xref: /openbmc/linux/arch/arm64/kernel/fpsimd.c (revision 5efb685b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FP/SIMD context switching and fault handling
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  * Author: Catalin Marinas <catalin.marinas@arm.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34 
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47 
48 #define FPEXC_IOF	(1 << 0)
49 #define FPEXC_DZF	(1 << 1)
50 #define FPEXC_OFF	(1 << 2)
51 #define FPEXC_UFF	(1 << 3)
52 #define FPEXC_IXF	(1 << 4)
53 #define FPEXC_IDF	(1 << 7)
54 
55 /*
56  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57  *
58  * In order to reduce the number of times the FPSIMD state is needlessly saved
59  * and restored, we need to keep track of two things:
60  * (a) for each task, we need to remember which CPU was the last one to have
61  *     the task's FPSIMD state loaded into its FPSIMD registers;
62  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63  *     been loaded into its FPSIMD registers most recently, or whether it has
64  *     been used to perform kernel mode NEON in the meantime.
65  *
66  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69  * address of the userland FPSIMD state of the task that was loaded onto the CPU
70  * the most recently, or NULL if kernel mode NEON has been performed after that.
71  *
72  * With this in place, we no longer have to restore the next FPSIMD state right
73  * when switching between tasks. Instead, we can defer this check to userland
74  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76  * can omit the FPSIMD restore.
77  *
78  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79  * indicate whether or not the userland FPSIMD state of the current task is
80  * present in the registers. The flag is set unless the FPSIMD registers of this
81  * CPU currently contain the most recent userland FPSIMD state of the current
82  * task. If the task is behaving as a VMM, then this is will be managed by
83  * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84  * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85  * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86  * flag the register state as invalid.
87  *
88  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
89  * save the task's FPSIMD context back to task_struct from softirq context.
90  * To prevent this from racing with the manipulation of the task's FPSIMD state
91  * from task context and thereby corrupting the state, it is necessary to
92  * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
93  * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
94  * run but prevent them to use FPSIMD.
95  *
96  * For a certain task, the sequence may look something like this:
97  * - the task gets scheduled in; if both the task's fpsimd_cpu field
98  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100  *   cleared, otherwise it is set;
101  *
102  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103  *   userland FPSIMD state is copied from memory to the registers, the task's
104  *   fpsimd_cpu field is set to the id of the current CPU, the current
105  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106  *   TIF_FOREIGN_FPSTATE flag is cleared;
107  *
108  * - the task executes an ordinary syscall; upon return to userland, the
109  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110  *   restored;
111  *
112  * - the task executes a syscall which executes some NEON instructions; this is
113  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
115  *   and sets the TIF_FOREIGN_FPSTATE flag;
116  *
117  * - the task gets preempted after kernel_neon_end() is called; as we have not
118  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
120  */
121 
122 static DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
123 
124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
125 #ifdef CONFIG_ARM64_SVE
126 	[ARM64_VEC_SVE] = {
127 		.type			= ARM64_VEC_SVE,
128 		.name			= "SVE",
129 		.min_vl			= SVE_VL_MIN,
130 		.max_vl			= SVE_VL_MIN,
131 		.max_virtualisable_vl	= SVE_VL_MIN,
132 	},
133 #endif
134 #ifdef CONFIG_ARM64_SME
135 	[ARM64_VEC_SME] = {
136 		.type			= ARM64_VEC_SME,
137 		.name			= "SME",
138 	},
139 #endif
140 };
141 
142 static unsigned int vec_vl_inherit_flag(enum vec_type type)
143 {
144 	switch (type) {
145 	case ARM64_VEC_SVE:
146 		return TIF_SVE_VL_INHERIT;
147 	case ARM64_VEC_SME:
148 		return TIF_SME_VL_INHERIT;
149 	default:
150 		WARN_ON_ONCE(1);
151 		return 0;
152 	}
153 }
154 
155 struct vl_config {
156 	int __default_vl;		/* Default VL for tasks */
157 };
158 
159 static struct vl_config vl_config[ARM64_VEC_MAX];
160 
161 static inline int get_default_vl(enum vec_type type)
162 {
163 	return READ_ONCE(vl_config[type].__default_vl);
164 }
165 
166 #ifdef CONFIG_ARM64_SVE
167 
168 static inline int get_sve_default_vl(void)
169 {
170 	return get_default_vl(ARM64_VEC_SVE);
171 }
172 
173 static inline void set_default_vl(enum vec_type type, int val)
174 {
175 	WRITE_ONCE(vl_config[type].__default_vl, val);
176 }
177 
178 static inline void set_sve_default_vl(int val)
179 {
180 	set_default_vl(ARM64_VEC_SVE, val);
181 }
182 
183 static void __percpu *efi_sve_state;
184 
185 #else /* ! CONFIG_ARM64_SVE */
186 
187 /* Dummy declaration for code that will be optimised out: */
188 extern void __percpu *efi_sve_state;
189 
190 #endif /* ! CONFIG_ARM64_SVE */
191 
192 #ifdef CONFIG_ARM64_SME
193 
194 static int get_sme_default_vl(void)
195 {
196 	return get_default_vl(ARM64_VEC_SME);
197 }
198 
199 static void set_sme_default_vl(int val)
200 {
201 	set_default_vl(ARM64_VEC_SME, val);
202 }
203 
204 static void sme_free(struct task_struct *);
205 
206 #else
207 
208 static inline void sme_free(struct task_struct *t) { }
209 
210 #endif
211 
212 DEFINE_PER_CPU(bool, fpsimd_context_busy);
213 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
214 
215 static void fpsimd_bind_task_to_cpu(void);
216 
217 static void __get_cpu_fpsimd_context(void)
218 {
219 	bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
220 
221 	WARN_ON(busy);
222 }
223 
224 /*
225  * Claim ownership of the CPU FPSIMD context for use by the calling context.
226  *
227  * The caller may freely manipulate the FPSIMD context metadata until
228  * put_cpu_fpsimd_context() is called.
229  *
230  * The double-underscore version must only be called if you know the task
231  * can't be preempted.
232  *
233  * On RT kernels local_bh_disable() is not sufficient because it only
234  * serializes soft interrupt related sections via a local lock, but stays
235  * preemptible. Disabling preemption is the right choice here as bottom
236  * half processing is always in thread context on RT kernels so it
237  * implicitly prevents bottom half processing as well.
238  */
239 static void get_cpu_fpsimd_context(void)
240 {
241 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 		local_bh_disable();
243 	else
244 		preempt_disable();
245 	__get_cpu_fpsimd_context();
246 }
247 
248 static void __put_cpu_fpsimd_context(void)
249 {
250 	bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
251 
252 	WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
253 }
254 
255 /*
256  * Release the CPU FPSIMD context.
257  *
258  * Must be called from a context in which get_cpu_fpsimd_context() was
259  * previously called, with no call to put_cpu_fpsimd_context() in the
260  * meantime.
261  */
262 static void put_cpu_fpsimd_context(void)
263 {
264 	__put_cpu_fpsimd_context();
265 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
266 		local_bh_enable();
267 	else
268 		preempt_enable();
269 }
270 
271 static bool have_cpu_fpsimd_context(void)
272 {
273 	return !preemptible() && __this_cpu_read(fpsimd_context_busy);
274 }
275 
276 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
277 {
278 	return task->thread.vl[type];
279 }
280 
281 void task_set_vl(struct task_struct *task, enum vec_type type,
282 		 unsigned long vl)
283 {
284 	task->thread.vl[type] = vl;
285 }
286 
287 unsigned int task_get_vl_onexec(const struct task_struct *task,
288 				enum vec_type type)
289 {
290 	return task->thread.vl_onexec[type];
291 }
292 
293 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
294 			unsigned long vl)
295 {
296 	task->thread.vl_onexec[type] = vl;
297 }
298 
299 /*
300  * TIF_SME controls whether a task can use SME without trapping while
301  * in userspace, when TIF_SME is set then we must have storage
302  * alocated in sve_state and sme_state to store the contents of both ZA
303  * and the SVE registers for both streaming and non-streaming modes.
304  *
305  * If both SVCR.ZA and SVCR.SM are disabled then at any point we
306  * may disable TIF_SME and reenable traps.
307  */
308 
309 
310 /*
311  * TIF_SVE controls whether a task can use SVE without trapping while
312  * in userspace, and also (together with TIF_SME) the way a task's
313  * FPSIMD/SVE state is stored in thread_struct.
314  *
315  * The kernel uses this flag to track whether a user task is actively
316  * using SVE, and therefore whether full SVE register state needs to
317  * be tracked.  If not, the cheaper FPSIMD context handling code can
318  * be used instead of the more costly SVE equivalents.
319  *
320  *  * TIF_SVE or SVCR.SM set:
321  *
322  *    The task can execute SVE instructions while in userspace without
323  *    trapping to the kernel.
324  *
325  *    During any syscall, the kernel may optionally clear TIF_SVE and
326  *    discard the vector state except for the FPSIMD subset.
327  *
328  *  * TIF_SVE clear:
329  *
330  *    An attempt by the user task to execute an SVE instruction causes
331  *    do_sve_acc() to be called, which does some preparation and then
332  *    sets TIF_SVE.
333  *
334  * During any syscall, the kernel may optionally clear TIF_SVE and
335  * discard the vector state except for the FPSIMD subset.
336  *
337  * The data will be stored in one of two formats:
338  *
339  *  * FPSIMD only - FP_STATE_FPSIMD:
340  *
341  *    When the FPSIMD only state stored task->thread.fp_type is set to
342  *    FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
343  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
344  *    logically zero but not stored anywhere; P0-P15 and FFR are not
345  *    stored and have unspecified values from userspace's point of
346  *    view.  For hygiene purposes, the kernel zeroes them on next use,
347  *    but userspace is discouraged from relying on this.
348  *
349  *    task->thread.sve_state does not need to be non-NULL, valid or any
350  *    particular size: it must not be dereferenced and any data stored
351  *    there should be considered stale and not referenced.
352  *
353  *  * SVE state - FP_STATE_SVE:
354  *
355  *    When the full SVE state is stored task->thread.fp_type is set to
356  *    FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
357  *    corresponding Zn), P0-P15 and FFR are encoded in in
358  *    task->thread.sve_state, formatted appropriately for vector
359  *    length task->thread.sve_vl or, if SVCR.SM is set,
360  *    task->thread.sme_vl. The storage for the vector registers in
361  *    task->thread.uw.fpsimd_state should be ignored.
362  *
363  *    task->thread.sve_state must point to a valid buffer at least
364  *    sve_state_size(task) bytes in size. The data stored in
365  *    task->thread.uw.fpsimd_state.vregs should be considered stale
366  *    and not referenced.
367  *
368  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
369  *    irrespective of whether TIF_SVE is clear or set, since these are
370  *    not vector length dependent.
371  */
372 
373 /*
374  * Update current's FPSIMD/SVE registers from thread_struct.
375  *
376  * This function should be called only when the FPSIMD/SVE state in
377  * thread_struct is known to be up to date, when preparing to enter
378  * userspace.
379  */
380 static void task_fpsimd_load(void)
381 {
382 	bool restore_sve_regs = false;
383 	bool restore_ffr;
384 
385 	WARN_ON(!system_supports_fpsimd());
386 	WARN_ON(!have_cpu_fpsimd_context());
387 
388 	if (system_supports_sve() || system_supports_sme()) {
389 		switch (current->thread.fp_type) {
390 		case FP_STATE_FPSIMD:
391 			/* Stop tracking SVE for this task until next use. */
392 			if (test_and_clear_thread_flag(TIF_SVE))
393 				sve_user_disable();
394 			break;
395 		case FP_STATE_SVE:
396 			if (!thread_sm_enabled(&current->thread) &&
397 			    !WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE)))
398 				sve_user_enable();
399 
400 			if (test_thread_flag(TIF_SVE))
401 				sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
402 
403 			restore_sve_regs = true;
404 			restore_ffr = true;
405 			break;
406 		default:
407 			/*
408 			 * This indicates either a bug in
409 			 * fpsimd_save() or memory corruption, we
410 			 * should always record an explicit format
411 			 * when we save. We always at least have the
412 			 * memory allocated for FPSMID registers so
413 			 * try that and hope for the best.
414 			 */
415 			WARN_ON_ONCE(1);
416 			clear_thread_flag(TIF_SVE);
417 			break;
418 		}
419 	}
420 
421 	/* Restore SME, override SVE register configuration if needed */
422 	if (system_supports_sme()) {
423 		unsigned long sme_vl = task_get_sme_vl(current);
424 
425 		/* Ensure VL is set up for restoring data */
426 		if (test_thread_flag(TIF_SME))
427 			sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
428 
429 		write_sysreg_s(current->thread.svcr, SYS_SVCR);
430 
431 		if (thread_za_enabled(&current->thread))
432 			sme_load_state(current->thread.sme_state,
433 				       system_supports_sme2());
434 
435 		if (thread_sm_enabled(&current->thread))
436 			restore_ffr = system_supports_fa64();
437 	}
438 
439 	if (restore_sve_regs) {
440 		WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
441 		sve_load_state(sve_pffr(&current->thread),
442 			       &current->thread.uw.fpsimd_state.fpsr,
443 			       restore_ffr);
444 	} else {
445 		WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
446 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
447 	}
448 }
449 
450 /*
451  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
452  * date with respect to the CPU registers. Note carefully that the
453  * current context is the context last bound to the CPU stored in
454  * last, if KVM is involved this may be the guest VM context rather
455  * than the host thread for the VM pointed to by current. This means
456  * that we must always reference the state storage via last rather
457  * than via current, if we are saving KVM state then it will have
458  * ensured that the type of registers to save is set in last->to_save.
459  */
460 static void fpsimd_save(void)
461 {
462 	struct cpu_fp_state const *last =
463 		this_cpu_ptr(&fpsimd_last_state);
464 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
465 	bool save_sve_regs = false;
466 	bool save_ffr;
467 	unsigned int vl;
468 
469 	WARN_ON(!system_supports_fpsimd());
470 	WARN_ON(!have_cpu_fpsimd_context());
471 
472 	if (test_thread_flag(TIF_FOREIGN_FPSTATE))
473 		return;
474 
475 	/*
476 	 * If a task is in a syscall the ABI allows us to only
477 	 * preserve the state shared with FPSIMD so don't bother
478 	 * saving the full SVE state in that case.
479 	 */
480 	if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE) &&
481 	     !in_syscall(current_pt_regs())) ||
482 	    last->to_save == FP_STATE_SVE) {
483 		save_sve_regs = true;
484 		save_ffr = true;
485 		vl = last->sve_vl;
486 	}
487 
488 	if (system_supports_sme()) {
489 		u64 *svcr = last->svcr;
490 
491 		*svcr = read_sysreg_s(SYS_SVCR);
492 
493 		if (*svcr & SVCR_ZA_MASK)
494 			sme_save_state(last->sme_state,
495 				       system_supports_sme2());
496 
497 		/* If we are in streaming mode override regular SVE. */
498 		if (*svcr & SVCR_SM_MASK) {
499 			save_sve_regs = true;
500 			save_ffr = system_supports_fa64();
501 			vl = last->sme_vl;
502 		}
503 	}
504 
505 	if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
506 		/* Get the configured VL from RDVL, will account for SM */
507 		if (WARN_ON(sve_get_vl() != vl)) {
508 			/*
509 			 * Can't save the user regs, so current would
510 			 * re-enter user with corrupt state.
511 			 * There's no way to recover, so kill it:
512 			 */
513 			force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
514 			return;
515 		}
516 
517 		sve_save_state((char *)last->sve_state +
518 					sve_ffr_offset(vl),
519 			       &last->st->fpsr, save_ffr);
520 		*last->fp_type = FP_STATE_SVE;
521 	} else {
522 		fpsimd_save_state(last->st);
523 		*last->fp_type = FP_STATE_FPSIMD;
524 	}
525 }
526 
527 /*
528  * All vector length selection from userspace comes through here.
529  * We're on a slow path, so some sanity-checks are included.
530  * If things go wrong there's a bug somewhere, but try to fall back to a
531  * safe choice.
532  */
533 static unsigned int find_supported_vector_length(enum vec_type type,
534 						 unsigned int vl)
535 {
536 	struct vl_info *info = &vl_info[type];
537 	int bit;
538 	int max_vl = info->max_vl;
539 
540 	if (WARN_ON(!sve_vl_valid(vl)))
541 		vl = info->min_vl;
542 
543 	if (WARN_ON(!sve_vl_valid(max_vl)))
544 		max_vl = info->min_vl;
545 
546 	if (vl > max_vl)
547 		vl = max_vl;
548 	if (vl < info->min_vl)
549 		vl = info->min_vl;
550 
551 	bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
552 			    __vq_to_bit(sve_vq_from_vl(vl)));
553 	return sve_vl_from_vq(__bit_to_vq(bit));
554 }
555 
556 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
557 
558 static int vec_proc_do_default_vl(struct ctl_table *table, int write,
559 				  void *buffer, size_t *lenp, loff_t *ppos)
560 {
561 	struct vl_info *info = table->extra1;
562 	enum vec_type type = info->type;
563 	int ret;
564 	int vl = get_default_vl(type);
565 	struct ctl_table tmp_table = {
566 		.data = &vl,
567 		.maxlen = sizeof(vl),
568 	};
569 
570 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
571 	if (ret || !write)
572 		return ret;
573 
574 	/* Writing -1 has the special meaning "set to max": */
575 	if (vl == -1)
576 		vl = info->max_vl;
577 
578 	if (!sve_vl_valid(vl))
579 		return -EINVAL;
580 
581 	set_default_vl(type, find_supported_vector_length(type, vl));
582 	return 0;
583 }
584 
585 static struct ctl_table sve_default_vl_table[] = {
586 	{
587 		.procname	= "sve_default_vector_length",
588 		.mode		= 0644,
589 		.proc_handler	= vec_proc_do_default_vl,
590 		.extra1		= &vl_info[ARM64_VEC_SVE],
591 	},
592 	{ }
593 };
594 
595 static int __init sve_sysctl_init(void)
596 {
597 	if (system_supports_sve())
598 		if (!register_sysctl("abi", sve_default_vl_table))
599 			return -EINVAL;
600 
601 	return 0;
602 }
603 
604 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
605 static int __init sve_sysctl_init(void) { return 0; }
606 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
607 
608 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
609 static struct ctl_table sme_default_vl_table[] = {
610 	{
611 		.procname	= "sme_default_vector_length",
612 		.mode		= 0644,
613 		.proc_handler	= vec_proc_do_default_vl,
614 		.extra1		= &vl_info[ARM64_VEC_SME],
615 	},
616 	{ }
617 };
618 
619 static int __init sme_sysctl_init(void)
620 {
621 	if (system_supports_sme())
622 		if (!register_sysctl("abi", sme_default_vl_table))
623 			return -EINVAL;
624 
625 	return 0;
626 }
627 
628 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
629 static int __init sme_sysctl_init(void) { return 0; }
630 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
631 
632 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
633 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
634 
635 #ifdef CONFIG_CPU_BIG_ENDIAN
636 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
637 {
638 	u64 a = swab64(x);
639 	u64 b = swab64(x >> 64);
640 
641 	return ((__uint128_t)a << 64) | b;
642 }
643 #else
644 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
645 {
646 	return x;
647 }
648 #endif
649 
650 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
651 
652 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
653 			    unsigned int vq)
654 {
655 	unsigned int i;
656 	__uint128_t *p;
657 
658 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
659 		p = (__uint128_t *)ZREG(sst, vq, i);
660 		*p = arm64_cpu_to_le128(fst->vregs[i]);
661 	}
662 }
663 
664 /*
665  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
666  * task->thread.sve_state.
667  *
668  * Task can be a non-runnable task, or current.  In the latter case,
669  * the caller must have ownership of the cpu FPSIMD context before calling
670  * this function.
671  * task->thread.sve_state must point to at least sve_state_size(task)
672  * bytes of allocated kernel memory.
673  * task->thread.uw.fpsimd_state must be up to date before calling this
674  * function.
675  */
676 static void fpsimd_to_sve(struct task_struct *task)
677 {
678 	unsigned int vq;
679 	void *sst = task->thread.sve_state;
680 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
681 
682 	if (!system_supports_sve())
683 		return;
684 
685 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
686 	__fpsimd_to_sve(sst, fst, vq);
687 }
688 
689 /*
690  * Transfer the SVE state in task->thread.sve_state to
691  * task->thread.uw.fpsimd_state.
692  *
693  * Task can be a non-runnable task, or current.  In the latter case,
694  * the caller must have ownership of the cpu FPSIMD context before calling
695  * this function.
696  * task->thread.sve_state must point to at least sve_state_size(task)
697  * bytes of allocated kernel memory.
698  * task->thread.sve_state must be up to date before calling this function.
699  */
700 static void sve_to_fpsimd(struct task_struct *task)
701 {
702 	unsigned int vq, vl;
703 	void const *sst = task->thread.sve_state;
704 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
705 	unsigned int i;
706 	__uint128_t const *p;
707 
708 	if (!system_supports_sve())
709 		return;
710 
711 	vl = thread_get_cur_vl(&task->thread);
712 	vq = sve_vq_from_vl(vl);
713 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
714 		p = (__uint128_t const *)ZREG(sst, vq, i);
715 		fst->vregs[i] = arm64_le128_to_cpu(*p);
716 	}
717 }
718 
719 #ifdef CONFIG_ARM64_SVE
720 /*
721  * Call __sve_free() directly only if you know task can't be scheduled
722  * or preempted.
723  */
724 static void __sve_free(struct task_struct *task)
725 {
726 	kfree(task->thread.sve_state);
727 	task->thread.sve_state = NULL;
728 }
729 
730 static void sve_free(struct task_struct *task)
731 {
732 	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
733 
734 	__sve_free(task);
735 }
736 
737 /*
738  * Return how many bytes of memory are required to store the full SVE
739  * state for task, given task's currently configured vector length.
740  */
741 size_t sve_state_size(struct task_struct const *task)
742 {
743 	unsigned int vl = 0;
744 
745 	if (system_supports_sve())
746 		vl = task_get_sve_vl(task);
747 	if (system_supports_sme())
748 		vl = max(vl, task_get_sme_vl(task));
749 
750 	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
751 }
752 
753 /*
754  * Ensure that task->thread.sve_state is allocated and sufficiently large.
755  *
756  * This function should be used only in preparation for replacing
757  * task->thread.sve_state with new data.  The memory is always zeroed
758  * here to prevent stale data from showing through: this is done in
759  * the interest of testability and predictability: except in the
760  * do_sve_acc() case, there is no ABI requirement to hide stale data
761  * written previously be task.
762  */
763 void sve_alloc(struct task_struct *task, bool flush)
764 {
765 	if (task->thread.sve_state) {
766 		if (flush)
767 			memset(task->thread.sve_state, 0,
768 			       sve_state_size(task));
769 		return;
770 	}
771 
772 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
773 	task->thread.sve_state =
774 		kzalloc(sve_state_size(task), GFP_KERNEL);
775 }
776 
777 
778 /*
779  * Force the FPSIMD state shared with SVE to be updated in the SVE state
780  * even if the SVE state is the current active state.
781  *
782  * This should only be called by ptrace.  task must be non-runnable.
783  * task->thread.sve_state must point to at least sve_state_size(task)
784  * bytes of allocated kernel memory.
785  */
786 void fpsimd_force_sync_to_sve(struct task_struct *task)
787 {
788 	fpsimd_to_sve(task);
789 }
790 
791 /*
792  * Ensure that task->thread.sve_state is up to date with respect to
793  * the user task, irrespective of when SVE is in use or not.
794  *
795  * This should only be called by ptrace.  task must be non-runnable.
796  * task->thread.sve_state must point to at least sve_state_size(task)
797  * bytes of allocated kernel memory.
798  */
799 void fpsimd_sync_to_sve(struct task_struct *task)
800 {
801 	if (!test_tsk_thread_flag(task, TIF_SVE) &&
802 	    !thread_sm_enabled(&task->thread))
803 		fpsimd_to_sve(task);
804 }
805 
806 /*
807  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
808  * the user task, irrespective of whether SVE is in use or not.
809  *
810  * This should only be called by ptrace.  task must be non-runnable.
811  * task->thread.sve_state must point to at least sve_state_size(task)
812  * bytes of allocated kernel memory.
813  */
814 void sve_sync_to_fpsimd(struct task_struct *task)
815 {
816 	if (task->thread.fp_type == FP_STATE_SVE)
817 		sve_to_fpsimd(task);
818 }
819 
820 /*
821  * Ensure that task->thread.sve_state is up to date with respect to
822  * the task->thread.uw.fpsimd_state.
823  *
824  * This should only be called by ptrace to merge new FPSIMD register
825  * values into a task for which SVE is currently active.
826  * task must be non-runnable.
827  * task->thread.sve_state must point to at least sve_state_size(task)
828  * bytes of allocated kernel memory.
829  * task->thread.uw.fpsimd_state must already have been initialised with
830  * the new FPSIMD register values to be merged in.
831  */
832 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
833 {
834 	unsigned int vq;
835 	void *sst = task->thread.sve_state;
836 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
837 
838 	if (!test_tsk_thread_flag(task, TIF_SVE))
839 		return;
840 
841 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
842 
843 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
844 	__fpsimd_to_sve(sst, fst, vq);
845 }
846 
847 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
848 			  unsigned long vl, unsigned long flags)
849 {
850 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
851 				     PR_SVE_SET_VL_ONEXEC))
852 		return -EINVAL;
853 
854 	if (!sve_vl_valid(vl))
855 		return -EINVAL;
856 
857 	/*
858 	 * Clamp to the maximum vector length that VL-agnostic code
859 	 * can work with.  A flag may be assigned in the future to
860 	 * allow setting of larger vector lengths without confusing
861 	 * older software.
862 	 */
863 	if (vl > VL_ARCH_MAX)
864 		vl = VL_ARCH_MAX;
865 
866 	vl = find_supported_vector_length(type, vl);
867 
868 	if (flags & (PR_SVE_VL_INHERIT |
869 		     PR_SVE_SET_VL_ONEXEC))
870 		task_set_vl_onexec(task, type, vl);
871 	else
872 		/* Reset VL to system default on next exec: */
873 		task_set_vl_onexec(task, type, 0);
874 
875 	/* Only actually set the VL if not deferred: */
876 	if (flags & PR_SVE_SET_VL_ONEXEC)
877 		goto out;
878 
879 	if (vl == task_get_vl(task, type))
880 		goto out;
881 
882 	/*
883 	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
884 	 * write any live register state back to task_struct, and convert to a
885 	 * regular FPSIMD thread.
886 	 */
887 	if (task == current) {
888 		get_cpu_fpsimd_context();
889 
890 		fpsimd_save();
891 	}
892 
893 	fpsimd_flush_task_state(task);
894 	if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
895 	    thread_sm_enabled(&task->thread)) {
896 		sve_to_fpsimd(task);
897 		task->thread.fp_type = FP_STATE_FPSIMD;
898 	}
899 
900 	if (system_supports_sme() && type == ARM64_VEC_SME) {
901 		task->thread.svcr &= ~(SVCR_SM_MASK |
902 				       SVCR_ZA_MASK);
903 		clear_thread_flag(TIF_SME);
904 	}
905 
906 	if (task == current)
907 		put_cpu_fpsimd_context();
908 
909 	/*
910 	 * Force reallocation of task SVE and SME state to the correct
911 	 * size on next use:
912 	 */
913 	sve_free(task);
914 	if (system_supports_sme() && type == ARM64_VEC_SME)
915 		sme_free(task);
916 
917 	task_set_vl(task, type, vl);
918 
919 out:
920 	update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
921 			       flags & PR_SVE_VL_INHERIT);
922 
923 	return 0;
924 }
925 
926 /*
927  * Encode the current vector length and flags for return.
928  * This is only required for prctl(): ptrace has separate fields.
929  * SVE and SME use the same bits for _ONEXEC and _INHERIT.
930  *
931  * flags are as for vec_set_vector_length().
932  */
933 static int vec_prctl_status(enum vec_type type, unsigned long flags)
934 {
935 	int ret;
936 
937 	if (flags & PR_SVE_SET_VL_ONEXEC)
938 		ret = task_get_vl_onexec(current, type);
939 	else
940 		ret = task_get_vl(current, type);
941 
942 	if (test_thread_flag(vec_vl_inherit_flag(type)))
943 		ret |= PR_SVE_VL_INHERIT;
944 
945 	return ret;
946 }
947 
948 /* PR_SVE_SET_VL */
949 int sve_set_current_vl(unsigned long arg)
950 {
951 	unsigned long vl, flags;
952 	int ret;
953 
954 	vl = arg & PR_SVE_VL_LEN_MASK;
955 	flags = arg & ~vl;
956 
957 	if (!system_supports_sve() || is_compat_task())
958 		return -EINVAL;
959 
960 	ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
961 	if (ret)
962 		return ret;
963 
964 	return vec_prctl_status(ARM64_VEC_SVE, flags);
965 }
966 
967 /* PR_SVE_GET_VL */
968 int sve_get_current_vl(void)
969 {
970 	if (!system_supports_sve() || is_compat_task())
971 		return -EINVAL;
972 
973 	return vec_prctl_status(ARM64_VEC_SVE, 0);
974 }
975 
976 #ifdef CONFIG_ARM64_SME
977 /* PR_SME_SET_VL */
978 int sme_set_current_vl(unsigned long arg)
979 {
980 	unsigned long vl, flags;
981 	int ret;
982 
983 	vl = arg & PR_SME_VL_LEN_MASK;
984 	flags = arg & ~vl;
985 
986 	if (!system_supports_sme() || is_compat_task())
987 		return -EINVAL;
988 
989 	ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
990 	if (ret)
991 		return ret;
992 
993 	return vec_prctl_status(ARM64_VEC_SME, flags);
994 }
995 
996 /* PR_SME_GET_VL */
997 int sme_get_current_vl(void)
998 {
999 	if (!system_supports_sme() || is_compat_task())
1000 		return -EINVAL;
1001 
1002 	return vec_prctl_status(ARM64_VEC_SME, 0);
1003 }
1004 #endif /* CONFIG_ARM64_SME */
1005 
1006 static void vec_probe_vqs(struct vl_info *info,
1007 			  DECLARE_BITMAP(map, SVE_VQ_MAX))
1008 {
1009 	unsigned int vq, vl;
1010 
1011 	bitmap_zero(map, SVE_VQ_MAX);
1012 
1013 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
1014 		write_vl(info->type, vq - 1); /* self-syncing */
1015 
1016 		switch (info->type) {
1017 		case ARM64_VEC_SVE:
1018 			vl = sve_get_vl();
1019 			break;
1020 		case ARM64_VEC_SME:
1021 			vl = sme_get_vl();
1022 			break;
1023 		default:
1024 			vl = 0;
1025 			break;
1026 		}
1027 
1028 		/* Minimum VL identified? */
1029 		if (sve_vq_from_vl(vl) > vq)
1030 			break;
1031 
1032 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
1033 		set_bit(__vq_to_bit(vq), map);
1034 	}
1035 }
1036 
1037 /*
1038  * Initialise the set of known supported VQs for the boot CPU.
1039  * This is called during kernel boot, before secondary CPUs are brought up.
1040  */
1041 void __init vec_init_vq_map(enum vec_type type)
1042 {
1043 	struct vl_info *info = &vl_info[type];
1044 	vec_probe_vqs(info, info->vq_map);
1045 	bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1046 }
1047 
1048 /*
1049  * If we haven't committed to the set of supported VQs yet, filter out
1050  * those not supported by the current CPU.
1051  * This function is called during the bring-up of early secondary CPUs only.
1052  */
1053 void vec_update_vq_map(enum vec_type type)
1054 {
1055 	struct vl_info *info = &vl_info[type];
1056 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1057 
1058 	vec_probe_vqs(info, tmp_map);
1059 	bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1060 	bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1061 		  SVE_VQ_MAX);
1062 }
1063 
1064 /*
1065  * Check whether the current CPU supports all VQs in the committed set.
1066  * This function is called during the bring-up of late secondary CPUs only.
1067  */
1068 int vec_verify_vq_map(enum vec_type type)
1069 {
1070 	struct vl_info *info = &vl_info[type];
1071 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1072 	unsigned long b;
1073 
1074 	vec_probe_vqs(info, tmp_map);
1075 
1076 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1077 	if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1078 		pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1079 			info->name, smp_processor_id());
1080 		return -EINVAL;
1081 	}
1082 
1083 	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1084 		return 0;
1085 
1086 	/*
1087 	 * For KVM, it is necessary to ensure that this CPU doesn't
1088 	 * support any vector length that guests may have probed as
1089 	 * unsupported.
1090 	 */
1091 
1092 	/* Recover the set of supported VQs: */
1093 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1094 	/* Find VQs supported that are not globally supported: */
1095 	bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1096 
1097 	/* Find the lowest such VQ, if any: */
1098 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1099 	if (b >= SVE_VQ_MAX)
1100 		return 0; /* no mismatches */
1101 
1102 	/*
1103 	 * Mismatches above sve_max_virtualisable_vl are fine, since
1104 	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1105 	 */
1106 	if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1107 		pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1108 			info->name, smp_processor_id());
1109 		return -EINVAL;
1110 	}
1111 
1112 	return 0;
1113 }
1114 
1115 static void __init sve_efi_setup(void)
1116 {
1117 	int max_vl = 0;
1118 	int i;
1119 
1120 	if (!IS_ENABLED(CONFIG_EFI))
1121 		return;
1122 
1123 	for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1124 		max_vl = max(vl_info[i].max_vl, max_vl);
1125 
1126 	/*
1127 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1128 	 * This is evidence of a crippled system and we are returning void,
1129 	 * so no attempt is made to handle this situation here.
1130 	 */
1131 	if (!sve_vl_valid(max_vl))
1132 		goto fail;
1133 
1134 	efi_sve_state = __alloc_percpu(
1135 		SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
1136 	if (!efi_sve_state)
1137 		goto fail;
1138 
1139 	return;
1140 
1141 fail:
1142 	panic("Cannot allocate percpu memory for EFI SVE save/restore");
1143 }
1144 
1145 /*
1146  * Enable SVE for EL1.
1147  * Intended for use by the cpufeatures code during CPU boot.
1148  */
1149 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1150 {
1151 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1152 	isb();
1153 }
1154 
1155 /*
1156  * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
1157  * vector length.
1158  *
1159  * Use only if SVE is present.
1160  * This function clobbers the SVE vector length.
1161  */
1162 u64 read_zcr_features(void)
1163 {
1164 	u64 zcr;
1165 	unsigned int vq_max;
1166 
1167 	/*
1168 	 * Set the maximum possible VL, and write zeroes to all other
1169 	 * bits to see if they stick.
1170 	 */
1171 	sve_kernel_enable(NULL);
1172 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
1173 
1174 	zcr = read_sysreg_s(SYS_ZCR_EL1);
1175 	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
1176 	vq_max = sve_vq_from_vl(sve_get_vl());
1177 	zcr |= vq_max - 1; /* set LEN field to maximum effective value */
1178 
1179 	return zcr;
1180 }
1181 
1182 void __init sve_setup(void)
1183 {
1184 	struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1185 	u64 zcr;
1186 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1187 	unsigned long b;
1188 
1189 	if (!system_supports_sve())
1190 		return;
1191 
1192 	/*
1193 	 * The SVE architecture mandates support for 128-bit vectors,
1194 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
1195 	 * If something went wrong, at least try to patch it up:
1196 	 */
1197 	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1198 		set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1199 
1200 	zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1201 	info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
1202 
1203 	/*
1204 	 * Sanity-check that the max VL we determined through CPU features
1205 	 * corresponds properly to sve_vq_map.  If not, do our best:
1206 	 */
1207 	if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
1208 								 info->max_vl)))
1209 		info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
1210 							    info->max_vl);
1211 
1212 	/*
1213 	 * For the default VL, pick the maximum supported value <= 64.
1214 	 * VL == 64 is guaranteed not to grow the signal frame.
1215 	 */
1216 	set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1217 
1218 	bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1219 		      SVE_VQ_MAX);
1220 
1221 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1222 	if (b >= SVE_VQ_MAX)
1223 		/* No non-virtualisable VLs found */
1224 		info->max_virtualisable_vl = SVE_VQ_MAX;
1225 	else if (WARN_ON(b == SVE_VQ_MAX - 1))
1226 		/* No virtualisable VLs?  This is architecturally forbidden. */
1227 		info->max_virtualisable_vl = SVE_VQ_MIN;
1228 	else /* b + 1 < SVE_VQ_MAX */
1229 		info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1230 
1231 	if (info->max_virtualisable_vl > info->max_vl)
1232 		info->max_virtualisable_vl = info->max_vl;
1233 
1234 	pr_info("%s: maximum available vector length %u bytes per vector\n",
1235 		info->name, info->max_vl);
1236 	pr_info("%s: default vector length %u bytes per vector\n",
1237 		info->name, get_sve_default_vl());
1238 
1239 	/* KVM decides whether to support mismatched systems. Just warn here: */
1240 	if (sve_max_virtualisable_vl() < sve_max_vl())
1241 		pr_warn("%s: unvirtualisable vector lengths present\n",
1242 			info->name);
1243 
1244 	sve_efi_setup();
1245 }
1246 
1247 /*
1248  * Called from the put_task_struct() path, which cannot get here
1249  * unless dead_task is really dead and not schedulable.
1250  */
1251 void fpsimd_release_task(struct task_struct *dead_task)
1252 {
1253 	__sve_free(dead_task);
1254 	sme_free(dead_task);
1255 }
1256 
1257 #endif /* CONFIG_ARM64_SVE */
1258 
1259 #ifdef CONFIG_ARM64_SME
1260 
1261 /*
1262  * Ensure that task->thread.sme_state is allocated and sufficiently large.
1263  *
1264  * This function should be used only in preparation for replacing
1265  * task->thread.sme_state with new data.  The memory is always zeroed
1266  * here to prevent stale data from showing through: this is done in
1267  * the interest of testability and predictability, the architecture
1268  * guarantees that when ZA is enabled it will be zeroed.
1269  */
1270 void sme_alloc(struct task_struct *task)
1271 {
1272 	if (task->thread.sme_state) {
1273 		memset(task->thread.sme_state, 0, sme_state_size(task));
1274 		return;
1275 	}
1276 
1277 	/* This could potentially be up to 64K. */
1278 	task->thread.sme_state =
1279 		kzalloc(sme_state_size(task), GFP_KERNEL);
1280 }
1281 
1282 static void sme_free(struct task_struct *task)
1283 {
1284 	kfree(task->thread.sme_state);
1285 	task->thread.sme_state = NULL;
1286 }
1287 
1288 void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1289 {
1290 	/* Set priority for all PEs to architecturally defined minimum */
1291 	write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1292 		       SYS_SMPRI_EL1);
1293 
1294 	/* Allow SME in kernel */
1295 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1296 	isb();
1297 
1298 	/* Allow EL0 to access TPIDR2 */
1299 	write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1300 	isb();
1301 }
1302 
1303 /*
1304  * This must be called after sme_kernel_enable(), we rely on the
1305  * feature table being sorted to ensure this.
1306  */
1307 void sme2_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1308 {
1309 	/* Allow use of ZT0 */
1310 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK,
1311 		       SYS_SMCR_EL1);
1312 }
1313 
1314 /*
1315  * This must be called after sme_kernel_enable(), we rely on the
1316  * feature table being sorted to ensure this.
1317  */
1318 void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1319 {
1320 	/* Allow use of FA64 */
1321 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1322 		       SYS_SMCR_EL1);
1323 }
1324 
1325 /*
1326  * Read the pseudo-SMCR used by cpufeatures to identify the supported
1327  * vector length.
1328  *
1329  * Use only if SME is present.
1330  * This function clobbers the SME vector length.
1331  */
1332 u64 read_smcr_features(void)
1333 {
1334 	u64 smcr;
1335 	unsigned int vq_max;
1336 
1337 	sme_kernel_enable(NULL);
1338 
1339 	/*
1340 	 * Set the maximum possible VL.
1341 	 */
1342 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
1343 		       SYS_SMCR_EL1);
1344 
1345 	smcr = read_sysreg_s(SYS_SMCR_EL1);
1346 	smcr &= ~(u64)SMCR_ELx_LEN_MASK; /* Only the LEN field */
1347 	vq_max = sve_vq_from_vl(sme_get_vl());
1348 	smcr |= vq_max - 1; /* set LEN field to maximum effective value */
1349 
1350 	return smcr;
1351 }
1352 
1353 void __init sme_setup(void)
1354 {
1355 	struct vl_info *info = &vl_info[ARM64_VEC_SME];
1356 	u64 smcr;
1357 	int min_bit;
1358 
1359 	if (!system_supports_sme())
1360 		return;
1361 
1362 	/*
1363 	 * SME doesn't require any particular vector length be
1364 	 * supported but it does require at least one.  We should have
1365 	 * disabled the feature entirely while bringing up CPUs but
1366 	 * let's double check here.
1367 	 */
1368 	WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1369 
1370 	min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1371 	info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1372 
1373 	smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
1374 	info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
1375 
1376 	/*
1377 	 * Sanity-check that the max VL we determined through CPU features
1378 	 * corresponds properly to sme_vq_map.  If not, do our best:
1379 	 */
1380 	if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
1381 								 info->max_vl)))
1382 		info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
1383 							    info->max_vl);
1384 
1385 	WARN_ON(info->min_vl > info->max_vl);
1386 
1387 	/*
1388 	 * For the default VL, pick the maximum supported value <= 32
1389 	 * (256 bits) if there is one since this is guaranteed not to
1390 	 * grow the signal frame when in streaming mode, otherwise the
1391 	 * minimum available VL will be used.
1392 	 */
1393 	set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1394 
1395 	pr_info("SME: minimum available vector length %u bytes per vector\n",
1396 		info->min_vl);
1397 	pr_info("SME: maximum available vector length %u bytes per vector\n",
1398 		info->max_vl);
1399 	pr_info("SME: default vector length %u bytes per vector\n",
1400 		get_sme_default_vl());
1401 }
1402 
1403 #endif /* CONFIG_ARM64_SME */
1404 
1405 static void sve_init_regs(void)
1406 {
1407 	/*
1408 	 * Convert the FPSIMD state to SVE, zeroing all the state that
1409 	 * is not shared with FPSIMD. If (as is likely) the current
1410 	 * state is live in the registers then do this there and
1411 	 * update our metadata for the current task including
1412 	 * disabling the trap, otherwise update our in-memory copy.
1413 	 * We are guaranteed to not be in streaming mode, we can only
1414 	 * take a SVE trap when not in streaming mode and we can't be
1415 	 * in streaming mode when taking a SME trap.
1416 	 */
1417 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1418 		unsigned long vq_minus_one =
1419 			sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1420 		sve_set_vq(vq_minus_one);
1421 		sve_flush_live(true, vq_minus_one);
1422 		fpsimd_bind_task_to_cpu();
1423 	} else {
1424 		fpsimd_to_sve(current);
1425 		current->thread.fp_type = FP_STATE_SVE;
1426 	}
1427 }
1428 
1429 /*
1430  * Trapped SVE access
1431  *
1432  * Storage is allocated for the full SVE state, the current FPSIMD
1433  * register contents are migrated across, and the access trap is
1434  * disabled.
1435  *
1436  * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1437  * would have disabled the SVE access trap for userspace during
1438  * ret_to_user, making an SVE access trap impossible in that case.
1439  */
1440 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1441 {
1442 	/* Even if we chose not to use SVE, the hardware could still trap: */
1443 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1444 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1445 		return;
1446 	}
1447 
1448 	sve_alloc(current, true);
1449 	if (!current->thread.sve_state) {
1450 		force_sig(SIGKILL);
1451 		return;
1452 	}
1453 
1454 	get_cpu_fpsimd_context();
1455 
1456 	if (test_and_set_thread_flag(TIF_SVE))
1457 		WARN_ON(1); /* SVE access shouldn't have trapped */
1458 
1459 	/*
1460 	 * Even if the task can have used streaming mode we can only
1461 	 * generate SVE access traps in normal SVE mode and
1462 	 * transitioning out of streaming mode may discard any
1463 	 * streaming mode state.  Always clear the high bits to avoid
1464 	 * any potential errors tracking what is properly initialised.
1465 	 */
1466 	sve_init_regs();
1467 
1468 	put_cpu_fpsimd_context();
1469 }
1470 
1471 /*
1472  * Trapped SME access
1473  *
1474  * Storage is allocated for the full SVE and SME state, the current
1475  * FPSIMD register contents are migrated to SVE if SVE is not already
1476  * active, and the access trap is disabled.
1477  *
1478  * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1479  * would have disabled the SME access trap for userspace during
1480  * ret_to_user, making an SVE access trap impossible in that case.
1481  */
1482 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1483 {
1484 	/* Even if we chose not to use SME, the hardware could still trap: */
1485 	if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1486 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1487 		return;
1488 	}
1489 
1490 	/*
1491 	 * If this not a trap due to SME being disabled then something
1492 	 * is being used in the wrong mode, report as SIGILL.
1493 	 */
1494 	if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
1495 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1496 		return;
1497 	}
1498 
1499 	sve_alloc(current, false);
1500 	sme_alloc(current);
1501 	if (!current->thread.sve_state || !current->thread.sme_state) {
1502 		force_sig(SIGKILL);
1503 		return;
1504 	}
1505 
1506 	get_cpu_fpsimd_context();
1507 
1508 	/* With TIF_SME userspace shouldn't generate any traps */
1509 	if (test_and_set_thread_flag(TIF_SME))
1510 		WARN_ON(1);
1511 
1512 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1513 		unsigned long vq_minus_one =
1514 			sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1515 		sme_set_vq(vq_minus_one);
1516 
1517 		fpsimd_bind_task_to_cpu();
1518 	}
1519 
1520 	put_cpu_fpsimd_context();
1521 }
1522 
1523 /*
1524  * Trapped FP/ASIMD access.
1525  */
1526 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1527 {
1528 	/* TODO: implement lazy context saving/restoring */
1529 	WARN_ON(1);
1530 }
1531 
1532 /*
1533  * Raise a SIGFPE for the current process.
1534  */
1535 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1536 {
1537 	unsigned int si_code = FPE_FLTUNK;
1538 
1539 	if (esr & ESR_ELx_FP_EXC_TFV) {
1540 		if (esr & FPEXC_IOF)
1541 			si_code = FPE_FLTINV;
1542 		else if (esr & FPEXC_DZF)
1543 			si_code = FPE_FLTDIV;
1544 		else if (esr & FPEXC_OFF)
1545 			si_code = FPE_FLTOVF;
1546 		else if (esr & FPEXC_UFF)
1547 			si_code = FPE_FLTUND;
1548 		else if (esr & FPEXC_IXF)
1549 			si_code = FPE_FLTRES;
1550 	}
1551 
1552 	send_sig_fault(SIGFPE, si_code,
1553 		       (void __user *)instruction_pointer(regs),
1554 		       current);
1555 }
1556 
1557 void fpsimd_thread_switch(struct task_struct *next)
1558 {
1559 	bool wrong_task, wrong_cpu;
1560 
1561 	if (!system_supports_fpsimd())
1562 		return;
1563 
1564 	__get_cpu_fpsimd_context();
1565 
1566 	/* Save unsaved fpsimd state, if any: */
1567 	fpsimd_save();
1568 
1569 	/*
1570 	 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1571 	 * state.  For kernel threads, FPSIMD registers are never loaded
1572 	 * and wrong_task and wrong_cpu will always be true.
1573 	 */
1574 	wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1575 					&next->thread.uw.fpsimd_state;
1576 	wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1577 
1578 	update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1579 			       wrong_task || wrong_cpu);
1580 
1581 	__put_cpu_fpsimd_context();
1582 }
1583 
1584 static void fpsimd_flush_thread_vl(enum vec_type type)
1585 {
1586 	int vl, supported_vl;
1587 
1588 	/*
1589 	 * Reset the task vector length as required.  This is where we
1590 	 * ensure that all user tasks have a valid vector length
1591 	 * configured: no kernel task can become a user task without
1592 	 * an exec and hence a call to this function.  By the time the
1593 	 * first call to this function is made, all early hardware
1594 	 * probing is complete, so __sve_default_vl should be valid.
1595 	 * If a bug causes this to go wrong, we make some noise and
1596 	 * try to fudge thread.sve_vl to a safe value here.
1597 	 */
1598 	vl = task_get_vl_onexec(current, type);
1599 	if (!vl)
1600 		vl = get_default_vl(type);
1601 
1602 	if (WARN_ON(!sve_vl_valid(vl)))
1603 		vl = vl_info[type].min_vl;
1604 
1605 	supported_vl = find_supported_vector_length(type, vl);
1606 	if (WARN_ON(supported_vl != vl))
1607 		vl = supported_vl;
1608 
1609 	task_set_vl(current, type, vl);
1610 
1611 	/*
1612 	 * If the task is not set to inherit, ensure that the vector
1613 	 * length will be reset by a subsequent exec:
1614 	 */
1615 	if (!test_thread_flag(vec_vl_inherit_flag(type)))
1616 		task_set_vl_onexec(current, type, 0);
1617 }
1618 
1619 void fpsimd_flush_thread(void)
1620 {
1621 	void *sve_state = NULL;
1622 	void *sme_state = NULL;
1623 
1624 	if (!system_supports_fpsimd())
1625 		return;
1626 
1627 	get_cpu_fpsimd_context();
1628 
1629 	fpsimd_flush_task_state(current);
1630 	memset(&current->thread.uw.fpsimd_state, 0,
1631 	       sizeof(current->thread.uw.fpsimd_state));
1632 
1633 	if (system_supports_sve()) {
1634 		clear_thread_flag(TIF_SVE);
1635 
1636 		/* Defer kfree() while in atomic context */
1637 		sve_state = current->thread.sve_state;
1638 		current->thread.sve_state = NULL;
1639 
1640 		fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1641 	}
1642 
1643 	if (system_supports_sme()) {
1644 		clear_thread_flag(TIF_SME);
1645 
1646 		/* Defer kfree() while in atomic context */
1647 		sme_state = current->thread.sme_state;
1648 		current->thread.sme_state = NULL;
1649 
1650 		fpsimd_flush_thread_vl(ARM64_VEC_SME);
1651 		current->thread.svcr = 0;
1652 	}
1653 
1654 	current->thread.fp_type = FP_STATE_FPSIMD;
1655 
1656 	put_cpu_fpsimd_context();
1657 	kfree(sve_state);
1658 	kfree(sme_state);
1659 }
1660 
1661 /*
1662  * Save the userland FPSIMD state of 'current' to memory, but only if the state
1663  * currently held in the registers does in fact belong to 'current'
1664  */
1665 void fpsimd_preserve_current_state(void)
1666 {
1667 	if (!system_supports_fpsimd())
1668 		return;
1669 
1670 	get_cpu_fpsimd_context();
1671 	fpsimd_save();
1672 	put_cpu_fpsimd_context();
1673 }
1674 
1675 /*
1676  * Like fpsimd_preserve_current_state(), but ensure that
1677  * current->thread.uw.fpsimd_state is updated so that it can be copied to
1678  * the signal frame.
1679  */
1680 void fpsimd_signal_preserve_current_state(void)
1681 {
1682 	fpsimd_preserve_current_state();
1683 	if (test_thread_flag(TIF_SVE))
1684 		sve_to_fpsimd(current);
1685 }
1686 
1687 /*
1688  * Called by KVM when entering the guest.
1689  */
1690 void fpsimd_kvm_prepare(void)
1691 {
1692 	if (!system_supports_sve())
1693 		return;
1694 
1695 	/*
1696 	 * KVM does not save host SVE state since we can only enter
1697 	 * the guest from a syscall so the ABI means that only the
1698 	 * non-saved SVE state needs to be saved.  If we have left
1699 	 * SVE enabled for performance reasons then update the task
1700 	 * state to be FPSIMD only.
1701 	 */
1702 	get_cpu_fpsimd_context();
1703 
1704 	if (test_and_clear_thread_flag(TIF_SVE)) {
1705 		sve_to_fpsimd(current);
1706 		current->thread.fp_type = FP_STATE_FPSIMD;
1707 	}
1708 
1709 	put_cpu_fpsimd_context();
1710 }
1711 
1712 /*
1713  * Associate current's FPSIMD context with this cpu
1714  * The caller must have ownership of the cpu FPSIMD context before calling
1715  * this function.
1716  */
1717 static void fpsimd_bind_task_to_cpu(void)
1718 {
1719 	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1720 
1721 	WARN_ON(!system_supports_fpsimd());
1722 	last->st = &current->thread.uw.fpsimd_state;
1723 	last->sve_state = current->thread.sve_state;
1724 	last->sme_state = current->thread.sme_state;
1725 	last->sve_vl = task_get_sve_vl(current);
1726 	last->sme_vl = task_get_sme_vl(current);
1727 	last->svcr = &current->thread.svcr;
1728 	last->fp_type = &current->thread.fp_type;
1729 	last->to_save = FP_STATE_CURRENT;
1730 	current->thread.fpsimd_cpu = smp_processor_id();
1731 
1732 	/*
1733 	 * Toggle SVE and SME trapping for userspace if needed, these
1734 	 * are serialsied by ret_to_user().
1735 	 */
1736 	if (system_supports_sme()) {
1737 		if (test_thread_flag(TIF_SME))
1738 			sme_user_enable();
1739 		else
1740 			sme_user_disable();
1741 	}
1742 
1743 	if (system_supports_sve()) {
1744 		if (test_thread_flag(TIF_SVE))
1745 			sve_user_enable();
1746 		else
1747 			sve_user_disable();
1748 	}
1749 }
1750 
1751 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
1752 {
1753 	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1754 
1755 	WARN_ON(!system_supports_fpsimd());
1756 	WARN_ON(!in_softirq() && !irqs_disabled());
1757 
1758 	*last = *state;
1759 }
1760 
1761 /*
1762  * Load the userland FPSIMD state of 'current' from memory, but only if the
1763  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1764  * state of 'current'.  This is called when we are preparing to return to
1765  * userspace to ensure that userspace sees a good register state.
1766  */
1767 void fpsimd_restore_current_state(void)
1768 {
1769 	/*
1770 	 * For the tasks that were created before we detected the absence of
1771 	 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1772 	 * e.g, init. This could be then inherited by the children processes.
1773 	 * If we later detect that the system doesn't support FP/SIMD,
1774 	 * we must clear the flag for  all the tasks to indicate that the
1775 	 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1776 	 * do_notify_resume().
1777 	 */
1778 	if (!system_supports_fpsimd()) {
1779 		clear_thread_flag(TIF_FOREIGN_FPSTATE);
1780 		return;
1781 	}
1782 
1783 	get_cpu_fpsimd_context();
1784 
1785 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1786 		task_fpsimd_load();
1787 		fpsimd_bind_task_to_cpu();
1788 	}
1789 
1790 	put_cpu_fpsimd_context();
1791 }
1792 
1793 /*
1794  * Load an updated userland FPSIMD state for 'current' from memory and set the
1795  * flag that indicates that the FPSIMD register contents are the most recent
1796  * FPSIMD state of 'current'. This is used by the signal code to restore the
1797  * register state when returning from a signal handler in FPSIMD only cases,
1798  * any SVE context will be discarded.
1799  */
1800 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1801 {
1802 	if (WARN_ON(!system_supports_fpsimd()))
1803 		return;
1804 
1805 	get_cpu_fpsimd_context();
1806 
1807 	current->thread.uw.fpsimd_state = *state;
1808 	if (test_thread_flag(TIF_SVE))
1809 		fpsimd_to_sve(current);
1810 
1811 	task_fpsimd_load();
1812 	fpsimd_bind_task_to_cpu();
1813 
1814 	clear_thread_flag(TIF_FOREIGN_FPSTATE);
1815 
1816 	put_cpu_fpsimd_context();
1817 }
1818 
1819 /*
1820  * Invalidate live CPU copies of task t's FPSIMD state
1821  *
1822  * This function may be called with preemption enabled.  The barrier()
1823  * ensures that the assignment to fpsimd_cpu is visible to any
1824  * preemption/softirq that could race with set_tsk_thread_flag(), so
1825  * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1826  *
1827  * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1828  * subsequent code.
1829  */
1830 void fpsimd_flush_task_state(struct task_struct *t)
1831 {
1832 	t->thread.fpsimd_cpu = NR_CPUS;
1833 	/*
1834 	 * If we don't support fpsimd, bail out after we have
1835 	 * reset the fpsimd_cpu for this task and clear the
1836 	 * FPSTATE.
1837 	 */
1838 	if (!system_supports_fpsimd())
1839 		return;
1840 	barrier();
1841 	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1842 
1843 	barrier();
1844 }
1845 
1846 /*
1847  * Invalidate any task's FPSIMD state that is present on this cpu.
1848  * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1849  * before calling this function.
1850  */
1851 static void fpsimd_flush_cpu_state(void)
1852 {
1853 	WARN_ON(!system_supports_fpsimd());
1854 	__this_cpu_write(fpsimd_last_state.st, NULL);
1855 
1856 	/*
1857 	 * Leaving streaming mode enabled will cause issues for any kernel
1858 	 * NEON and leaving streaming mode or ZA enabled may increase power
1859 	 * consumption.
1860 	 */
1861 	if (system_supports_sme())
1862 		sme_smstop();
1863 
1864 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1865 }
1866 
1867 /*
1868  * Save the FPSIMD state to memory and invalidate cpu view.
1869  * This function must be called with preemption disabled.
1870  */
1871 void fpsimd_save_and_flush_cpu_state(void)
1872 {
1873 	if (!system_supports_fpsimd())
1874 		return;
1875 	WARN_ON(preemptible());
1876 	__get_cpu_fpsimd_context();
1877 	fpsimd_save();
1878 	fpsimd_flush_cpu_state();
1879 	__put_cpu_fpsimd_context();
1880 }
1881 
1882 #ifdef CONFIG_KERNEL_MODE_NEON
1883 
1884 /*
1885  * Kernel-side NEON support functions
1886  */
1887 
1888 /*
1889  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1890  * context
1891  *
1892  * Must not be called unless may_use_simd() returns true.
1893  * Task context in the FPSIMD registers is saved back to memory as necessary.
1894  *
1895  * A matching call to kernel_neon_end() must be made before returning from the
1896  * calling context.
1897  *
1898  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1899  * called.
1900  */
1901 void kernel_neon_begin(void)
1902 {
1903 	if (WARN_ON(!system_supports_fpsimd()))
1904 		return;
1905 
1906 	BUG_ON(!may_use_simd());
1907 
1908 	get_cpu_fpsimd_context();
1909 
1910 	/* Save unsaved fpsimd state, if any: */
1911 	fpsimd_save();
1912 
1913 	/* Invalidate any task state remaining in the fpsimd regs: */
1914 	fpsimd_flush_cpu_state();
1915 }
1916 EXPORT_SYMBOL_GPL(kernel_neon_begin);
1917 
1918 /*
1919  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1920  *
1921  * Must be called from a context in which kernel_neon_begin() was previously
1922  * called, with no call to kernel_neon_end() in the meantime.
1923  *
1924  * The caller must not use the FPSIMD registers after this function is called,
1925  * unless kernel_neon_begin() is called again in the meantime.
1926  */
1927 void kernel_neon_end(void)
1928 {
1929 	if (!system_supports_fpsimd())
1930 		return;
1931 
1932 	put_cpu_fpsimd_context();
1933 }
1934 EXPORT_SYMBOL_GPL(kernel_neon_end);
1935 
1936 #ifdef CONFIG_EFI
1937 
1938 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1939 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1940 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1941 static DEFINE_PER_CPU(bool, efi_sm_state);
1942 
1943 /*
1944  * EFI runtime services support functions
1945  *
1946  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1947  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1948  * is always used rather than being an optional accelerator.
1949  *
1950  * These functions provide the necessary support for ensuring FPSIMD
1951  * save/restore in the contexts from which EFI is used.
1952  *
1953  * Do not use them for any other purpose -- if tempted to do so, you are
1954  * either doing something wrong or you need to propose some refactoring.
1955  */
1956 
1957 /*
1958  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1959  */
1960 void __efi_fpsimd_begin(void)
1961 {
1962 	if (!system_supports_fpsimd())
1963 		return;
1964 
1965 	WARN_ON(preemptible());
1966 
1967 	if (may_use_simd()) {
1968 		kernel_neon_begin();
1969 	} else {
1970 		/*
1971 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1972 		 * preserving:
1973 		 */
1974 		if (system_supports_sve() && likely(efi_sve_state)) {
1975 			char *sve_state = this_cpu_ptr(efi_sve_state);
1976 			bool ffr = true;
1977 			u64 svcr;
1978 
1979 			__this_cpu_write(efi_sve_state_used, true);
1980 
1981 			if (system_supports_sme()) {
1982 				svcr = read_sysreg_s(SYS_SVCR);
1983 
1984 				__this_cpu_write(efi_sm_state,
1985 						 svcr & SVCR_SM_MASK);
1986 
1987 				/*
1988 				 * Unless we have FA64 FFR does not
1989 				 * exist in streaming mode.
1990 				 */
1991 				if (!system_supports_fa64())
1992 					ffr = !(svcr & SVCR_SM_MASK);
1993 			}
1994 
1995 			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
1996 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1997 				       ffr);
1998 
1999 			if (system_supports_sme())
2000 				sysreg_clear_set_s(SYS_SVCR,
2001 						   SVCR_SM_MASK, 0);
2002 
2003 		} else {
2004 			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
2005 		}
2006 
2007 		__this_cpu_write(efi_fpsimd_state_used, true);
2008 	}
2009 }
2010 
2011 /*
2012  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
2013  */
2014 void __efi_fpsimd_end(void)
2015 {
2016 	if (!system_supports_fpsimd())
2017 		return;
2018 
2019 	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
2020 		kernel_neon_end();
2021 	} else {
2022 		if (system_supports_sve() &&
2023 		    likely(__this_cpu_read(efi_sve_state_used))) {
2024 			char const *sve_state = this_cpu_ptr(efi_sve_state);
2025 			bool ffr = true;
2026 
2027 			/*
2028 			 * Restore streaming mode; EFI calls are
2029 			 * normal function calls so should not return in
2030 			 * streaming mode.
2031 			 */
2032 			if (system_supports_sme()) {
2033 				if (__this_cpu_read(efi_sm_state)) {
2034 					sysreg_clear_set_s(SYS_SVCR,
2035 							   0,
2036 							   SVCR_SM_MASK);
2037 
2038 					/*
2039 					 * Unless we have FA64 FFR does not
2040 					 * exist in streaming mode.
2041 					 */
2042 					if (!system_supports_fa64())
2043 						ffr = false;
2044 				}
2045 			}
2046 
2047 			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
2048 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2049 				       ffr);
2050 
2051 			__this_cpu_write(efi_sve_state_used, false);
2052 		} else {
2053 			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
2054 		}
2055 	}
2056 }
2057 
2058 #endif /* CONFIG_EFI */
2059 
2060 #endif /* CONFIG_KERNEL_MODE_NEON */
2061 
2062 #ifdef CONFIG_CPU_PM
2063 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
2064 				  unsigned long cmd, void *v)
2065 {
2066 	switch (cmd) {
2067 	case CPU_PM_ENTER:
2068 		fpsimd_save_and_flush_cpu_state();
2069 		break;
2070 	case CPU_PM_EXIT:
2071 		break;
2072 	case CPU_PM_ENTER_FAILED:
2073 	default:
2074 		return NOTIFY_DONE;
2075 	}
2076 	return NOTIFY_OK;
2077 }
2078 
2079 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2080 	.notifier_call = fpsimd_cpu_pm_notifier,
2081 };
2082 
2083 static void __init fpsimd_pm_init(void)
2084 {
2085 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2086 }
2087 
2088 #else
2089 static inline void fpsimd_pm_init(void) { }
2090 #endif /* CONFIG_CPU_PM */
2091 
2092 #ifdef CONFIG_HOTPLUG_CPU
2093 static int fpsimd_cpu_dead(unsigned int cpu)
2094 {
2095 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
2096 	return 0;
2097 }
2098 
2099 static inline void fpsimd_hotplug_init(void)
2100 {
2101 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2102 				  NULL, fpsimd_cpu_dead);
2103 }
2104 
2105 #else
2106 static inline void fpsimd_hotplug_init(void) { }
2107 #endif
2108 
2109 /*
2110  * FP/SIMD support code initialisation.
2111  */
2112 static int __init fpsimd_init(void)
2113 {
2114 	if (cpu_have_named_feature(FP)) {
2115 		fpsimd_pm_init();
2116 		fpsimd_hotplug_init();
2117 	} else {
2118 		pr_notice("Floating-point is not implemented\n");
2119 	}
2120 
2121 	if (!cpu_have_named_feature(ASIMD))
2122 		pr_notice("Advanced SIMD is not implemented\n");
2123 
2124 
2125 	sve_sysctl_init();
2126 	sme_sysctl_init();
2127 
2128 	return 0;
2129 }
2130 core_initcall(fpsimd_init);
2131