * A matching call to kernel_neon_end() must be made before returning from the 1250 * calling context. 1251 * 1252 * The caller may freely use the FPSIMD registers until kernel_neon_end() is 1253 * called. 1254 */ 1255 void kernel_neon_begin(void) 1256 { 1257 if (WARN_ON(!system_supports_fpsimd())) 1258 return; 1259 1260 BUG_ON(!may_use_simd()); 1261 1262 get_cpu_fpsimd_context(); 1263 1264 /* Save unsaved fpsimd state, if any: */ 1265 fpsimd_save(); 1266 1267 /* Invalidate any task state remaining in the fpsimd regs: */ 1268 fpsimd_flush_cpu_state(); 1269 } 1270 EXPORT_SYMBOL(kernel_neon_begin); 1271 1272 /* 1273 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task 1274 * 1275 * Must be called from a context in which kernel_neon_begin() was previously 1276 * called, with no call to kernel_neon_end() in the meantime. 1277 * 1278 * The caller must not use the FPSIMD registers after this function is called, 1279 * unless kernel_neon_begin() is called again in the meantime. 1280 */ 1281 void kernel_neon_end(void) 1282 { 1283 if (!system_supports_fpsimd()) 1284 return; 1285 1286 put_cpu_fpsimd_context(); 1287 } 1288 EXPORT_SYMBOL(kernel_neon_end); 1289 1290 #ifdef CONFIG_EFI 1291 1292 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state); 1293 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used); 1294 static DEFINE_PER_CPU(bool, efi_sve_state_used); 1295 1296 /* 1297 * EFI runtime services support functions 1298 * 1299 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call. 1300 * This means that for EFI (and only for EFI), we have to assume that FPSIMD 1301 * is always used rather than being an optional accelerator. 1302 * 1303 * These functions provide the necessary support for ensuring FPSIMD 1304 * save/restore in the contexts from which EFI is used. 1305 * 1306 * Do not use them for any other purpose -- if tempted to do so, you are 1307 * either doing something wrong or you need to propose some refactoring. 1308 */ 1309 1310 /* 1311 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call 1312 */ 1313 void __efi_fpsimd_begin(void) 1314 { 1315 if (!system_supports_fpsimd()) 1316 return; 1317 1318 WARN_ON(preemptible()); 1319 1320 if (may_use_simd()) { 1321 kernel_neon_begin(); 1322 } else { 1323 /* 1324 * If !efi_sve_state, SVE can't be in use yet and doesn't need 1325 * preserving: 1326 */ 1327 if (system_supports_sve() && likely(efi_sve_state)) { 1328 char *sve_state = this_cpu_ptr(efi_sve_state); 1329 1330 __this_cpu_write(efi_sve_state_used, true); 1331 1332 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl), 1333 &this_cpu_ptr(&efi_fpsimd_state)->fpsr); 1334 } else { 1335 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state)); 1336 } 1337 1338 __this_cpu_write(efi_fpsimd_state_used, true); 1339 } 1340 } 1341 1342 /* 1343 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call 1344 */ 1345 void __efi_fpsimd_end(void) 1346 { 1347 if (!system_supports_fpsimd()) 1348 return; 1349 1350 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) { 1351 kernel_neon_end(); 1352 } else { 1353 if (system_supports_sve() && 1354 likely(__this_cpu_read(efi_sve_state_used))) { 1355 char const *sve_state = this_cpu_ptr(efi_sve_state); 1356 1357 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl), 1358 &this_cpu_ptr(&efi_fpsimd_state)->fpsr, 1359 sve_vq_from_vl(sve_get_vl()) - 1); 1360 1361 __this_cpu_write(efi_sve_state_used, false); 1362 } else { 1363 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state)); 1364 } 1365 } 1366 } 1367 1368 #endif /* CONFIG_EFI */ 1369 1370 #endif /* CONFIG_KERNEL_MODE_NEON */ 1371 1372 #ifdef CONFIG_CPU_PM 1373 static int fpsimd_cpu_pm_notifier(struct notifier_block *self, 1374 unsigned long cmd, void *v) 1375 { 1376 switch (cmd) { 1377 case CPU_PM_ENTER: 1378 fpsimd_save_and_flush_cpu_state(); 1379 break; 1380 case CPU_PM_EXIT: 1381 break; 1382 case CPU_PM_ENTER_FAILED: 1383 default: 1384 return NOTIFY_DONE; 1385 } 1386 return NOTIFY_OK; 1387 } 1388 1389 static struct notifier_block fpsimd_cpu_pm_notifier_block = { 1390 .notifier_call = fpsimd_cpu_pm_notifier, 1391 }; 1392 1393 static void __init fpsimd_pm_init(void) 1394 { 1395 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block); 1396 } 1397 1398 #else 1399 static inline void fpsimd_pm_init(void) { } 1400 #endif /* CONFIG_CPU_PM */ 1401 1402 #ifdef CONFIG_HOTPLUG_CPU 1403 static int fpsimd_cpu_dead(unsigned int cpu) 1404 { 1405 per_cpu(fpsimd_last_state.st, cpu) = NULL; 1406 return 0; 1407 } 1408 1409 static inline void fpsimd_hotplug_init(void) 1410 { 1411 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead", 1412 NULL, fpsimd_cpu_dead); 1413 } 1414 1415 #else 1416 static inline void fpsimd_hotplug_init(void) { } 1417 #endif 1418 1419 /* 1420 * FP/SIMD support code initialisation. 1421 */ 1422 static int __init fpsimd_init(void) 1423 { 1424 if (cpu_have_named_feature(FP)) { 1425 fpsimd_pm_init(); 1426 fpsimd_hotplug_init(); 1427 } else { 1428 pr_notice("Floating-point is not implemented\n"); 1429 } 1430 1431 if (!cpu_have_named_feature(ASIMD)) 1432 pr_notice("Advanced SIMD is not implemented\n"); 1433 1434 return sve_sysctl_init(); 1435 } 1436 core_initcall(fpsimd_init); 1437