1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * FP/SIMD context switching and fault handling 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * Author: Catalin Marinas <catalin.marinas@arm.com> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/bitops.h> 11 #include <linux/bottom_half.h> 12 #include <linux/bug.h> 13 #include <linux/cache.h> 14 #include <linux/compat.h> 15 #include <linux/compiler.h> 16 #include <linux/cpu.h> 17 #include <linux/cpu_pm.h> 18 #include <linux/ctype.h> 19 #include <linux/kernel.h> 20 #include <linux/linkage.h> 21 #include <linux/irqflags.h> 22 #include <linux/init.h> 23 #include <linux/percpu.h> 24 #include <linux/prctl.h> 25 #include <linux/preempt.h> 26 #include <linux/ptrace.h> 27 #include <linux/sched/signal.h> 28 #include <linux/sched/task_stack.h> 29 #include <linux/signal.h> 30 #include <linux/slab.h> 31 #include <linux/stddef.h> 32 #include <linux/sysctl.h> 33 #include <linux/swab.h> 34 35 #include <asm/esr.h> 36 #include <asm/exception.h> 37 #include <asm/fpsimd.h> 38 #include <asm/cpufeature.h> 39 #include <asm/cputype.h> 40 #include <asm/neon.h> 41 #include <asm/processor.h> 42 #include <asm/simd.h> 43 #include <asm/sigcontext.h> 44 #include <asm/sysreg.h> 45 #include <asm/traps.h> 46 #include <asm/virt.h> 47 48 #define FPEXC_IOF (1 << 0) 49 #define FPEXC_DZF (1 << 1) 50 #define FPEXC_OFF (1 << 2) 51 #define FPEXC_UFF (1 << 3) 52 #define FPEXC_IXF (1 << 4) 53 #define FPEXC_IDF (1 << 7) 54 55 /* 56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.) 57 * 58 * In order to reduce the number of times the FPSIMD state is needlessly saved 59 * and restored, we need to keep track of two things: 60 * (a) for each task, we need to remember which CPU was the last one to have 61 * the task's FPSIMD state loaded into its FPSIMD registers; 62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has 63 * been loaded into its FPSIMD registers most recently, or whether it has 64 * been used to perform kernel mode NEON in the meantime. 65 * 66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to 67 * the id of the current CPU every time the state is loaded onto a CPU. For (b), 68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the 69 * address of the userland FPSIMD state of the task that was loaded onto the CPU 70 * the most recently, or NULL if kernel mode NEON has been performed after that. 71 * 72 * With this in place, we no longer have to restore the next FPSIMD state right 73 * when switching between tasks. Instead, we can defer this check to userland 74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the 75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we 76 * can omit the FPSIMD restore. 77 * 78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to 79 * indicate whether or not the userland FPSIMD state of the current task is 80 * present in the registers. The flag is set unless the FPSIMD registers of this 81 * CPU currently contain the most recent userland FPSIMD state of the current 82 * task. If the task is behaving as a VMM, then this is will be managed by 83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently 84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware 85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and 86 * flag the register state as invalid. 87 * 88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may 89 * save the task's FPSIMD context back to task_struct from softirq context. 90 * To prevent this from racing with the manipulation of the task's FPSIMD state 91 * from task context and thereby corrupting the state, it is necessary to 92 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE 93 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to 94 * run but prevent them to use FPSIMD. 95 * 96 * For a certain task, the sequence may look something like this: 97 * - the task gets scheduled in; if both the task's fpsimd_cpu field 98 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu 99 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is 100 * cleared, otherwise it is set; 101 * 102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's 103 * userland FPSIMD state is copied from memory to the registers, the task's 104 * fpsimd_cpu field is set to the id of the current CPU, the current 105 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the 106 * TIF_FOREIGN_FPSTATE flag is cleared; 107 * 108 * - the task executes an ordinary syscall; upon return to userland, the 109 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is 110 * restored; 111 * 112 * - the task executes a syscall which executes some NEON instructions; this is 113 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD 114 * register contents to memory, clears the fpsimd_last_state per-cpu variable 115 * and sets the TIF_FOREIGN_FPSTATE flag; 116 * 117 * - the task gets preempted after kernel_neon_end() is called; as we have not 118 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so 119 * whatever is in the FPSIMD registers is not saved to memory, but discarded. 120 */ 121 struct fpsimd_last_state_struct { 122 struct user_fpsimd_state *st; 123 void *sve_state; 124 unsigned int sve_vl; 125 }; 126 127 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state); 128 129 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = { 130 #ifdef CONFIG_ARM64_SVE 131 [ARM64_VEC_SVE] = { 132 .type = ARM64_VEC_SVE, 133 .name = "SVE", 134 .min_vl = SVE_VL_MIN, 135 .max_vl = SVE_VL_MIN, 136 .max_virtualisable_vl = SVE_VL_MIN, 137 }, 138 #endif 139 }; 140 141 static unsigned int vec_vl_inherit_flag(enum vec_type type) 142 { 143 switch (type) { 144 case ARM64_VEC_SVE: 145 return TIF_SVE_VL_INHERIT; 146 default: 147 WARN_ON_ONCE(1); 148 return 0; 149 } 150 } 151 152 struct vl_config { 153 int __default_vl; /* Default VL for tasks */ 154 }; 155 156 static struct vl_config vl_config[ARM64_VEC_MAX]; 157 158 static inline int get_default_vl(enum vec_type type) 159 { 160 return READ_ONCE(vl_config[type].__default_vl); 161 } 162 163 #ifdef CONFIG_ARM64_SVE 164 165 static inline int get_sve_default_vl(void) 166 { 167 return get_default_vl(ARM64_VEC_SVE); 168 } 169 170 static inline void set_default_vl(enum vec_type type, int val) 171 { 172 WRITE_ONCE(vl_config[type].__default_vl, val); 173 } 174 175 static inline void set_sve_default_vl(int val) 176 { 177 set_default_vl(ARM64_VEC_SVE, val); 178 } 179 180 static void __percpu *efi_sve_state; 181 182 #else /* ! CONFIG_ARM64_SVE */ 183 184 /* Dummy declaration for code that will be optimised out: */ 185 extern void __percpu *efi_sve_state; 186 187 #endif /* ! CONFIG_ARM64_SVE */ 188 189 DEFINE_PER_CPU(bool, fpsimd_context_busy); 190 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy); 191 192 static void fpsimd_bind_task_to_cpu(void); 193 194 static void __get_cpu_fpsimd_context(void) 195 { 196 bool busy = __this_cpu_xchg(fpsimd_context_busy, true); 197 198 WARN_ON(busy); 199 } 200 201 /* 202 * Claim ownership of the CPU FPSIMD context for use by the calling context. 203 * 204 * The caller may freely manipulate the FPSIMD context metadata until 205 * put_cpu_fpsimd_context() is called. 206 * 207 * The double-underscore version must only be called if you know the task 208 * can't be preempted. 209 */ 210 static void get_cpu_fpsimd_context(void) 211 { 212 local_bh_disable(); 213 __get_cpu_fpsimd_context(); 214 } 215 216 static void __put_cpu_fpsimd_context(void) 217 { 218 bool busy = __this_cpu_xchg(fpsimd_context_busy, false); 219 220 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */ 221 } 222 223 /* 224 * Release the CPU FPSIMD context. 225 * 226 * Must be called from a context in which get_cpu_fpsimd_context() was 227 * previously called, with no call to put_cpu_fpsimd_context() in the 228 * meantime. 229 */ 230 static void put_cpu_fpsimd_context(void) 231 { 232 __put_cpu_fpsimd_context(); 233 local_bh_enable(); 234 } 235 236 static bool have_cpu_fpsimd_context(void) 237 { 238 return !preemptible() && __this_cpu_read(fpsimd_context_busy); 239 } 240 241 /* 242 * Call __sve_free() directly only if you know task can't be scheduled 243 * or preempted. 244 */ 245 static void __sve_free(struct task_struct *task) 246 { 247 kfree(task->thread.sve_state); 248 task->thread.sve_state = NULL; 249 } 250 251 static void sve_free(struct task_struct *task) 252 { 253 WARN_ON(test_tsk_thread_flag(task, TIF_SVE)); 254 255 __sve_free(task); 256 } 257 258 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type) 259 { 260 return task->thread.vl[type]; 261 } 262 263 void task_set_vl(struct task_struct *task, enum vec_type type, 264 unsigned long vl) 265 { 266 task->thread.vl[type] = vl; 267 } 268 269 unsigned int task_get_vl_onexec(const struct task_struct *task, 270 enum vec_type type) 271 { 272 return task->thread.vl_onexec[type]; 273 } 274 275 void task_set_vl_onexec(struct task_struct *task, enum vec_type type, 276 unsigned long vl) 277 { 278 task->thread.vl_onexec[type] = vl; 279 } 280 281 /* 282 * TIF_SVE controls whether a task can use SVE without trapping while 283 * in userspace, and also the way a task's FPSIMD/SVE state is stored 284 * in thread_struct. 285 * 286 * The kernel uses this flag to track whether a user task is actively 287 * using SVE, and therefore whether full SVE register state needs to 288 * be tracked. If not, the cheaper FPSIMD context handling code can 289 * be used instead of the more costly SVE equivalents. 290 * 291 * * TIF_SVE set: 292 * 293 * The task can execute SVE instructions while in userspace without 294 * trapping to the kernel. 295 * 296 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the 297 * corresponding Zn), P0-P15 and FFR are encoded in in 298 * task->thread.sve_state, formatted appropriately for vector 299 * length task->thread.sve_vl. 300 * 301 * task->thread.sve_state must point to a valid buffer at least 302 * sve_state_size(task) bytes in size. 303 * 304 * During any syscall, the kernel may optionally clear TIF_SVE and 305 * discard the vector state except for the FPSIMD subset. 306 * 307 * * TIF_SVE clear: 308 * 309 * An attempt by the user task to execute an SVE instruction causes 310 * do_sve_acc() to be called, which does some preparation and then 311 * sets TIF_SVE. 312 * 313 * When stored, FPSIMD registers V0-V31 are encoded in 314 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are 315 * logically zero but not stored anywhere; P0-P15 and FFR are not 316 * stored and have unspecified values from userspace's point of 317 * view. For hygiene purposes, the kernel zeroes them on next use, 318 * but userspace is discouraged from relying on this. 319 * 320 * task->thread.sve_state does not need to be non-NULL, valid or any 321 * particular size: it must not be dereferenced. 322 * 323 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state 324 * irrespective of whether TIF_SVE is clear or set, since these are 325 * not vector length dependent. 326 */ 327 328 /* 329 * Update current's FPSIMD/SVE registers from thread_struct. 330 * 331 * This function should be called only when the FPSIMD/SVE state in 332 * thread_struct is known to be up to date, when preparing to enter 333 * userspace. 334 */ 335 static void task_fpsimd_load(void) 336 { 337 WARN_ON(!system_supports_fpsimd()); 338 WARN_ON(!have_cpu_fpsimd_context()); 339 340 if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE)) { 341 sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1); 342 sve_load_state(sve_pffr(¤t->thread), 343 ¤t->thread.uw.fpsimd_state.fpsr, true); 344 } else { 345 fpsimd_load_state(¤t->thread.uw.fpsimd_state); 346 } 347 } 348 349 /* 350 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to 351 * date with respect to the CPU registers. Note carefully that the 352 * current context is the context last bound to the CPU stored in 353 * last, if KVM is involved this may be the guest VM context rather 354 * than the host thread for the VM pointed to by current. This means 355 * that we must always reference the state storage via last rather 356 * than via current, other than the TIF_ flags which KVM will 357 * carefully maintain for us. 358 */ 359 static void fpsimd_save(void) 360 { 361 struct fpsimd_last_state_struct const *last = 362 this_cpu_ptr(&fpsimd_last_state); 363 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */ 364 365 WARN_ON(!system_supports_fpsimd()); 366 WARN_ON(!have_cpu_fpsimd_context()); 367 368 if (test_thread_flag(TIF_FOREIGN_FPSTATE)) 369 return; 370 371 if (IS_ENABLED(CONFIG_ARM64_SVE) && 372 test_thread_flag(TIF_SVE)) { 373 if (WARN_ON(sve_get_vl() != last->sve_vl)) { 374 /* 375 * Can't save the user regs, so current would 376 * re-enter user with corrupt state. 377 * There's no way to recover, so kill it: 378 */ 379 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0); 380 return; 381 } 382 383 sve_save_state((char *)last->sve_state + 384 sve_ffr_offset(last->sve_vl), 385 &last->st->fpsr, true); 386 } else { 387 fpsimd_save_state(last->st); 388 } 389 } 390 391 /* 392 * All vector length selection from userspace comes through here. 393 * We're on a slow path, so some sanity-checks are included. 394 * If things go wrong there's a bug somewhere, but try to fall back to a 395 * safe choice. 396 */ 397 static unsigned int find_supported_vector_length(enum vec_type type, 398 unsigned int vl) 399 { 400 struct vl_info *info = &vl_info[type]; 401 int bit; 402 int max_vl = info->max_vl; 403 404 if (WARN_ON(!sve_vl_valid(vl))) 405 vl = info->min_vl; 406 407 if (WARN_ON(!sve_vl_valid(max_vl))) 408 max_vl = info->min_vl; 409 410 if (vl > max_vl) 411 vl = max_vl; 412 413 bit = find_next_bit(info->vq_map, SVE_VQ_MAX, 414 __vq_to_bit(sve_vq_from_vl(vl))); 415 return sve_vl_from_vq(__bit_to_vq(bit)); 416 } 417 418 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL) 419 420 static int vec_proc_do_default_vl(struct ctl_table *table, int write, 421 void *buffer, size_t *lenp, loff_t *ppos) 422 { 423 struct vl_info *info = table->extra1; 424 enum vec_type type = info->type; 425 int ret; 426 int vl = get_default_vl(type); 427 struct ctl_table tmp_table = { 428 .data = &vl, 429 .maxlen = sizeof(vl), 430 }; 431 432 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); 433 if (ret || !write) 434 return ret; 435 436 /* Writing -1 has the special meaning "set to max": */ 437 if (vl == -1) 438 vl = info->max_vl; 439 440 if (!sve_vl_valid(vl)) 441 return -EINVAL; 442 443 set_default_vl(type, find_supported_vector_length(type, vl)); 444 return 0; 445 } 446 447 static struct ctl_table sve_default_vl_table[] = { 448 { 449 .procname = "sve_default_vector_length", 450 .mode = 0644, 451 .proc_handler = vec_proc_do_default_vl, 452 .extra1 = &vl_info[ARM64_VEC_SVE], 453 }, 454 { } 455 }; 456 457 static int __init sve_sysctl_init(void) 458 { 459 if (system_supports_sve()) 460 if (!register_sysctl("abi", sve_default_vl_table)) 461 return -EINVAL; 462 463 return 0; 464 } 465 466 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ 467 static int __init sve_sysctl_init(void) { return 0; } 468 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ 469 470 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \ 471 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET)) 472 473 #ifdef CONFIG_CPU_BIG_ENDIAN 474 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 475 { 476 u64 a = swab64(x); 477 u64 b = swab64(x >> 64); 478 479 return ((__uint128_t)a << 64) | b; 480 } 481 #else 482 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 483 { 484 return x; 485 } 486 #endif 487 488 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x) 489 490 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst, 491 unsigned int vq) 492 { 493 unsigned int i; 494 __uint128_t *p; 495 496 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 497 p = (__uint128_t *)ZREG(sst, vq, i); 498 *p = arm64_cpu_to_le128(fst->vregs[i]); 499 } 500 } 501 502 /* 503 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to 504 * task->thread.sve_state. 505 * 506 * Task can be a non-runnable task, or current. In the latter case, 507 * the caller must have ownership of the cpu FPSIMD context before calling 508 * this function. 509 * task->thread.sve_state must point to at least sve_state_size(task) 510 * bytes of allocated kernel memory. 511 * task->thread.uw.fpsimd_state must be up to date before calling this 512 * function. 513 */ 514 static void fpsimd_to_sve(struct task_struct *task) 515 { 516 unsigned int vq; 517 void *sst = task->thread.sve_state; 518 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 519 520 if (!system_supports_sve()) 521 return; 522 523 vq = sve_vq_from_vl(task_get_sve_vl(task)); 524 __fpsimd_to_sve(sst, fst, vq); 525 } 526 527 /* 528 * Transfer the SVE state in task->thread.sve_state to 529 * task->thread.uw.fpsimd_state. 530 * 531 * Task can be a non-runnable task, or current. In the latter case, 532 * the caller must have ownership of the cpu FPSIMD context before calling 533 * this function. 534 * task->thread.sve_state must point to at least sve_state_size(task) 535 * bytes of allocated kernel memory. 536 * task->thread.sve_state must be up to date before calling this function. 537 */ 538 static void sve_to_fpsimd(struct task_struct *task) 539 { 540 unsigned int vq; 541 void const *sst = task->thread.sve_state; 542 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state; 543 unsigned int i; 544 __uint128_t const *p; 545 546 if (!system_supports_sve()) 547 return; 548 549 vq = sve_vq_from_vl(task_get_sve_vl(task)); 550 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 551 p = (__uint128_t const *)ZREG(sst, vq, i); 552 fst->vregs[i] = arm64_le128_to_cpu(*p); 553 } 554 } 555 556 #ifdef CONFIG_ARM64_SVE 557 558 /* 559 * Return how many bytes of memory are required to store the full SVE 560 * state for task, given task's currently configured vector length. 561 */ 562 static size_t sve_state_size(struct task_struct const *task) 563 { 564 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task_get_sve_vl(task))); 565 } 566 567 /* 568 * Ensure that task->thread.sve_state is allocated and sufficiently large. 569 * 570 * This function should be used only in preparation for replacing 571 * task->thread.sve_state with new data. The memory is always zeroed 572 * here to prevent stale data from showing through: this is done in 573 * the interest of testability and predictability: except in the 574 * do_sve_acc() case, there is no ABI requirement to hide stale data 575 * written previously be task. 576 */ 577 void sve_alloc(struct task_struct *task) 578 { 579 if (task->thread.sve_state) { 580 memset(task->thread.sve_state, 0, sve_state_size(task)); 581 return; 582 } 583 584 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */ 585 task->thread.sve_state = 586 kzalloc(sve_state_size(task), GFP_KERNEL); 587 } 588 589 590 /* 591 * Ensure that task->thread.sve_state is up to date with respect to 592 * the user task, irrespective of when SVE is in use or not. 593 * 594 * This should only be called by ptrace. task must be non-runnable. 595 * task->thread.sve_state must point to at least sve_state_size(task) 596 * bytes of allocated kernel memory. 597 */ 598 void fpsimd_sync_to_sve(struct task_struct *task) 599 { 600 if (!test_tsk_thread_flag(task, TIF_SVE)) 601 fpsimd_to_sve(task); 602 } 603 604 /* 605 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to 606 * the user task, irrespective of whether SVE is in use or not. 607 * 608 * This should only be called by ptrace. task must be non-runnable. 609 * task->thread.sve_state must point to at least sve_state_size(task) 610 * bytes of allocated kernel memory. 611 */ 612 void sve_sync_to_fpsimd(struct task_struct *task) 613 { 614 if (test_tsk_thread_flag(task, TIF_SVE)) 615 sve_to_fpsimd(task); 616 } 617 618 /* 619 * Ensure that task->thread.sve_state is up to date with respect to 620 * the task->thread.uw.fpsimd_state. 621 * 622 * This should only be called by ptrace to merge new FPSIMD register 623 * values into a task for which SVE is currently active. 624 * task must be non-runnable. 625 * task->thread.sve_state must point to at least sve_state_size(task) 626 * bytes of allocated kernel memory. 627 * task->thread.uw.fpsimd_state must already have been initialised with 628 * the new FPSIMD register values to be merged in. 629 */ 630 void sve_sync_from_fpsimd_zeropad(struct task_struct *task) 631 { 632 unsigned int vq; 633 void *sst = task->thread.sve_state; 634 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 635 636 if (!test_tsk_thread_flag(task, TIF_SVE)) 637 return; 638 639 vq = sve_vq_from_vl(task_get_sve_vl(task)); 640 641 memset(sst, 0, SVE_SIG_REGS_SIZE(vq)); 642 __fpsimd_to_sve(sst, fst, vq); 643 } 644 645 int vec_set_vector_length(struct task_struct *task, enum vec_type type, 646 unsigned long vl, unsigned long flags) 647 { 648 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT | 649 PR_SVE_SET_VL_ONEXEC)) 650 return -EINVAL; 651 652 if (!sve_vl_valid(vl)) 653 return -EINVAL; 654 655 /* 656 * Clamp to the maximum vector length that VL-agnostic code 657 * can work with. A flag may be assigned in the future to 658 * allow setting of larger vector lengths without confusing 659 * older software. 660 */ 661 if (vl > VL_ARCH_MAX) 662 vl = VL_ARCH_MAX; 663 664 vl = find_supported_vector_length(type, vl); 665 666 if (flags & (PR_SVE_VL_INHERIT | 667 PR_SVE_SET_VL_ONEXEC)) 668 task_set_vl_onexec(task, type, vl); 669 else 670 /* Reset VL to system default on next exec: */ 671 task_set_vl_onexec(task, type, 0); 672 673 /* Only actually set the VL if not deferred: */ 674 if (flags & PR_SVE_SET_VL_ONEXEC) 675 goto out; 676 677 if (vl == task_get_vl(task, type)) 678 goto out; 679 680 /* 681 * To ensure the FPSIMD bits of the SVE vector registers are preserved, 682 * write any live register state back to task_struct, and convert to a 683 * regular FPSIMD thread. Since the vector length can only be changed 684 * with a syscall we can't be in streaming mode while reconfiguring. 685 */ 686 if (task == current) { 687 get_cpu_fpsimd_context(); 688 689 fpsimd_save(); 690 } 691 692 fpsimd_flush_task_state(task); 693 if (test_and_clear_tsk_thread_flag(task, TIF_SVE)) 694 sve_to_fpsimd(task); 695 696 if (task == current) 697 put_cpu_fpsimd_context(); 698 699 /* 700 * Force reallocation of task SVE state to the correct size 701 * on next use: 702 */ 703 sve_free(task); 704 705 task_set_vl(task, type, vl); 706 707 out: 708 update_tsk_thread_flag(task, vec_vl_inherit_flag(type), 709 flags & PR_SVE_VL_INHERIT); 710 711 return 0; 712 } 713 714 /* 715 * Encode the current vector length and flags for return. 716 * This is only required for prctl(): ptrace has separate fields. 717 * SVE and SME use the same bits for _ONEXEC and _INHERIT. 718 * 719 * flags are as for vec_set_vector_length(). 720 */ 721 static int vec_prctl_status(enum vec_type type, unsigned long flags) 722 { 723 int ret; 724 725 if (flags & PR_SVE_SET_VL_ONEXEC) 726 ret = task_get_vl_onexec(current, type); 727 else 728 ret = task_get_vl(current, type); 729 730 if (test_thread_flag(vec_vl_inherit_flag(type))) 731 ret |= PR_SVE_VL_INHERIT; 732 733 return ret; 734 } 735 736 /* PR_SVE_SET_VL */ 737 int sve_set_current_vl(unsigned long arg) 738 { 739 unsigned long vl, flags; 740 int ret; 741 742 vl = arg & PR_SVE_VL_LEN_MASK; 743 flags = arg & ~vl; 744 745 if (!system_supports_sve() || is_compat_task()) 746 return -EINVAL; 747 748 ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags); 749 if (ret) 750 return ret; 751 752 return vec_prctl_status(ARM64_VEC_SVE, flags); 753 } 754 755 /* PR_SVE_GET_VL */ 756 int sve_get_current_vl(void) 757 { 758 if (!system_supports_sve() || is_compat_task()) 759 return -EINVAL; 760 761 return vec_prctl_status(ARM64_VEC_SVE, 0); 762 } 763 764 static void vec_probe_vqs(struct vl_info *info, 765 DECLARE_BITMAP(map, SVE_VQ_MAX)) 766 { 767 unsigned int vq, vl; 768 769 bitmap_zero(map, SVE_VQ_MAX); 770 771 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) { 772 write_vl(info->type, vq - 1); /* self-syncing */ 773 vl = sve_get_vl(); 774 vq = sve_vq_from_vl(vl); /* skip intervening lengths */ 775 set_bit(__vq_to_bit(vq), map); 776 } 777 } 778 779 /* 780 * Initialise the set of known supported VQs for the boot CPU. 781 * This is called during kernel boot, before secondary CPUs are brought up. 782 */ 783 void __init vec_init_vq_map(enum vec_type type) 784 { 785 struct vl_info *info = &vl_info[type]; 786 vec_probe_vqs(info, info->vq_map); 787 bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX); 788 } 789 790 /* 791 * If we haven't committed to the set of supported VQs yet, filter out 792 * those not supported by the current CPU. 793 * This function is called during the bring-up of early secondary CPUs only. 794 */ 795 void vec_update_vq_map(enum vec_type type) 796 { 797 struct vl_info *info = &vl_info[type]; 798 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 799 800 vec_probe_vqs(info, tmp_map); 801 bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX); 802 bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map, 803 SVE_VQ_MAX); 804 } 805 806 /* 807 * Check whether the current CPU supports all VQs in the committed set. 808 * This function is called during the bring-up of late secondary CPUs only. 809 */ 810 int vec_verify_vq_map(enum vec_type type) 811 { 812 struct vl_info *info = &vl_info[type]; 813 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 814 unsigned long b; 815 816 vec_probe_vqs(info, tmp_map); 817 818 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 819 if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) { 820 pr_warn("%s: cpu%d: Required vector length(s) missing\n", 821 info->name, smp_processor_id()); 822 return -EINVAL; 823 } 824 825 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available()) 826 return 0; 827 828 /* 829 * For KVM, it is necessary to ensure that this CPU doesn't 830 * support any vector length that guests may have probed as 831 * unsupported. 832 */ 833 834 /* Recover the set of supported VQs: */ 835 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 836 /* Find VQs supported that are not globally supported: */ 837 bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX); 838 839 /* Find the lowest such VQ, if any: */ 840 b = find_last_bit(tmp_map, SVE_VQ_MAX); 841 if (b >= SVE_VQ_MAX) 842 return 0; /* no mismatches */ 843 844 /* 845 * Mismatches above sve_max_virtualisable_vl are fine, since 846 * no guest is allowed to configure ZCR_EL2.LEN to exceed this: 847 */ 848 if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) { 849 pr_warn("%s: cpu%d: Unsupported vector length(s) present\n", 850 info->name, smp_processor_id()); 851 return -EINVAL; 852 } 853 854 return 0; 855 } 856 857 static void __init sve_efi_setup(void) 858 { 859 struct vl_info *info = &vl_info[ARM64_VEC_SVE]; 860 861 if (!IS_ENABLED(CONFIG_EFI)) 862 return; 863 864 /* 865 * alloc_percpu() warns and prints a backtrace if this goes wrong. 866 * This is evidence of a crippled system and we are returning void, 867 * so no attempt is made to handle this situation here. 868 */ 869 if (!sve_vl_valid(info->max_vl)) 870 goto fail; 871 872 efi_sve_state = __alloc_percpu( 873 SVE_SIG_REGS_SIZE(sve_vq_from_vl(info->max_vl)), SVE_VQ_BYTES); 874 if (!efi_sve_state) 875 goto fail; 876 877 return; 878 879 fail: 880 panic("Cannot allocate percpu memory for EFI SVE save/restore"); 881 } 882 883 /* 884 * Enable SVE for EL1. 885 * Intended for use by the cpufeatures code during CPU boot. 886 */ 887 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p) 888 { 889 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1); 890 isb(); 891 } 892 893 /* 894 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE 895 * vector length. 896 * 897 * Use only if SVE is present. 898 * This function clobbers the SVE vector length. 899 */ 900 u64 read_zcr_features(void) 901 { 902 u64 zcr; 903 unsigned int vq_max; 904 905 /* 906 * Set the maximum possible VL, and write zeroes to all other 907 * bits to see if they stick. 908 */ 909 sve_kernel_enable(NULL); 910 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1); 911 912 zcr = read_sysreg_s(SYS_ZCR_EL1); 913 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */ 914 vq_max = sve_vq_from_vl(sve_get_vl()); 915 zcr |= vq_max - 1; /* set LEN field to maximum effective value */ 916 917 return zcr; 918 } 919 920 void __init sve_setup(void) 921 { 922 struct vl_info *info = &vl_info[ARM64_VEC_SVE]; 923 u64 zcr; 924 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 925 unsigned long b; 926 927 if (!system_supports_sve()) 928 return; 929 930 /* 931 * The SVE architecture mandates support for 128-bit vectors, 932 * so sve_vq_map must have at least SVE_VQ_MIN set. 933 * If something went wrong, at least try to patch it up: 934 */ 935 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map))) 936 set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map); 937 938 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); 939 info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1); 940 941 /* 942 * Sanity-check that the max VL we determined through CPU features 943 * corresponds properly to sve_vq_map. If not, do our best: 944 */ 945 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE, 946 info->max_vl))) 947 info->max_vl = find_supported_vector_length(ARM64_VEC_SVE, 948 info->max_vl); 949 950 /* 951 * For the default VL, pick the maximum supported value <= 64. 952 * VL == 64 is guaranteed not to grow the signal frame. 953 */ 954 set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64)); 955 956 bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map, 957 SVE_VQ_MAX); 958 959 b = find_last_bit(tmp_map, SVE_VQ_MAX); 960 if (b >= SVE_VQ_MAX) 961 /* No non-virtualisable VLs found */ 962 info->max_virtualisable_vl = SVE_VQ_MAX; 963 else if (WARN_ON(b == SVE_VQ_MAX - 1)) 964 /* No virtualisable VLs? This is architecturally forbidden. */ 965 info->max_virtualisable_vl = SVE_VQ_MIN; 966 else /* b + 1 < SVE_VQ_MAX */ 967 info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1)); 968 969 if (info->max_virtualisable_vl > info->max_vl) 970 info->max_virtualisable_vl = info->max_vl; 971 972 pr_info("%s: maximum available vector length %u bytes per vector\n", 973 info->name, info->max_vl); 974 pr_info("%s: default vector length %u bytes per vector\n", 975 info->name, get_sve_default_vl()); 976 977 /* KVM decides whether to support mismatched systems. Just warn here: */ 978 if (sve_max_virtualisable_vl() < sve_max_vl()) 979 pr_warn("%s: unvirtualisable vector lengths present\n", 980 info->name); 981 982 sve_efi_setup(); 983 } 984 985 /* 986 * Called from the put_task_struct() path, which cannot get here 987 * unless dead_task is really dead and not schedulable. 988 */ 989 void fpsimd_release_task(struct task_struct *dead_task) 990 { 991 __sve_free(dead_task); 992 } 993 994 #endif /* CONFIG_ARM64_SVE */ 995 996 /* 997 * Trapped SVE access 998 * 999 * Storage is allocated for the full SVE state, the current FPSIMD 1000 * register contents are migrated across, and the access trap is 1001 * disabled. 1002 * 1003 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state() 1004 * would have disabled the SVE access trap for userspace during 1005 * ret_to_user, making an SVE access trap impossible in that case. 1006 */ 1007 void do_sve_acc(unsigned int esr, struct pt_regs *regs) 1008 { 1009 /* Even if we chose not to use SVE, the hardware could still trap: */ 1010 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) { 1011 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 1012 return; 1013 } 1014 1015 sve_alloc(current); 1016 if (!current->thread.sve_state) { 1017 force_sig(SIGKILL); 1018 return; 1019 } 1020 1021 get_cpu_fpsimd_context(); 1022 1023 if (test_and_set_thread_flag(TIF_SVE)) 1024 WARN_ON(1); /* SVE access shouldn't have trapped */ 1025 1026 /* 1027 * Convert the FPSIMD state to SVE, zeroing all the state that 1028 * is not shared with FPSIMD. If (as is likely) the current 1029 * state is live in the registers then do this there and 1030 * update our metadata for the current task including 1031 * disabling the trap, otherwise update our in-memory copy. 1032 */ 1033 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 1034 unsigned long vq_minus_one = 1035 sve_vq_from_vl(task_get_sve_vl(current)) - 1; 1036 sve_set_vq(vq_minus_one); 1037 sve_flush_live(true, vq_minus_one); 1038 fpsimd_bind_task_to_cpu(); 1039 } else { 1040 fpsimd_to_sve(current); 1041 } 1042 1043 put_cpu_fpsimd_context(); 1044 } 1045 1046 /* 1047 * Trapped FP/ASIMD access. 1048 */ 1049 void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs) 1050 { 1051 /* TODO: implement lazy context saving/restoring */ 1052 WARN_ON(1); 1053 } 1054 1055 /* 1056 * Raise a SIGFPE for the current process. 1057 */ 1058 void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs) 1059 { 1060 unsigned int si_code = FPE_FLTUNK; 1061 1062 if (esr & ESR_ELx_FP_EXC_TFV) { 1063 if (esr & FPEXC_IOF) 1064 si_code = FPE_FLTINV; 1065 else if (esr & FPEXC_DZF) 1066 si_code = FPE_FLTDIV; 1067 else if (esr & FPEXC_OFF) 1068 si_code = FPE_FLTOVF; 1069 else if (esr & FPEXC_UFF) 1070 si_code = FPE_FLTUND; 1071 else if (esr & FPEXC_IXF) 1072 si_code = FPE_FLTRES; 1073 } 1074 1075 send_sig_fault(SIGFPE, si_code, 1076 (void __user *)instruction_pointer(regs), 1077 current); 1078 } 1079 1080 void fpsimd_thread_switch(struct task_struct *next) 1081 { 1082 bool wrong_task, wrong_cpu; 1083 1084 if (!system_supports_fpsimd()) 1085 return; 1086 1087 __get_cpu_fpsimd_context(); 1088 1089 /* Save unsaved fpsimd state, if any: */ 1090 fpsimd_save(); 1091 1092 /* 1093 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's 1094 * state. For kernel threads, FPSIMD registers are never loaded 1095 * and wrong_task and wrong_cpu will always be true. 1096 */ 1097 wrong_task = __this_cpu_read(fpsimd_last_state.st) != 1098 &next->thread.uw.fpsimd_state; 1099 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id(); 1100 1101 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE, 1102 wrong_task || wrong_cpu); 1103 1104 __put_cpu_fpsimd_context(); 1105 } 1106 1107 static void fpsimd_flush_thread_vl(enum vec_type type) 1108 { 1109 int vl, supported_vl; 1110 1111 /* 1112 * Reset the task vector length as required. This is where we 1113 * ensure that all user tasks have a valid vector length 1114 * configured: no kernel task can become a user task without 1115 * an exec and hence a call to this function. By the time the 1116 * first call to this function is made, all early hardware 1117 * probing is complete, so __sve_default_vl should be valid. 1118 * If a bug causes this to go wrong, we make some noise and 1119 * try to fudge thread.sve_vl to a safe value here. 1120 */ 1121 vl = task_get_vl_onexec(current, type); 1122 if (!vl) 1123 vl = get_default_vl(type); 1124 1125 if (WARN_ON(!sve_vl_valid(vl))) 1126 vl = vl_info[type].min_vl; 1127 1128 supported_vl = find_supported_vector_length(type, vl); 1129 if (WARN_ON(supported_vl != vl)) 1130 vl = supported_vl; 1131 1132 task_set_vl(current, type, vl); 1133 1134 /* 1135 * If the task is not set to inherit, ensure that the vector 1136 * length will be reset by a subsequent exec: 1137 */ 1138 if (!test_thread_flag(vec_vl_inherit_flag(type))) 1139 task_set_vl_onexec(current, type, 0); 1140 } 1141 1142 void fpsimd_flush_thread(void) 1143 { 1144 if (!system_supports_fpsimd()) 1145 return; 1146 1147 get_cpu_fpsimd_context(); 1148 1149 fpsimd_flush_task_state(current); 1150 memset(¤t->thread.uw.fpsimd_state, 0, 1151 sizeof(current->thread.uw.fpsimd_state)); 1152 1153 if (system_supports_sve()) { 1154 clear_thread_flag(TIF_SVE); 1155 sve_free(current); 1156 fpsimd_flush_thread_vl(ARM64_VEC_SVE); 1157 } 1158 1159 put_cpu_fpsimd_context(); 1160 } 1161 1162 /* 1163 * Save the userland FPSIMD state of 'current' to memory, but only if the state 1164 * currently held in the registers does in fact belong to 'current' 1165 */ 1166 void fpsimd_preserve_current_state(void) 1167 { 1168 if (!system_supports_fpsimd()) 1169 return; 1170 1171 get_cpu_fpsimd_context(); 1172 fpsimd_save(); 1173 put_cpu_fpsimd_context(); 1174 } 1175 1176 /* 1177 * Like fpsimd_preserve_current_state(), but ensure that 1178 * current->thread.uw.fpsimd_state is updated so that it can be copied to 1179 * the signal frame. 1180 */ 1181 void fpsimd_signal_preserve_current_state(void) 1182 { 1183 fpsimd_preserve_current_state(); 1184 if (test_thread_flag(TIF_SVE)) 1185 sve_to_fpsimd(current); 1186 } 1187 1188 /* 1189 * Associate current's FPSIMD context with this cpu 1190 * The caller must have ownership of the cpu FPSIMD context before calling 1191 * this function. 1192 */ 1193 static void fpsimd_bind_task_to_cpu(void) 1194 { 1195 struct fpsimd_last_state_struct *last = 1196 this_cpu_ptr(&fpsimd_last_state); 1197 1198 WARN_ON(!system_supports_fpsimd()); 1199 last->st = ¤t->thread.uw.fpsimd_state; 1200 last->sve_state = current->thread.sve_state; 1201 last->sve_vl = task_get_sve_vl(current); 1202 current->thread.fpsimd_cpu = smp_processor_id(); 1203 1204 if (system_supports_sve()) { 1205 /* Toggle SVE trapping for userspace if needed */ 1206 if (test_thread_flag(TIF_SVE)) 1207 sve_user_enable(); 1208 else 1209 sve_user_disable(); 1210 1211 /* Serialised by exception return to user */ 1212 } 1213 } 1214 1215 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state, 1216 unsigned int sve_vl) 1217 { 1218 struct fpsimd_last_state_struct *last = 1219 this_cpu_ptr(&fpsimd_last_state); 1220 1221 WARN_ON(!system_supports_fpsimd()); 1222 WARN_ON(!in_softirq() && !irqs_disabled()); 1223 1224 last->st = st; 1225 last->sve_state = sve_state; 1226 last->sve_vl = sve_vl; 1227 } 1228 1229 /* 1230 * Load the userland FPSIMD state of 'current' from memory, but only if the 1231 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD 1232 * state of 'current'. This is called when we are preparing to return to 1233 * userspace to ensure that userspace sees a good register state. 1234 */ 1235 void fpsimd_restore_current_state(void) 1236 { 1237 /* 1238 * For the tasks that were created before we detected the absence of 1239 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(), 1240 * e.g, init. This could be then inherited by the children processes. 1241 * If we later detect that the system doesn't support FP/SIMD, 1242 * we must clear the flag for all the tasks to indicate that the 1243 * FPSTATE is clean (as we can't have one) to avoid looping for ever in 1244 * do_notify_resume(). 1245 */ 1246 if (!system_supports_fpsimd()) { 1247 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1248 return; 1249 } 1250 1251 get_cpu_fpsimd_context(); 1252 1253 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { 1254 task_fpsimd_load(); 1255 fpsimd_bind_task_to_cpu(); 1256 } 1257 1258 put_cpu_fpsimd_context(); 1259 } 1260 1261 /* 1262 * Load an updated userland FPSIMD state for 'current' from memory and set the 1263 * flag that indicates that the FPSIMD register contents are the most recent 1264 * FPSIMD state of 'current'. This is used by the signal code to restore the 1265 * register state when returning from a signal handler in FPSIMD only cases, 1266 * any SVE context will be discarded. 1267 */ 1268 void fpsimd_update_current_state(struct user_fpsimd_state const *state) 1269 { 1270 if (WARN_ON(!system_supports_fpsimd())) 1271 return; 1272 1273 get_cpu_fpsimd_context(); 1274 1275 current->thread.uw.fpsimd_state = *state; 1276 if (test_thread_flag(TIF_SVE)) 1277 fpsimd_to_sve(current); 1278 1279 task_fpsimd_load(); 1280 fpsimd_bind_task_to_cpu(); 1281 1282 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1283 1284 put_cpu_fpsimd_context(); 1285 } 1286 1287 /* 1288 * Invalidate live CPU copies of task t's FPSIMD state 1289 * 1290 * This function may be called with preemption enabled. The barrier() 1291 * ensures that the assignment to fpsimd_cpu is visible to any 1292 * preemption/softirq that could race with set_tsk_thread_flag(), so 1293 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared. 1294 * 1295 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any 1296 * subsequent code. 1297 */ 1298 void fpsimd_flush_task_state(struct task_struct *t) 1299 { 1300 t->thread.fpsimd_cpu = NR_CPUS; 1301 /* 1302 * If we don't support fpsimd, bail out after we have 1303 * reset the fpsimd_cpu for this task and clear the 1304 * FPSTATE. 1305 */ 1306 if (!system_supports_fpsimd()) 1307 return; 1308 barrier(); 1309 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE); 1310 1311 barrier(); 1312 } 1313 1314 /* 1315 * Invalidate any task's FPSIMD state that is present on this cpu. 1316 * The FPSIMD context should be acquired with get_cpu_fpsimd_context() 1317 * before calling this function. 1318 */ 1319 static void fpsimd_flush_cpu_state(void) 1320 { 1321 WARN_ON(!system_supports_fpsimd()); 1322 __this_cpu_write(fpsimd_last_state.st, NULL); 1323 set_thread_flag(TIF_FOREIGN_FPSTATE); 1324 } 1325 1326 /* 1327 * Save the FPSIMD state to memory and invalidate cpu view. 1328 * This function must be called with preemption disabled. 1329 */ 1330 void fpsimd_save_and_flush_cpu_state(void) 1331 { 1332 if (!system_supports_fpsimd()) 1333 return; 1334 WARN_ON(preemptible()); 1335 __get_cpu_fpsimd_context(); 1336 fpsimd_save(); 1337 fpsimd_flush_cpu_state(); 1338 __put_cpu_fpsimd_context(); 1339 } 1340 1341 #ifdef CONFIG_KERNEL_MODE_NEON 1342 1343 /* 1344 * Kernel-side NEON support functions 1345 */ 1346 1347 /* 1348 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling 1349 * context 1350 * 1351 * Must not be called unless may_use_simd() returns true. 1352 * Task context in the FPSIMD registers is saved back to memory as necessary. 1353 * 1354 * A matching call to kernel_neon_end() must be made before returning from the 1355 * calling context. 1356 * 1357 * The caller may freely use the FPSIMD registers until kernel_neon_end() is 1358 * called. 1359 */ 1360 void kernel_neon_begin(void) 1361 { 1362 if (WARN_ON(!system_supports_fpsimd())) 1363 return; 1364 1365 BUG_ON(!may_use_simd()); 1366 1367 get_cpu_fpsimd_context(); 1368 1369 /* Save unsaved fpsimd state, if any: */ 1370 fpsimd_save(); 1371 1372 /* Invalidate any task state remaining in the fpsimd regs: */ 1373 fpsimd_flush_cpu_state(); 1374 } 1375 EXPORT_SYMBOL(kernel_neon_begin); 1376 1377 /* 1378 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task 1379 * 1380 * Must be called from a context in which kernel_neon_begin() was previously 1381 * called, with no call to kernel_neon_end() in the meantime. 1382 * 1383 * The caller must not use the FPSIMD registers after this function is called, 1384 * unless kernel_neon_begin() is called again in the meantime. 1385 */ 1386 void kernel_neon_end(void) 1387 { 1388 if (!system_supports_fpsimd()) 1389 return; 1390 1391 put_cpu_fpsimd_context(); 1392 } 1393 EXPORT_SYMBOL(kernel_neon_end); 1394 1395 #ifdef CONFIG_EFI 1396 1397 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state); 1398 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used); 1399 static DEFINE_PER_CPU(bool, efi_sve_state_used); 1400 1401 /* 1402 * EFI runtime services support functions 1403 * 1404 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call. 1405 * This means that for EFI (and only for EFI), we have to assume that FPSIMD 1406 * is always used rather than being an optional accelerator. 1407 * 1408 * These functions provide the necessary support for ensuring FPSIMD 1409 * save/restore in the contexts from which EFI is used. 1410 * 1411 * Do not use them for any other purpose -- if tempted to do so, you are 1412 * either doing something wrong or you need to propose some refactoring. 1413 */ 1414 1415 /* 1416 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call 1417 */ 1418 void __efi_fpsimd_begin(void) 1419 { 1420 if (!system_supports_fpsimd()) 1421 return; 1422 1423 WARN_ON(preemptible()); 1424 1425 if (may_use_simd()) { 1426 kernel_neon_begin(); 1427 } else { 1428 /* 1429 * If !efi_sve_state, SVE can't be in use yet and doesn't need 1430 * preserving: 1431 */ 1432 if (system_supports_sve() && likely(efi_sve_state)) { 1433 char *sve_state = this_cpu_ptr(efi_sve_state); 1434 1435 __this_cpu_write(efi_sve_state_used, true); 1436 1437 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()), 1438 &this_cpu_ptr(&efi_fpsimd_state)->fpsr, 1439 true); 1440 } else { 1441 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state)); 1442 } 1443 1444 __this_cpu_write(efi_fpsimd_state_used, true); 1445 } 1446 } 1447 1448 /* 1449 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call 1450 */ 1451 void __efi_fpsimd_end(void) 1452 { 1453 if (!system_supports_fpsimd()) 1454 return; 1455 1456 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) { 1457 kernel_neon_end(); 1458 } else { 1459 if (system_supports_sve() && 1460 likely(__this_cpu_read(efi_sve_state_used))) { 1461 char const *sve_state = this_cpu_ptr(efi_sve_state); 1462 1463 sve_set_vq(sve_vq_from_vl(sve_get_vl()) - 1); 1464 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()), 1465 &this_cpu_ptr(&efi_fpsimd_state)->fpsr, 1466 true); 1467 1468 __this_cpu_write(efi_sve_state_used, false); 1469 } else { 1470 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state)); 1471 } 1472 } 1473 } 1474 1475 #endif /* CONFIG_EFI */ 1476 1477 #endif /* CONFIG_KERNEL_MODE_NEON */ 1478 1479 #ifdef CONFIG_CPU_PM 1480 static int fpsimd_cpu_pm_notifier(struct notifier_block *self, 1481 unsigned long cmd, void *v) 1482 { 1483 switch (cmd) { 1484 case CPU_PM_ENTER: 1485 fpsimd_save_and_flush_cpu_state(); 1486 break; 1487 case CPU_PM_EXIT: 1488 break; 1489 case CPU_PM_ENTER_FAILED: 1490 default: 1491 return NOTIFY_DONE; 1492 } 1493 return NOTIFY_OK; 1494 } 1495 1496 static struct notifier_block fpsimd_cpu_pm_notifier_block = { 1497 .notifier_call = fpsimd_cpu_pm_notifier, 1498 }; 1499 1500 static void __init fpsimd_pm_init(void) 1501 { 1502 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block); 1503 } 1504 1505 #else 1506 static inline void fpsimd_pm_init(void) { } 1507 #endif /* CONFIG_CPU_PM */ 1508 1509 #ifdef CONFIG_HOTPLUG_CPU 1510 static int fpsimd_cpu_dead(unsigned int cpu) 1511 { 1512 per_cpu(fpsimd_last_state.st, cpu) = NULL; 1513 return 0; 1514 } 1515 1516 static inline void fpsimd_hotplug_init(void) 1517 { 1518 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead", 1519 NULL, fpsimd_cpu_dead); 1520 } 1521 1522 #else 1523 static inline void fpsimd_hotplug_init(void) { } 1524 #endif 1525 1526 /* 1527 * FP/SIMD support code initialisation. 1528 */ 1529 static int __init fpsimd_init(void) 1530 { 1531 if (cpu_have_named_feature(FP)) { 1532 fpsimd_pm_init(); 1533 fpsimd_hotplug_init(); 1534 } else { 1535 pr_notice("Floating-point is not implemented\n"); 1536 } 1537 1538 if (!cpu_have_named_feature(ASIMD)) 1539 pr_notice("Advanced SIMD is not implemented\n"); 1540 1541 return sve_sysctl_init(); 1542 } 1543 core_initcall(fpsimd_init); 1544