1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * FP/SIMD context switching and fault handling 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * Author: Catalin Marinas <catalin.marinas@arm.com> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/bitops.h> 11 #include <linux/bottom_half.h> 12 #include <linux/bug.h> 13 #include <linux/cache.h> 14 #include <linux/compat.h> 15 #include <linux/compiler.h> 16 #include <linux/cpu.h> 17 #include <linux/cpu_pm.h> 18 #include <linux/ctype.h> 19 #include <linux/kernel.h> 20 #include <linux/linkage.h> 21 #include <linux/irqflags.h> 22 #include <linux/init.h> 23 #include <linux/percpu.h> 24 #include <linux/prctl.h> 25 #include <linux/preempt.h> 26 #include <linux/ptrace.h> 27 #include <linux/sched/signal.h> 28 #include <linux/sched/task_stack.h> 29 #include <linux/signal.h> 30 #include <linux/slab.h> 31 #include <linux/stddef.h> 32 #include <linux/sysctl.h> 33 #include <linux/swab.h> 34 35 #include <asm/esr.h> 36 #include <asm/exception.h> 37 #include <asm/fpsimd.h> 38 #include <asm/cpufeature.h> 39 #include <asm/cputype.h> 40 #include <asm/neon.h> 41 #include <asm/processor.h> 42 #include <asm/simd.h> 43 #include <asm/sigcontext.h> 44 #include <asm/sysreg.h> 45 #include <asm/traps.h> 46 #include <asm/virt.h> 47 48 #define FPEXC_IOF (1 << 0) 49 #define FPEXC_DZF (1 << 1) 50 #define FPEXC_OFF (1 << 2) 51 #define FPEXC_UFF (1 << 3) 52 #define FPEXC_IXF (1 << 4) 53 #define FPEXC_IDF (1 << 7) 54 55 /* 56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.) 57 * 58 * In order to reduce the number of times the FPSIMD state is needlessly saved 59 * and restored, we need to keep track of two things: 60 * (a) for each task, we need to remember which CPU was the last one to have 61 * the task's FPSIMD state loaded into its FPSIMD registers; 62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has 63 * been loaded into its FPSIMD registers most recently, or whether it has 64 * been used to perform kernel mode NEON in the meantime. 65 * 66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to 67 * the id of the current CPU every time the state is loaded onto a CPU. For (b), 68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the 69 * address of the userland FPSIMD state of the task that was loaded onto the CPU 70 * the most recently, or NULL if kernel mode NEON has been performed after that. 71 * 72 * With this in place, we no longer have to restore the next FPSIMD state right 73 * when switching between tasks. Instead, we can defer this check to userland 74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the 75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we 76 * can omit the FPSIMD restore. 77 * 78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to 79 * indicate whether or not the userland FPSIMD state of the current task is 80 * present in the registers. The flag is set unless the FPSIMD registers of this 81 * CPU currently contain the most recent userland FPSIMD state of the current 82 * task. If the task is behaving as a VMM, then this is will be managed by 83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently 84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware 85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and 86 * flag the register state as invalid. 87 * 88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may 89 * save the task's FPSIMD context back to task_struct from softirq context. 90 * To prevent this from racing with the manipulation of the task's FPSIMD state 91 * from task context and thereby corrupting the state, it is necessary to 92 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE 93 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to 94 * run but prevent them to use FPSIMD. 95 * 96 * For a certain task, the sequence may look something like this: 97 * - the task gets scheduled in; if both the task's fpsimd_cpu field 98 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu 99 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is 100 * cleared, otherwise it is set; 101 * 102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's 103 * userland FPSIMD state is copied from memory to the registers, the task's 104 * fpsimd_cpu field is set to the id of the current CPU, the current 105 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the 106 * TIF_FOREIGN_FPSTATE flag is cleared; 107 * 108 * - the task executes an ordinary syscall; upon return to userland, the 109 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is 110 * restored; 111 * 112 * - the task executes a syscall which executes some NEON instructions; this is 113 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD 114 * register contents to memory, clears the fpsimd_last_state per-cpu variable 115 * and sets the TIF_FOREIGN_FPSTATE flag; 116 * 117 * - the task gets preempted after kernel_neon_end() is called; as we have not 118 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so 119 * whatever is in the FPSIMD registers is not saved to memory, but discarded. 120 */ 121 122 static DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state); 123 124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = { 125 #ifdef CONFIG_ARM64_SVE 126 [ARM64_VEC_SVE] = { 127 .type = ARM64_VEC_SVE, 128 .name = "SVE", 129 .min_vl = SVE_VL_MIN, 130 .max_vl = SVE_VL_MIN, 131 .max_virtualisable_vl = SVE_VL_MIN, 132 }, 133 #endif 134 #ifdef CONFIG_ARM64_SME 135 [ARM64_VEC_SME] = { 136 .type = ARM64_VEC_SME, 137 .name = "SME", 138 }, 139 #endif 140 }; 141 142 static unsigned int vec_vl_inherit_flag(enum vec_type type) 143 { 144 switch (type) { 145 case ARM64_VEC_SVE: 146 return TIF_SVE_VL_INHERIT; 147 case ARM64_VEC_SME: 148 return TIF_SME_VL_INHERIT; 149 default: 150 WARN_ON_ONCE(1); 151 return 0; 152 } 153 } 154 155 struct vl_config { 156 int __default_vl; /* Default VL for tasks */ 157 }; 158 159 static struct vl_config vl_config[ARM64_VEC_MAX]; 160 161 static inline int get_default_vl(enum vec_type type) 162 { 163 return READ_ONCE(vl_config[type].__default_vl); 164 } 165 166 #ifdef CONFIG_ARM64_SVE 167 168 static inline int get_sve_default_vl(void) 169 { 170 return get_default_vl(ARM64_VEC_SVE); 171 } 172 173 static inline void set_default_vl(enum vec_type type, int val) 174 { 175 WRITE_ONCE(vl_config[type].__default_vl, val); 176 } 177 178 static inline void set_sve_default_vl(int val) 179 { 180 set_default_vl(ARM64_VEC_SVE, val); 181 } 182 183 static void __percpu *efi_sve_state; 184 185 #else /* ! CONFIG_ARM64_SVE */ 186 187 /* Dummy declaration for code that will be optimised out: */ 188 extern void __percpu *efi_sve_state; 189 190 #endif /* ! CONFIG_ARM64_SVE */ 191 192 #ifdef CONFIG_ARM64_SME 193 194 static int get_sme_default_vl(void) 195 { 196 return get_default_vl(ARM64_VEC_SME); 197 } 198 199 static void set_sme_default_vl(int val) 200 { 201 set_default_vl(ARM64_VEC_SME, val); 202 } 203 204 static void sme_free(struct task_struct *); 205 206 #else 207 208 static inline void sme_free(struct task_struct *t) { } 209 210 #endif 211 212 DEFINE_PER_CPU(bool, fpsimd_context_busy); 213 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy); 214 215 static void fpsimd_bind_task_to_cpu(void); 216 217 static void __get_cpu_fpsimd_context(void) 218 { 219 bool busy = __this_cpu_xchg(fpsimd_context_busy, true); 220 221 WARN_ON(busy); 222 } 223 224 /* 225 * Claim ownership of the CPU FPSIMD context for use by the calling context. 226 * 227 * The caller may freely manipulate the FPSIMD context metadata until 228 * put_cpu_fpsimd_context() is called. 229 * 230 * The double-underscore version must only be called if you know the task 231 * can't be preempted. 232 * 233 * On RT kernels local_bh_disable() is not sufficient because it only 234 * serializes soft interrupt related sections via a local lock, but stays 235 * preemptible. Disabling preemption is the right choice here as bottom 236 * half processing is always in thread context on RT kernels so it 237 * implicitly prevents bottom half processing as well. 238 */ 239 static void get_cpu_fpsimd_context(void) 240 { 241 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 242 local_bh_disable(); 243 else 244 preempt_disable(); 245 __get_cpu_fpsimd_context(); 246 } 247 248 static void __put_cpu_fpsimd_context(void) 249 { 250 bool busy = __this_cpu_xchg(fpsimd_context_busy, false); 251 252 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */ 253 } 254 255 /* 256 * Release the CPU FPSIMD context. 257 * 258 * Must be called from a context in which get_cpu_fpsimd_context() was 259 * previously called, with no call to put_cpu_fpsimd_context() in the 260 * meantime. 261 */ 262 static void put_cpu_fpsimd_context(void) 263 { 264 __put_cpu_fpsimd_context(); 265 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 266 local_bh_enable(); 267 else 268 preempt_enable(); 269 } 270 271 static bool have_cpu_fpsimd_context(void) 272 { 273 return !preemptible() && __this_cpu_read(fpsimd_context_busy); 274 } 275 276 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type) 277 { 278 return task->thread.vl[type]; 279 } 280 281 void task_set_vl(struct task_struct *task, enum vec_type type, 282 unsigned long vl) 283 { 284 task->thread.vl[type] = vl; 285 } 286 287 unsigned int task_get_vl_onexec(const struct task_struct *task, 288 enum vec_type type) 289 { 290 return task->thread.vl_onexec[type]; 291 } 292 293 void task_set_vl_onexec(struct task_struct *task, enum vec_type type, 294 unsigned long vl) 295 { 296 task->thread.vl_onexec[type] = vl; 297 } 298 299 /* 300 * TIF_SME controls whether a task can use SME without trapping while 301 * in userspace, when TIF_SME is set then we must have storage 302 * allocated in sve_state and sme_state to store the contents of both ZA 303 * and the SVE registers for both streaming and non-streaming modes. 304 * 305 * If both SVCR.ZA and SVCR.SM are disabled then at any point we 306 * may disable TIF_SME and reenable traps. 307 */ 308 309 310 /* 311 * TIF_SVE controls whether a task can use SVE without trapping while 312 * in userspace, and also (together with TIF_SME) the way a task's 313 * FPSIMD/SVE state is stored in thread_struct. 314 * 315 * The kernel uses this flag to track whether a user task is actively 316 * using SVE, and therefore whether full SVE register state needs to 317 * be tracked. If not, the cheaper FPSIMD context handling code can 318 * be used instead of the more costly SVE equivalents. 319 * 320 * * TIF_SVE or SVCR.SM set: 321 * 322 * The task can execute SVE instructions while in userspace without 323 * trapping to the kernel. 324 * 325 * During any syscall, the kernel may optionally clear TIF_SVE and 326 * discard the vector state except for the FPSIMD subset. 327 * 328 * * TIF_SVE clear: 329 * 330 * An attempt by the user task to execute an SVE instruction causes 331 * do_sve_acc() to be called, which does some preparation and then 332 * sets TIF_SVE. 333 * 334 * During any syscall, the kernel may optionally clear TIF_SVE and 335 * discard the vector state except for the FPSIMD subset. 336 * 337 * The data will be stored in one of two formats: 338 * 339 * * FPSIMD only - FP_STATE_FPSIMD: 340 * 341 * When the FPSIMD only state stored task->thread.fp_type is set to 342 * FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in 343 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are 344 * logically zero but not stored anywhere; P0-P15 and FFR are not 345 * stored and have unspecified values from userspace's point of 346 * view. For hygiene purposes, the kernel zeroes them on next use, 347 * but userspace is discouraged from relying on this. 348 * 349 * task->thread.sve_state does not need to be non-NULL, valid or any 350 * particular size: it must not be dereferenced and any data stored 351 * there should be considered stale and not referenced. 352 * 353 * * SVE state - FP_STATE_SVE: 354 * 355 * When the full SVE state is stored task->thread.fp_type is set to 356 * FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the 357 * corresponding Zn), P0-P15 and FFR are encoded in in 358 * task->thread.sve_state, formatted appropriately for vector 359 * length task->thread.sve_vl or, if SVCR.SM is set, 360 * task->thread.sme_vl. The storage for the vector registers in 361 * task->thread.uw.fpsimd_state should be ignored. 362 * 363 * task->thread.sve_state must point to a valid buffer at least 364 * sve_state_size(task) bytes in size. The data stored in 365 * task->thread.uw.fpsimd_state.vregs should be considered stale 366 * and not referenced. 367 * 368 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state 369 * irrespective of whether TIF_SVE is clear or set, since these are 370 * not vector length dependent. 371 */ 372 373 /* 374 * Update current's FPSIMD/SVE registers from thread_struct. 375 * 376 * This function should be called only when the FPSIMD/SVE state in 377 * thread_struct is known to be up to date, when preparing to enter 378 * userspace. 379 */ 380 static void task_fpsimd_load(void) 381 { 382 bool restore_sve_regs = false; 383 bool restore_ffr; 384 385 WARN_ON(!system_supports_fpsimd()); 386 WARN_ON(!have_cpu_fpsimd_context()); 387 388 if (system_supports_sve() || system_supports_sme()) { 389 switch (current->thread.fp_type) { 390 case FP_STATE_FPSIMD: 391 /* Stop tracking SVE for this task until next use. */ 392 if (test_and_clear_thread_flag(TIF_SVE)) 393 sve_user_disable(); 394 break; 395 case FP_STATE_SVE: 396 if (!thread_sm_enabled(¤t->thread) && 397 !WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE))) 398 sve_user_enable(); 399 400 if (test_thread_flag(TIF_SVE)) 401 sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1); 402 403 restore_sve_regs = true; 404 restore_ffr = true; 405 break; 406 default: 407 /* 408 * This indicates either a bug in 409 * fpsimd_save() or memory corruption, we 410 * should always record an explicit format 411 * when we save. We always at least have the 412 * memory allocated for FPSMID registers so 413 * try that and hope for the best. 414 */ 415 WARN_ON_ONCE(1); 416 clear_thread_flag(TIF_SVE); 417 break; 418 } 419 } 420 421 /* Restore SME, override SVE register configuration if needed */ 422 if (system_supports_sme()) { 423 unsigned long sme_vl = task_get_sme_vl(current); 424 425 /* Ensure VL is set up for restoring data */ 426 if (test_thread_flag(TIF_SME)) 427 sme_set_vq(sve_vq_from_vl(sme_vl) - 1); 428 429 write_sysreg_s(current->thread.svcr, SYS_SVCR); 430 431 if (thread_za_enabled(¤t->thread)) 432 sme_load_state(current->thread.sme_state, 433 system_supports_sme2()); 434 435 if (thread_sm_enabled(¤t->thread)) 436 restore_ffr = system_supports_fa64(); 437 } 438 439 if (restore_sve_regs) { 440 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE); 441 sve_load_state(sve_pffr(¤t->thread), 442 ¤t->thread.uw.fpsimd_state.fpsr, 443 restore_ffr); 444 } else { 445 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD); 446 fpsimd_load_state(¤t->thread.uw.fpsimd_state); 447 } 448 } 449 450 /* 451 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to 452 * date with respect to the CPU registers. Note carefully that the 453 * current context is the context last bound to the CPU stored in 454 * last, if KVM is involved this may be the guest VM context rather 455 * than the host thread for the VM pointed to by current. This means 456 * that we must always reference the state storage via last rather 457 * than via current, if we are saving KVM state then it will have 458 * ensured that the type of registers to save is set in last->to_save. 459 */ 460 static void fpsimd_save(void) 461 { 462 struct cpu_fp_state const *last = 463 this_cpu_ptr(&fpsimd_last_state); 464 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */ 465 bool save_sve_regs = false; 466 bool save_ffr; 467 unsigned int vl; 468 469 WARN_ON(!system_supports_fpsimd()); 470 WARN_ON(!have_cpu_fpsimd_context()); 471 472 if (test_thread_flag(TIF_FOREIGN_FPSTATE)) 473 return; 474 475 /* 476 * If a task is in a syscall the ABI allows us to only 477 * preserve the state shared with FPSIMD so don't bother 478 * saving the full SVE state in that case. 479 */ 480 if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE) && 481 !in_syscall(current_pt_regs())) || 482 last->to_save == FP_STATE_SVE) { 483 save_sve_regs = true; 484 save_ffr = true; 485 vl = last->sve_vl; 486 } 487 488 if (system_supports_sme()) { 489 u64 *svcr = last->svcr; 490 491 *svcr = read_sysreg_s(SYS_SVCR); 492 493 if (*svcr & SVCR_ZA_MASK) 494 sme_save_state(last->sme_state, 495 system_supports_sme2()); 496 497 /* If we are in streaming mode override regular SVE. */ 498 if (*svcr & SVCR_SM_MASK) { 499 save_sve_regs = true; 500 save_ffr = system_supports_fa64(); 501 vl = last->sme_vl; 502 } 503 } 504 505 if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) { 506 /* Get the configured VL from RDVL, will account for SM */ 507 if (WARN_ON(sve_get_vl() != vl)) { 508 /* 509 * Can't save the user regs, so current would 510 * re-enter user with corrupt state. 511 * There's no way to recover, so kill it: 512 */ 513 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0); 514 return; 515 } 516 517 sve_save_state((char *)last->sve_state + 518 sve_ffr_offset(vl), 519 &last->st->fpsr, save_ffr); 520 *last->fp_type = FP_STATE_SVE; 521 } else { 522 fpsimd_save_state(last->st); 523 *last->fp_type = FP_STATE_FPSIMD; 524 } 525 } 526 527 /* 528 * All vector length selection from userspace comes through here. 529 * We're on a slow path, so some sanity-checks are included. 530 * If things go wrong there's a bug somewhere, but try to fall back to a 531 * safe choice. 532 */ 533 static unsigned int find_supported_vector_length(enum vec_type type, 534 unsigned int vl) 535 { 536 struct vl_info *info = &vl_info[type]; 537 int bit; 538 int max_vl = info->max_vl; 539 540 if (WARN_ON(!sve_vl_valid(vl))) 541 vl = info->min_vl; 542 543 if (WARN_ON(!sve_vl_valid(max_vl))) 544 max_vl = info->min_vl; 545 546 if (vl > max_vl) 547 vl = max_vl; 548 if (vl < info->min_vl) 549 vl = info->min_vl; 550 551 bit = find_next_bit(info->vq_map, SVE_VQ_MAX, 552 __vq_to_bit(sve_vq_from_vl(vl))); 553 return sve_vl_from_vq(__bit_to_vq(bit)); 554 } 555 556 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL) 557 558 static int vec_proc_do_default_vl(struct ctl_table *table, int write, 559 void *buffer, size_t *lenp, loff_t *ppos) 560 { 561 struct vl_info *info = table->extra1; 562 enum vec_type type = info->type; 563 int ret; 564 int vl = get_default_vl(type); 565 struct ctl_table tmp_table = { 566 .data = &vl, 567 .maxlen = sizeof(vl), 568 }; 569 570 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); 571 if (ret || !write) 572 return ret; 573 574 /* Writing -1 has the special meaning "set to max": */ 575 if (vl == -1) 576 vl = info->max_vl; 577 578 if (!sve_vl_valid(vl)) 579 return -EINVAL; 580 581 set_default_vl(type, find_supported_vector_length(type, vl)); 582 return 0; 583 } 584 585 static struct ctl_table sve_default_vl_table[] = { 586 { 587 .procname = "sve_default_vector_length", 588 .mode = 0644, 589 .proc_handler = vec_proc_do_default_vl, 590 .extra1 = &vl_info[ARM64_VEC_SVE], 591 }, 592 { } 593 }; 594 595 static int __init sve_sysctl_init(void) 596 { 597 if (system_supports_sve()) 598 if (!register_sysctl("abi", sve_default_vl_table)) 599 return -EINVAL; 600 601 return 0; 602 } 603 604 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ 605 static int __init sve_sysctl_init(void) { return 0; } 606 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ 607 608 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL) 609 static struct ctl_table sme_default_vl_table[] = { 610 { 611 .procname = "sme_default_vector_length", 612 .mode = 0644, 613 .proc_handler = vec_proc_do_default_vl, 614 .extra1 = &vl_info[ARM64_VEC_SME], 615 }, 616 { } 617 }; 618 619 static int __init sme_sysctl_init(void) 620 { 621 if (system_supports_sme()) 622 if (!register_sysctl("abi", sme_default_vl_table)) 623 return -EINVAL; 624 625 return 0; 626 } 627 628 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */ 629 static int __init sme_sysctl_init(void) { return 0; } 630 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */ 631 632 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \ 633 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET)) 634 635 #ifdef CONFIG_CPU_BIG_ENDIAN 636 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 637 { 638 u64 a = swab64(x); 639 u64 b = swab64(x >> 64); 640 641 return ((__uint128_t)a << 64) | b; 642 } 643 #else 644 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 645 { 646 return x; 647 } 648 #endif 649 650 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x) 651 652 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst, 653 unsigned int vq) 654 { 655 unsigned int i; 656 __uint128_t *p; 657 658 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 659 p = (__uint128_t *)ZREG(sst, vq, i); 660 *p = arm64_cpu_to_le128(fst->vregs[i]); 661 } 662 } 663 664 /* 665 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to 666 * task->thread.sve_state. 667 * 668 * Task can be a non-runnable task, or current. In the latter case, 669 * the caller must have ownership of the cpu FPSIMD context before calling 670 * this function. 671 * task->thread.sve_state must point to at least sve_state_size(task) 672 * bytes of allocated kernel memory. 673 * task->thread.uw.fpsimd_state must be up to date before calling this 674 * function. 675 */ 676 static void fpsimd_to_sve(struct task_struct *task) 677 { 678 unsigned int vq; 679 void *sst = task->thread.sve_state; 680 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 681 682 if (!system_supports_sve()) 683 return; 684 685 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread)); 686 __fpsimd_to_sve(sst, fst, vq); 687 } 688 689 /* 690 * Transfer the SVE state in task->thread.sve_state to 691 * task->thread.uw.fpsimd_state. 692 * 693 * Task can be a non-runnable task, or current. In the latter case, 694 * the caller must have ownership of the cpu FPSIMD context before calling 695 * this function. 696 * task->thread.sve_state must point to at least sve_state_size(task) 697 * bytes of allocated kernel memory. 698 * task->thread.sve_state must be up to date before calling this function. 699 */ 700 static void sve_to_fpsimd(struct task_struct *task) 701 { 702 unsigned int vq, vl; 703 void const *sst = task->thread.sve_state; 704 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state; 705 unsigned int i; 706 __uint128_t const *p; 707 708 if (!system_supports_sve()) 709 return; 710 711 vl = thread_get_cur_vl(&task->thread); 712 vq = sve_vq_from_vl(vl); 713 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 714 p = (__uint128_t const *)ZREG(sst, vq, i); 715 fst->vregs[i] = arm64_le128_to_cpu(*p); 716 } 717 } 718 719 #ifdef CONFIG_ARM64_SVE 720 /* 721 * Call __sve_free() directly only if you know task can't be scheduled 722 * or preempted. 723 */ 724 static void __sve_free(struct task_struct *task) 725 { 726 kfree(task->thread.sve_state); 727 task->thread.sve_state = NULL; 728 } 729 730 static void sve_free(struct task_struct *task) 731 { 732 WARN_ON(test_tsk_thread_flag(task, TIF_SVE)); 733 734 __sve_free(task); 735 } 736 737 /* 738 * Return how many bytes of memory are required to store the full SVE 739 * state for task, given task's currently configured vector length. 740 */ 741 size_t sve_state_size(struct task_struct const *task) 742 { 743 unsigned int vl = 0; 744 745 if (system_supports_sve()) 746 vl = task_get_sve_vl(task); 747 if (system_supports_sme()) 748 vl = max(vl, task_get_sme_vl(task)); 749 750 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl)); 751 } 752 753 /* 754 * Ensure that task->thread.sve_state is allocated and sufficiently large. 755 * 756 * This function should be used only in preparation for replacing 757 * task->thread.sve_state with new data. The memory is always zeroed 758 * here to prevent stale data from showing through: this is done in 759 * the interest of testability and predictability: except in the 760 * do_sve_acc() case, there is no ABI requirement to hide stale data 761 * written previously be task. 762 */ 763 void sve_alloc(struct task_struct *task, bool flush) 764 { 765 if (task->thread.sve_state) { 766 if (flush) 767 memset(task->thread.sve_state, 0, 768 sve_state_size(task)); 769 return; 770 } 771 772 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */ 773 task->thread.sve_state = 774 kzalloc(sve_state_size(task), GFP_KERNEL); 775 } 776 777 778 /* 779 * Force the FPSIMD state shared with SVE to be updated in the SVE state 780 * even if the SVE state is the current active state. 781 * 782 * This should only be called by ptrace. task must be non-runnable. 783 * task->thread.sve_state must point to at least sve_state_size(task) 784 * bytes of allocated kernel memory. 785 */ 786 void fpsimd_force_sync_to_sve(struct task_struct *task) 787 { 788 fpsimd_to_sve(task); 789 } 790 791 /* 792 * Ensure that task->thread.sve_state is up to date with respect to 793 * the user task, irrespective of when SVE is in use or not. 794 * 795 * This should only be called by ptrace. task must be non-runnable. 796 * task->thread.sve_state must point to at least sve_state_size(task) 797 * bytes of allocated kernel memory. 798 */ 799 void fpsimd_sync_to_sve(struct task_struct *task) 800 { 801 if (!test_tsk_thread_flag(task, TIF_SVE) && 802 !thread_sm_enabled(&task->thread)) 803 fpsimd_to_sve(task); 804 } 805 806 /* 807 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to 808 * the user task, irrespective of whether SVE is in use or not. 809 * 810 * This should only be called by ptrace. task must be non-runnable. 811 * task->thread.sve_state must point to at least sve_state_size(task) 812 * bytes of allocated kernel memory. 813 */ 814 void sve_sync_to_fpsimd(struct task_struct *task) 815 { 816 if (task->thread.fp_type == FP_STATE_SVE) 817 sve_to_fpsimd(task); 818 } 819 820 /* 821 * Ensure that task->thread.sve_state is up to date with respect to 822 * the task->thread.uw.fpsimd_state. 823 * 824 * This should only be called by ptrace to merge new FPSIMD register 825 * values into a task for which SVE is currently active. 826 * task must be non-runnable. 827 * task->thread.sve_state must point to at least sve_state_size(task) 828 * bytes of allocated kernel memory. 829 * task->thread.uw.fpsimd_state must already have been initialised with 830 * the new FPSIMD register values to be merged in. 831 */ 832 void sve_sync_from_fpsimd_zeropad(struct task_struct *task) 833 { 834 unsigned int vq; 835 void *sst = task->thread.sve_state; 836 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 837 838 if (!test_tsk_thread_flag(task, TIF_SVE)) 839 return; 840 841 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread)); 842 843 memset(sst, 0, SVE_SIG_REGS_SIZE(vq)); 844 __fpsimd_to_sve(sst, fst, vq); 845 } 846 847 int vec_set_vector_length(struct task_struct *task, enum vec_type type, 848 unsigned long vl, unsigned long flags) 849 { 850 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT | 851 PR_SVE_SET_VL_ONEXEC)) 852 return -EINVAL; 853 854 if (!sve_vl_valid(vl)) 855 return -EINVAL; 856 857 /* 858 * Clamp to the maximum vector length that VL-agnostic code 859 * can work with. A flag may be assigned in the future to 860 * allow setting of larger vector lengths without confusing 861 * older software. 862 */ 863 if (vl > VL_ARCH_MAX) 864 vl = VL_ARCH_MAX; 865 866 vl = find_supported_vector_length(type, vl); 867 868 if (flags & (PR_SVE_VL_INHERIT | 869 PR_SVE_SET_VL_ONEXEC)) 870 task_set_vl_onexec(task, type, vl); 871 else 872 /* Reset VL to system default on next exec: */ 873 task_set_vl_onexec(task, type, 0); 874 875 /* Only actually set the VL if not deferred: */ 876 if (flags & PR_SVE_SET_VL_ONEXEC) 877 goto out; 878 879 if (vl == task_get_vl(task, type)) 880 goto out; 881 882 /* 883 * To ensure the FPSIMD bits of the SVE vector registers are preserved, 884 * write any live register state back to task_struct, and convert to a 885 * regular FPSIMD thread. 886 */ 887 if (task == current) { 888 get_cpu_fpsimd_context(); 889 890 fpsimd_save(); 891 } 892 893 fpsimd_flush_task_state(task); 894 if (test_and_clear_tsk_thread_flag(task, TIF_SVE) || 895 thread_sm_enabled(&task->thread)) { 896 sve_to_fpsimd(task); 897 task->thread.fp_type = FP_STATE_FPSIMD; 898 } 899 900 if (system_supports_sme() && type == ARM64_VEC_SME) { 901 task->thread.svcr &= ~(SVCR_SM_MASK | 902 SVCR_ZA_MASK); 903 clear_thread_flag(TIF_SME); 904 } 905 906 if (task == current) 907 put_cpu_fpsimd_context(); 908 909 /* 910 * Force reallocation of task SVE and SME state to the correct 911 * size on next use: 912 */ 913 sve_free(task); 914 if (system_supports_sme() && type == ARM64_VEC_SME) 915 sme_free(task); 916 917 task_set_vl(task, type, vl); 918 919 out: 920 update_tsk_thread_flag(task, vec_vl_inherit_flag(type), 921 flags & PR_SVE_VL_INHERIT); 922 923 return 0; 924 } 925 926 /* 927 * Encode the current vector length and flags for return. 928 * This is only required for prctl(): ptrace has separate fields. 929 * SVE and SME use the same bits for _ONEXEC and _INHERIT. 930 * 931 * flags are as for vec_set_vector_length(). 932 */ 933 static int vec_prctl_status(enum vec_type type, unsigned long flags) 934 { 935 int ret; 936 937 if (flags & PR_SVE_SET_VL_ONEXEC) 938 ret = task_get_vl_onexec(current, type); 939 else 940 ret = task_get_vl(current, type); 941 942 if (test_thread_flag(vec_vl_inherit_flag(type))) 943 ret |= PR_SVE_VL_INHERIT; 944 945 return ret; 946 } 947 948 /* PR_SVE_SET_VL */ 949 int sve_set_current_vl(unsigned long arg) 950 { 951 unsigned long vl, flags; 952 int ret; 953 954 vl = arg & PR_SVE_VL_LEN_MASK; 955 flags = arg & ~vl; 956 957 if (!system_supports_sve() || is_compat_task()) 958 return -EINVAL; 959 960 ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags); 961 if (ret) 962 return ret; 963 964 return vec_prctl_status(ARM64_VEC_SVE, flags); 965 } 966 967 /* PR_SVE_GET_VL */ 968 int sve_get_current_vl(void) 969 { 970 if (!system_supports_sve() || is_compat_task()) 971 return -EINVAL; 972 973 return vec_prctl_status(ARM64_VEC_SVE, 0); 974 } 975 976 #ifdef CONFIG_ARM64_SME 977 /* PR_SME_SET_VL */ 978 int sme_set_current_vl(unsigned long arg) 979 { 980 unsigned long vl, flags; 981 int ret; 982 983 vl = arg & PR_SME_VL_LEN_MASK; 984 flags = arg & ~vl; 985 986 if (!system_supports_sme() || is_compat_task()) 987 return -EINVAL; 988 989 ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags); 990 if (ret) 991 return ret; 992 993 return vec_prctl_status(ARM64_VEC_SME, flags); 994 } 995 996 /* PR_SME_GET_VL */ 997 int sme_get_current_vl(void) 998 { 999 if (!system_supports_sme() || is_compat_task()) 1000 return -EINVAL; 1001 1002 return vec_prctl_status(ARM64_VEC_SME, 0); 1003 } 1004 #endif /* CONFIG_ARM64_SME */ 1005 1006 static void vec_probe_vqs(struct vl_info *info, 1007 DECLARE_BITMAP(map, SVE_VQ_MAX)) 1008 { 1009 unsigned int vq, vl; 1010 1011 bitmap_zero(map, SVE_VQ_MAX); 1012 1013 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) { 1014 write_vl(info->type, vq - 1); /* self-syncing */ 1015 1016 switch (info->type) { 1017 case ARM64_VEC_SVE: 1018 vl = sve_get_vl(); 1019 break; 1020 case ARM64_VEC_SME: 1021 vl = sme_get_vl(); 1022 break; 1023 default: 1024 vl = 0; 1025 break; 1026 } 1027 1028 /* Minimum VL identified? */ 1029 if (sve_vq_from_vl(vl) > vq) 1030 break; 1031 1032 vq = sve_vq_from_vl(vl); /* skip intervening lengths */ 1033 set_bit(__vq_to_bit(vq), map); 1034 } 1035 } 1036 1037 /* 1038 * Initialise the set of known supported VQs for the boot CPU. 1039 * This is called during kernel boot, before secondary CPUs are brought up. 1040 */ 1041 void __init vec_init_vq_map(enum vec_type type) 1042 { 1043 struct vl_info *info = &vl_info[type]; 1044 vec_probe_vqs(info, info->vq_map); 1045 bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX); 1046 } 1047 1048 /* 1049 * If we haven't committed to the set of supported VQs yet, filter out 1050 * those not supported by the current CPU. 1051 * This function is called during the bring-up of early secondary CPUs only. 1052 */ 1053 void vec_update_vq_map(enum vec_type type) 1054 { 1055 struct vl_info *info = &vl_info[type]; 1056 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 1057 1058 vec_probe_vqs(info, tmp_map); 1059 bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX); 1060 bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map, 1061 SVE_VQ_MAX); 1062 } 1063 1064 /* 1065 * Check whether the current CPU supports all VQs in the committed set. 1066 * This function is called during the bring-up of late secondary CPUs only. 1067 */ 1068 int vec_verify_vq_map(enum vec_type type) 1069 { 1070 struct vl_info *info = &vl_info[type]; 1071 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 1072 unsigned long b; 1073 1074 vec_probe_vqs(info, tmp_map); 1075 1076 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 1077 if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) { 1078 pr_warn("%s: cpu%d: Required vector length(s) missing\n", 1079 info->name, smp_processor_id()); 1080 return -EINVAL; 1081 } 1082 1083 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available()) 1084 return 0; 1085 1086 /* 1087 * For KVM, it is necessary to ensure that this CPU doesn't 1088 * support any vector length that guests may have probed as 1089 * unsupported. 1090 */ 1091 1092 /* Recover the set of supported VQs: */ 1093 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 1094 /* Find VQs supported that are not globally supported: */ 1095 bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX); 1096 1097 /* Find the lowest such VQ, if any: */ 1098 b = find_last_bit(tmp_map, SVE_VQ_MAX); 1099 if (b >= SVE_VQ_MAX) 1100 return 0; /* no mismatches */ 1101 1102 /* 1103 * Mismatches above sve_max_virtualisable_vl are fine, since 1104 * no guest is allowed to configure ZCR_EL2.LEN to exceed this: 1105 */ 1106 if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) { 1107 pr_warn("%s: cpu%d: Unsupported vector length(s) present\n", 1108 info->name, smp_processor_id()); 1109 return -EINVAL; 1110 } 1111 1112 return 0; 1113 } 1114 1115 static void __init sve_efi_setup(void) 1116 { 1117 int max_vl = 0; 1118 int i; 1119 1120 if (!IS_ENABLED(CONFIG_EFI)) 1121 return; 1122 1123 for (i = 0; i < ARRAY_SIZE(vl_info); i++) 1124 max_vl = max(vl_info[i].max_vl, max_vl); 1125 1126 /* 1127 * alloc_percpu() warns and prints a backtrace if this goes wrong. 1128 * This is evidence of a crippled system and we are returning void, 1129 * so no attempt is made to handle this situation here. 1130 */ 1131 if (!sve_vl_valid(max_vl)) 1132 goto fail; 1133 1134 efi_sve_state = __alloc_percpu( 1135 SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES); 1136 if (!efi_sve_state) 1137 goto fail; 1138 1139 return; 1140 1141 fail: 1142 panic("Cannot allocate percpu memory for EFI SVE save/restore"); 1143 } 1144 1145 /* 1146 * Enable SVE for EL1. 1147 * Intended for use by the cpufeatures code during CPU boot. 1148 */ 1149 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p) 1150 { 1151 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1); 1152 isb(); 1153 } 1154 1155 /* 1156 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE 1157 * vector length. 1158 * 1159 * Use only if SVE is present. 1160 * This function clobbers the SVE vector length. 1161 */ 1162 u64 read_zcr_features(void) 1163 { 1164 u64 zcr; 1165 unsigned int vq_max; 1166 1167 /* 1168 * Set the maximum possible VL, and write zeroes to all other 1169 * bits to see if they stick. 1170 */ 1171 sve_kernel_enable(NULL); 1172 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1); 1173 1174 zcr = read_sysreg_s(SYS_ZCR_EL1); 1175 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */ 1176 vq_max = sve_vq_from_vl(sve_get_vl()); 1177 zcr |= vq_max - 1; /* set LEN field to maximum effective value */ 1178 1179 return zcr; 1180 } 1181 1182 void __init sve_setup(void) 1183 { 1184 struct vl_info *info = &vl_info[ARM64_VEC_SVE]; 1185 u64 zcr; 1186 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 1187 unsigned long b; 1188 1189 if (!system_supports_sve()) 1190 return; 1191 1192 /* 1193 * The SVE architecture mandates support for 128-bit vectors, 1194 * so sve_vq_map must have at least SVE_VQ_MIN set. 1195 * If something went wrong, at least try to patch it up: 1196 */ 1197 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map))) 1198 set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map); 1199 1200 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); 1201 info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1); 1202 1203 /* 1204 * Sanity-check that the max VL we determined through CPU features 1205 * corresponds properly to sve_vq_map. If not, do our best: 1206 */ 1207 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE, 1208 info->max_vl))) 1209 info->max_vl = find_supported_vector_length(ARM64_VEC_SVE, 1210 info->max_vl); 1211 1212 /* 1213 * For the default VL, pick the maximum supported value <= 64. 1214 * VL == 64 is guaranteed not to grow the signal frame. 1215 */ 1216 set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64)); 1217 1218 bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map, 1219 SVE_VQ_MAX); 1220 1221 b = find_last_bit(tmp_map, SVE_VQ_MAX); 1222 if (b >= SVE_VQ_MAX) 1223 /* No non-virtualisable VLs found */ 1224 info->max_virtualisable_vl = SVE_VQ_MAX; 1225 else if (WARN_ON(b == SVE_VQ_MAX - 1)) 1226 /* No virtualisable VLs? This is architecturally forbidden. */ 1227 info->max_virtualisable_vl = SVE_VQ_MIN; 1228 else /* b + 1 < SVE_VQ_MAX */ 1229 info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1)); 1230 1231 if (info->max_virtualisable_vl > info->max_vl) 1232 info->max_virtualisable_vl = info->max_vl; 1233 1234 pr_info("%s: maximum available vector length %u bytes per vector\n", 1235 info->name, info->max_vl); 1236 pr_info("%s: default vector length %u bytes per vector\n", 1237 info->name, get_sve_default_vl()); 1238 1239 /* KVM decides whether to support mismatched systems. Just warn here: */ 1240 if (sve_max_virtualisable_vl() < sve_max_vl()) 1241 pr_warn("%s: unvirtualisable vector lengths present\n", 1242 info->name); 1243 1244 sve_efi_setup(); 1245 } 1246 1247 /* 1248 * Called from the put_task_struct() path, which cannot get here 1249 * unless dead_task is really dead and not schedulable. 1250 */ 1251 void fpsimd_release_task(struct task_struct *dead_task) 1252 { 1253 __sve_free(dead_task); 1254 sme_free(dead_task); 1255 } 1256 1257 #endif /* CONFIG_ARM64_SVE */ 1258 1259 #ifdef CONFIG_ARM64_SME 1260 1261 /* 1262 * Ensure that task->thread.sme_state is allocated and sufficiently large. 1263 * 1264 * This function should be used only in preparation for replacing 1265 * task->thread.sme_state with new data. The memory is always zeroed 1266 * here to prevent stale data from showing through: this is done in 1267 * the interest of testability and predictability, the architecture 1268 * guarantees that when ZA is enabled it will be zeroed. 1269 */ 1270 void sme_alloc(struct task_struct *task) 1271 { 1272 if (task->thread.sme_state) { 1273 memset(task->thread.sme_state, 0, sme_state_size(task)); 1274 return; 1275 } 1276 1277 /* This could potentially be up to 64K. */ 1278 task->thread.sme_state = 1279 kzalloc(sme_state_size(task), GFP_KERNEL); 1280 } 1281 1282 static void sme_free(struct task_struct *task) 1283 { 1284 kfree(task->thread.sme_state); 1285 task->thread.sme_state = NULL; 1286 } 1287 1288 void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p) 1289 { 1290 /* Set priority for all PEs to architecturally defined minimum */ 1291 write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK, 1292 SYS_SMPRI_EL1); 1293 1294 /* Allow SME in kernel */ 1295 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1); 1296 isb(); 1297 1298 /* Allow EL0 to access TPIDR2 */ 1299 write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1); 1300 isb(); 1301 } 1302 1303 /* 1304 * This must be called after sme_kernel_enable(), we rely on the 1305 * feature table being sorted to ensure this. 1306 */ 1307 void sme2_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p) 1308 { 1309 /* Allow use of ZT0 */ 1310 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK, 1311 SYS_SMCR_EL1); 1312 } 1313 1314 /* 1315 * This must be called after sme_kernel_enable(), we rely on the 1316 * feature table being sorted to ensure this. 1317 */ 1318 void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p) 1319 { 1320 /* Allow use of FA64 */ 1321 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK, 1322 SYS_SMCR_EL1); 1323 } 1324 1325 /* 1326 * Read the pseudo-SMCR used by cpufeatures to identify the supported 1327 * vector length. 1328 * 1329 * Use only if SME is present. 1330 * This function clobbers the SME vector length. 1331 */ 1332 u64 read_smcr_features(void) 1333 { 1334 u64 smcr; 1335 unsigned int vq_max; 1336 1337 sme_kernel_enable(NULL); 1338 1339 /* 1340 * Set the maximum possible VL. 1341 */ 1342 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK, 1343 SYS_SMCR_EL1); 1344 1345 smcr = read_sysreg_s(SYS_SMCR_EL1); 1346 smcr &= ~(u64)SMCR_ELx_LEN_MASK; /* Only the LEN field */ 1347 vq_max = sve_vq_from_vl(sme_get_vl()); 1348 smcr |= vq_max - 1; /* set LEN field to maximum effective value */ 1349 1350 return smcr; 1351 } 1352 1353 void __init sme_setup(void) 1354 { 1355 struct vl_info *info = &vl_info[ARM64_VEC_SME]; 1356 u64 smcr; 1357 int min_bit; 1358 1359 if (!system_supports_sme()) 1360 return; 1361 1362 /* 1363 * SME doesn't require any particular vector length be 1364 * supported but it does require at least one. We should have 1365 * disabled the feature entirely while bringing up CPUs but 1366 * let's double check here. 1367 */ 1368 WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX)); 1369 1370 min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX); 1371 info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit)); 1372 1373 smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1); 1374 info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1); 1375 1376 /* 1377 * Sanity-check that the max VL we determined through CPU features 1378 * corresponds properly to sme_vq_map. If not, do our best: 1379 */ 1380 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME, 1381 info->max_vl))) 1382 info->max_vl = find_supported_vector_length(ARM64_VEC_SME, 1383 info->max_vl); 1384 1385 WARN_ON(info->min_vl > info->max_vl); 1386 1387 /* 1388 * For the default VL, pick the maximum supported value <= 32 1389 * (256 bits) if there is one since this is guaranteed not to 1390 * grow the signal frame when in streaming mode, otherwise the 1391 * minimum available VL will be used. 1392 */ 1393 set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32)); 1394 1395 pr_info("SME: minimum available vector length %u bytes per vector\n", 1396 info->min_vl); 1397 pr_info("SME: maximum available vector length %u bytes per vector\n", 1398 info->max_vl); 1399 pr_info("SME: default vector length %u bytes per vector\n", 1400 get_sme_default_vl()); 1401 } 1402 1403 #endif /* CONFIG_ARM64_SME */ 1404 1405 static void sve_init_regs(void) 1406 { 1407 /* 1408 * Convert the FPSIMD state to SVE, zeroing all the state that 1409 * is not shared with FPSIMD. If (as is likely) the current 1410 * state is live in the registers then do this there and 1411 * update our metadata for the current task including 1412 * disabling the trap, otherwise update our in-memory copy. 1413 * We are guaranteed to not be in streaming mode, we can only 1414 * take a SVE trap when not in streaming mode and we can't be 1415 * in streaming mode when taking a SME trap. 1416 */ 1417 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 1418 unsigned long vq_minus_one = 1419 sve_vq_from_vl(task_get_sve_vl(current)) - 1; 1420 sve_set_vq(vq_minus_one); 1421 sve_flush_live(true, vq_minus_one); 1422 fpsimd_bind_task_to_cpu(); 1423 } else { 1424 fpsimd_to_sve(current); 1425 current->thread.fp_type = FP_STATE_SVE; 1426 } 1427 } 1428 1429 /* 1430 * Trapped SVE access 1431 * 1432 * Storage is allocated for the full SVE state, the current FPSIMD 1433 * register contents are migrated across, and the access trap is 1434 * disabled. 1435 * 1436 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state() 1437 * would have disabled the SVE access trap for userspace during 1438 * ret_to_user, making an SVE access trap impossible in that case. 1439 */ 1440 void do_sve_acc(unsigned long esr, struct pt_regs *regs) 1441 { 1442 /* Even if we chose not to use SVE, the hardware could still trap: */ 1443 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) { 1444 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1445 return; 1446 } 1447 1448 sve_alloc(current, true); 1449 if (!current->thread.sve_state) { 1450 force_sig(SIGKILL); 1451 return; 1452 } 1453 1454 get_cpu_fpsimd_context(); 1455 1456 if (test_and_set_thread_flag(TIF_SVE)) 1457 WARN_ON(1); /* SVE access shouldn't have trapped */ 1458 1459 /* 1460 * Even if the task can have used streaming mode we can only 1461 * generate SVE access traps in normal SVE mode and 1462 * transitioning out of streaming mode may discard any 1463 * streaming mode state. Always clear the high bits to avoid 1464 * any potential errors tracking what is properly initialised. 1465 */ 1466 sve_init_regs(); 1467 1468 put_cpu_fpsimd_context(); 1469 } 1470 1471 /* 1472 * Trapped SME access 1473 * 1474 * Storage is allocated for the full SVE and SME state, the current 1475 * FPSIMD register contents are migrated to SVE if SVE is not already 1476 * active, and the access trap is disabled. 1477 * 1478 * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state() 1479 * would have disabled the SME access trap for userspace during 1480 * ret_to_user, making an SME access trap impossible in that case. 1481 */ 1482 void do_sme_acc(unsigned long esr, struct pt_regs *regs) 1483 { 1484 /* Even if we chose not to use SME, the hardware could still trap: */ 1485 if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) { 1486 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1487 return; 1488 } 1489 1490 /* 1491 * If this not a trap due to SME being disabled then something 1492 * is being used in the wrong mode, report as SIGILL. 1493 */ 1494 if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) { 1495 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1496 return; 1497 } 1498 1499 sve_alloc(current, false); 1500 sme_alloc(current); 1501 if (!current->thread.sve_state || !current->thread.sme_state) { 1502 force_sig(SIGKILL); 1503 return; 1504 } 1505 1506 get_cpu_fpsimd_context(); 1507 1508 /* With TIF_SME userspace shouldn't generate any traps */ 1509 if (test_and_set_thread_flag(TIF_SME)) 1510 WARN_ON(1); 1511 1512 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 1513 unsigned long vq_minus_one = 1514 sve_vq_from_vl(task_get_sme_vl(current)) - 1; 1515 sme_set_vq(vq_minus_one); 1516 1517 fpsimd_bind_task_to_cpu(); 1518 } 1519 1520 put_cpu_fpsimd_context(); 1521 } 1522 1523 /* 1524 * Trapped FP/ASIMD access. 1525 */ 1526 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs) 1527 { 1528 /* TODO: implement lazy context saving/restoring */ 1529 WARN_ON(1); 1530 } 1531 1532 /* 1533 * Raise a SIGFPE for the current process. 1534 */ 1535 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs) 1536 { 1537 unsigned int si_code = FPE_FLTUNK; 1538 1539 if (esr & ESR_ELx_FP_EXC_TFV) { 1540 if (esr & FPEXC_IOF) 1541 si_code = FPE_FLTINV; 1542 else if (esr & FPEXC_DZF) 1543 si_code = FPE_FLTDIV; 1544 else if (esr & FPEXC_OFF) 1545 si_code = FPE_FLTOVF; 1546 else if (esr & FPEXC_UFF) 1547 si_code = FPE_FLTUND; 1548 else if (esr & FPEXC_IXF) 1549 si_code = FPE_FLTRES; 1550 } 1551 1552 send_sig_fault(SIGFPE, si_code, 1553 (void __user *)instruction_pointer(regs), 1554 current); 1555 } 1556 1557 void fpsimd_thread_switch(struct task_struct *next) 1558 { 1559 bool wrong_task, wrong_cpu; 1560 1561 if (!system_supports_fpsimd()) 1562 return; 1563 1564 __get_cpu_fpsimd_context(); 1565 1566 /* Save unsaved fpsimd state, if any: */ 1567 fpsimd_save(); 1568 1569 /* 1570 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's 1571 * state. For kernel threads, FPSIMD registers are never loaded 1572 * and wrong_task and wrong_cpu will always be true. 1573 */ 1574 wrong_task = __this_cpu_read(fpsimd_last_state.st) != 1575 &next->thread.uw.fpsimd_state; 1576 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id(); 1577 1578 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE, 1579 wrong_task || wrong_cpu); 1580 1581 __put_cpu_fpsimd_context(); 1582 } 1583 1584 static void fpsimd_flush_thread_vl(enum vec_type type) 1585 { 1586 int vl, supported_vl; 1587 1588 /* 1589 * Reset the task vector length as required. This is where we 1590 * ensure that all user tasks have a valid vector length 1591 * configured: no kernel task can become a user task without 1592 * an exec and hence a call to this function. By the time the 1593 * first call to this function is made, all early hardware 1594 * probing is complete, so __sve_default_vl should be valid. 1595 * If a bug causes this to go wrong, we make some noise and 1596 * try to fudge thread.sve_vl to a safe value here. 1597 */ 1598 vl = task_get_vl_onexec(current, type); 1599 if (!vl) 1600 vl = get_default_vl(type); 1601 1602 if (WARN_ON(!sve_vl_valid(vl))) 1603 vl = vl_info[type].min_vl; 1604 1605 supported_vl = find_supported_vector_length(type, vl); 1606 if (WARN_ON(supported_vl != vl)) 1607 vl = supported_vl; 1608 1609 task_set_vl(current, type, vl); 1610 1611 /* 1612 * If the task is not set to inherit, ensure that the vector 1613 * length will be reset by a subsequent exec: 1614 */ 1615 if (!test_thread_flag(vec_vl_inherit_flag(type))) 1616 task_set_vl_onexec(current, type, 0); 1617 } 1618 1619 void fpsimd_flush_thread(void) 1620 { 1621 void *sve_state = NULL; 1622 void *sme_state = NULL; 1623 1624 if (!system_supports_fpsimd()) 1625 return; 1626 1627 get_cpu_fpsimd_context(); 1628 1629 fpsimd_flush_task_state(current); 1630 memset(¤t->thread.uw.fpsimd_state, 0, 1631 sizeof(current->thread.uw.fpsimd_state)); 1632 1633 if (system_supports_sve()) { 1634 clear_thread_flag(TIF_SVE); 1635 1636 /* Defer kfree() while in atomic context */ 1637 sve_state = current->thread.sve_state; 1638 current->thread.sve_state = NULL; 1639 1640 fpsimd_flush_thread_vl(ARM64_VEC_SVE); 1641 } 1642 1643 if (system_supports_sme()) { 1644 clear_thread_flag(TIF_SME); 1645 1646 /* Defer kfree() while in atomic context */ 1647 sme_state = current->thread.sme_state; 1648 current->thread.sme_state = NULL; 1649 1650 fpsimd_flush_thread_vl(ARM64_VEC_SME); 1651 current->thread.svcr = 0; 1652 } 1653 1654 current->thread.fp_type = FP_STATE_FPSIMD; 1655 1656 put_cpu_fpsimd_context(); 1657 kfree(sve_state); 1658 kfree(sme_state); 1659 } 1660 1661 /* 1662 * Save the userland FPSIMD state of 'current' to memory, but only if the state 1663 * currently held in the registers does in fact belong to 'current' 1664 */ 1665 void fpsimd_preserve_current_state(void) 1666 { 1667 if (!system_supports_fpsimd()) 1668 return; 1669 1670 get_cpu_fpsimd_context(); 1671 fpsimd_save(); 1672 put_cpu_fpsimd_context(); 1673 } 1674 1675 /* 1676 * Like fpsimd_preserve_current_state(), but ensure that 1677 * current->thread.uw.fpsimd_state is updated so that it can be copied to 1678 * the signal frame. 1679 */ 1680 void fpsimd_signal_preserve_current_state(void) 1681 { 1682 fpsimd_preserve_current_state(); 1683 if (test_thread_flag(TIF_SVE)) 1684 sve_to_fpsimd(current); 1685 } 1686 1687 /* 1688 * Called by KVM when entering the guest. 1689 */ 1690 void fpsimd_kvm_prepare(void) 1691 { 1692 if (!system_supports_sve()) 1693 return; 1694 1695 /* 1696 * KVM does not save host SVE state since we can only enter 1697 * the guest from a syscall so the ABI means that only the 1698 * non-saved SVE state needs to be saved. If we have left 1699 * SVE enabled for performance reasons then update the task 1700 * state to be FPSIMD only. 1701 */ 1702 get_cpu_fpsimd_context(); 1703 1704 if (test_and_clear_thread_flag(TIF_SVE)) { 1705 sve_to_fpsimd(current); 1706 current->thread.fp_type = FP_STATE_FPSIMD; 1707 } 1708 1709 put_cpu_fpsimd_context(); 1710 } 1711 1712 /* 1713 * Associate current's FPSIMD context with this cpu 1714 * The caller must have ownership of the cpu FPSIMD context before calling 1715 * this function. 1716 */ 1717 static void fpsimd_bind_task_to_cpu(void) 1718 { 1719 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state); 1720 1721 WARN_ON(!system_supports_fpsimd()); 1722 last->st = ¤t->thread.uw.fpsimd_state; 1723 last->sve_state = current->thread.sve_state; 1724 last->sme_state = current->thread.sme_state; 1725 last->sve_vl = task_get_sve_vl(current); 1726 last->sme_vl = task_get_sme_vl(current); 1727 last->svcr = ¤t->thread.svcr; 1728 last->fp_type = ¤t->thread.fp_type; 1729 last->to_save = FP_STATE_CURRENT; 1730 current->thread.fpsimd_cpu = smp_processor_id(); 1731 1732 /* 1733 * Toggle SVE and SME trapping for userspace if needed, these 1734 * are serialsied by ret_to_user(). 1735 */ 1736 if (system_supports_sme()) { 1737 if (test_thread_flag(TIF_SME)) 1738 sme_user_enable(); 1739 else 1740 sme_user_disable(); 1741 } 1742 1743 if (system_supports_sve()) { 1744 if (test_thread_flag(TIF_SVE)) 1745 sve_user_enable(); 1746 else 1747 sve_user_disable(); 1748 } 1749 } 1750 1751 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state) 1752 { 1753 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state); 1754 1755 WARN_ON(!system_supports_fpsimd()); 1756 WARN_ON(!in_softirq() && !irqs_disabled()); 1757 1758 *last = *state; 1759 } 1760 1761 /* 1762 * Load the userland FPSIMD state of 'current' from memory, but only if the 1763 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD 1764 * state of 'current'. This is called when we are preparing to return to 1765 * userspace to ensure that userspace sees a good register state. 1766 */ 1767 void fpsimd_restore_current_state(void) 1768 { 1769 /* 1770 * For the tasks that were created before we detected the absence of 1771 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(), 1772 * e.g, init. This could be then inherited by the children processes. 1773 * If we later detect that the system doesn't support FP/SIMD, 1774 * we must clear the flag for all the tasks to indicate that the 1775 * FPSTATE is clean (as we can't have one) to avoid looping for ever in 1776 * do_notify_resume(). 1777 */ 1778 if (!system_supports_fpsimd()) { 1779 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1780 return; 1781 } 1782 1783 get_cpu_fpsimd_context(); 1784 1785 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { 1786 task_fpsimd_load(); 1787 fpsimd_bind_task_to_cpu(); 1788 } 1789 1790 put_cpu_fpsimd_context(); 1791 } 1792 1793 /* 1794 * Load an updated userland FPSIMD state for 'current' from memory and set the 1795 * flag that indicates that the FPSIMD register contents are the most recent 1796 * FPSIMD state of 'current'. This is used by the signal code to restore the 1797 * register state when returning from a signal handler in FPSIMD only cases, 1798 * any SVE context will be discarded. 1799 */ 1800 void fpsimd_update_current_state(struct user_fpsimd_state const *state) 1801 { 1802 if (WARN_ON(!system_supports_fpsimd())) 1803 return; 1804 1805 get_cpu_fpsimd_context(); 1806 1807 current->thread.uw.fpsimd_state = *state; 1808 if (test_thread_flag(TIF_SVE)) 1809 fpsimd_to_sve(current); 1810 1811 task_fpsimd_load(); 1812 fpsimd_bind_task_to_cpu(); 1813 1814 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1815 1816 put_cpu_fpsimd_context(); 1817 } 1818 1819 /* 1820 * Invalidate live CPU copies of task t's FPSIMD state 1821 * 1822 * This function may be called with preemption enabled. The barrier() 1823 * ensures that the assignment to fpsimd_cpu is visible to any 1824 * preemption/softirq that could race with set_tsk_thread_flag(), so 1825 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared. 1826 * 1827 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any 1828 * subsequent code. 1829 */ 1830 void fpsimd_flush_task_state(struct task_struct *t) 1831 { 1832 t->thread.fpsimd_cpu = NR_CPUS; 1833 /* 1834 * If we don't support fpsimd, bail out after we have 1835 * reset the fpsimd_cpu for this task and clear the 1836 * FPSTATE. 1837 */ 1838 if (!system_supports_fpsimd()) 1839 return; 1840 barrier(); 1841 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE); 1842 1843 barrier(); 1844 } 1845 1846 /* 1847 * Invalidate any task's FPSIMD state that is present on this cpu. 1848 * The FPSIMD context should be acquired with get_cpu_fpsimd_context() 1849 * before calling this function. 1850 */ 1851 static void fpsimd_flush_cpu_state(void) 1852 { 1853 WARN_ON(!system_supports_fpsimd()); 1854 __this_cpu_write(fpsimd_last_state.st, NULL); 1855 1856 /* 1857 * Leaving streaming mode enabled will cause issues for any kernel 1858 * NEON and leaving streaming mode or ZA enabled may increase power 1859 * consumption. 1860 */ 1861 if (system_supports_sme()) 1862 sme_smstop(); 1863 1864 set_thread_flag(TIF_FOREIGN_FPSTATE); 1865 } 1866 1867 /* 1868 * Save the FPSIMD state to memory and invalidate cpu view. 1869 * This function must be called with preemption disabled. 1870 */ 1871 void fpsimd_save_and_flush_cpu_state(void) 1872 { 1873 if (!system_supports_fpsimd()) 1874 return; 1875 WARN_ON(preemptible()); 1876 __get_cpu_fpsimd_context(); 1877 fpsimd_save(); 1878 fpsimd_flush_cpu_state(); 1879 __put_cpu_fpsimd_context(); 1880 } 1881 1882 #ifdef CONFIG_KERNEL_MODE_NEON 1883 1884 /* 1885 * Kernel-side NEON support functions 1886 */ 1887 1888 /* 1889 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling 1890 * context 1891 * 1892 * Must not be called unless may_use_simd() returns true. 1893 * Task context in the FPSIMD registers is saved back to memory as necessary. 1894 * 1895 * A matching call to kernel_neon_end() must be made before returning from the 1896 * calling context. 1897 * 1898 * The caller may freely use the FPSIMD registers until kernel_neon_end() is 1899 * called. 1900 */ 1901 void kernel_neon_begin(void) 1902 { 1903 if (WARN_ON(!system_supports_fpsimd())) 1904 return; 1905 1906 BUG_ON(!may_use_simd()); 1907 1908 get_cpu_fpsimd_context(); 1909 1910 /* Save unsaved fpsimd state, if any: */ 1911 fpsimd_save(); 1912 1913 /* Invalidate any task state remaining in the fpsimd regs: */ 1914 fpsimd_flush_cpu_state(); 1915 } 1916 EXPORT_SYMBOL_GPL(kernel_neon_begin); 1917 1918 /* 1919 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task 1920 * 1921 * Must be called from a context in which kernel_neon_begin() was previously 1922 * called, with no call to kernel_neon_end() in the meantime. 1923 * 1924 * The caller must not use the FPSIMD registers after this function is called, 1925 * unless kernel_neon_begin() is called again in the meantime. 1926 */ 1927 void kernel_neon_end(void) 1928 { 1929 if (!system_supports_fpsimd()) 1930 return; 1931 1932 put_cpu_fpsimd_context(); 1933 } 1934 EXPORT_SYMBOL_GPL(kernel_neon_end); 1935 1936 #ifdef CONFIG_EFI 1937 1938 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state); 1939 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used); 1940 static DEFINE_PER_CPU(bool, efi_sve_state_used); 1941 static DEFINE_PER_CPU(bool, efi_sm_state); 1942 1943 /* 1944 * EFI runtime services support functions 1945 * 1946 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call. 1947 * This means that for EFI (and only for EFI), we have to assume that FPSIMD 1948 * is always used rather than being an optional accelerator. 1949 * 1950 * These functions provide the necessary support for ensuring FPSIMD 1951 * save/restore in the contexts from which EFI is used. 1952 * 1953 * Do not use them for any other purpose -- if tempted to do so, you are 1954 * either doing something wrong or you need to propose some refactoring. 1955 */ 1956 1957 /* 1958 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call 1959 */ 1960 void __efi_fpsimd_begin(void) 1961 { 1962 if (!system_supports_fpsimd()) 1963 return; 1964 1965 WARN_ON(preemptible()); 1966 1967 if (may_use_simd()) { 1968 kernel_neon_begin(); 1969 } else { 1970 /* 1971 * If !efi_sve_state, SVE can't be in use yet and doesn't need 1972 * preserving: 1973 */ 1974 if (system_supports_sve() && likely(efi_sve_state)) { 1975 char *sve_state = this_cpu_ptr(efi_sve_state); 1976 bool ffr = true; 1977 u64 svcr; 1978 1979 __this_cpu_write(efi_sve_state_used, true); 1980 1981 if (system_supports_sme()) { 1982 svcr = read_sysreg_s(SYS_SVCR); 1983 1984 __this_cpu_write(efi_sm_state, 1985 svcr & SVCR_SM_MASK); 1986 1987 /* 1988 * Unless we have FA64 FFR does not 1989 * exist in streaming mode. 1990 */ 1991 if (!system_supports_fa64()) 1992 ffr = !(svcr & SVCR_SM_MASK); 1993 } 1994 1995 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()), 1996 &this_cpu_ptr(&efi_fpsimd_state)->fpsr, 1997 ffr); 1998 1999 if (system_supports_sme()) 2000 sysreg_clear_set_s(SYS_SVCR, 2001 SVCR_SM_MASK, 0); 2002 2003 } else { 2004 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state)); 2005 } 2006 2007 __this_cpu_write(efi_fpsimd_state_used, true); 2008 } 2009 } 2010 2011 /* 2012 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call 2013 */ 2014 void __efi_fpsimd_end(void) 2015 { 2016 if (!system_supports_fpsimd()) 2017 return; 2018 2019 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) { 2020 kernel_neon_end(); 2021 } else { 2022 if (system_supports_sve() && 2023 likely(__this_cpu_read(efi_sve_state_used))) { 2024 char const *sve_state = this_cpu_ptr(efi_sve_state); 2025 bool ffr = true; 2026 2027 /* 2028 * Restore streaming mode; EFI calls are 2029 * normal function calls so should not return in 2030 * streaming mode. 2031 */ 2032 if (system_supports_sme()) { 2033 if (__this_cpu_read(efi_sm_state)) { 2034 sysreg_clear_set_s(SYS_SVCR, 2035 0, 2036 SVCR_SM_MASK); 2037 2038 /* 2039 * Unless we have FA64 FFR does not 2040 * exist in streaming mode. 2041 */ 2042 if (!system_supports_fa64()) 2043 ffr = false; 2044 } 2045 } 2046 2047 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()), 2048 &this_cpu_ptr(&efi_fpsimd_state)->fpsr, 2049 ffr); 2050 2051 __this_cpu_write(efi_sve_state_used, false); 2052 } else { 2053 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state)); 2054 } 2055 } 2056 } 2057 2058 #endif /* CONFIG_EFI */ 2059 2060 #endif /* CONFIG_KERNEL_MODE_NEON */ 2061 2062 #ifdef CONFIG_CPU_PM 2063 static int fpsimd_cpu_pm_notifier(struct notifier_block *self, 2064 unsigned long cmd, void *v) 2065 { 2066 switch (cmd) { 2067 case CPU_PM_ENTER: 2068 fpsimd_save_and_flush_cpu_state(); 2069 break; 2070 case CPU_PM_EXIT: 2071 break; 2072 case CPU_PM_ENTER_FAILED: 2073 default: 2074 return NOTIFY_DONE; 2075 } 2076 return NOTIFY_OK; 2077 } 2078 2079 static struct notifier_block fpsimd_cpu_pm_notifier_block = { 2080 .notifier_call = fpsimd_cpu_pm_notifier, 2081 }; 2082 2083 static void __init fpsimd_pm_init(void) 2084 { 2085 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block); 2086 } 2087 2088 #else 2089 static inline void fpsimd_pm_init(void) { } 2090 #endif /* CONFIG_CPU_PM */ 2091 2092 #ifdef CONFIG_HOTPLUG_CPU 2093 static int fpsimd_cpu_dead(unsigned int cpu) 2094 { 2095 per_cpu(fpsimd_last_state.st, cpu) = NULL; 2096 return 0; 2097 } 2098 2099 static inline void fpsimd_hotplug_init(void) 2100 { 2101 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead", 2102 NULL, fpsimd_cpu_dead); 2103 } 2104 2105 #else 2106 static inline void fpsimd_hotplug_init(void) { } 2107 #endif 2108 2109 /* 2110 * FP/SIMD support code initialisation. 2111 */ 2112 static int __init fpsimd_init(void) 2113 { 2114 if (cpu_have_named_feature(FP)) { 2115 fpsimd_pm_init(); 2116 fpsimd_hotplug_init(); 2117 } else { 2118 pr_notice("Floating-point is not implemented\n"); 2119 } 2120 2121 if (!cpu_have_named_feature(ASIMD)) 2122 pr_notice("Advanced SIMD is not implemented\n"); 2123 2124 2125 sve_sysctl_init(); 2126 sme_sysctl_init(); 2127 2128 return 0; 2129 } 2130 core_initcall(fpsimd_init); 2131