xref: /openbmc/linux/arch/arm64/kernel/fpsimd.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /*
2  * FP/SIMD context switching and fault handling
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/bitmap.h>
21 #include <linux/bitops.h>
22 #include <linux/bottom_half.h>
23 #include <linux/bug.h>
24 #include <linux/cache.h>
25 #include <linux/compat.h>
26 #include <linux/cpu.h>
27 #include <linux/cpu_pm.h>
28 #include <linux/kernel.h>
29 #include <linux/linkage.h>
30 #include <linux/irqflags.h>
31 #include <linux/init.h>
32 #include <linux/percpu.h>
33 #include <linux/prctl.h>
34 #include <linux/preempt.h>
35 #include <linux/ptrace.h>
36 #include <linux/sched/signal.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/signal.h>
39 #include <linux/slab.h>
40 #include <linux/stddef.h>
41 #include <linux/sysctl.h>
42 #include <linux/swab.h>
43 
44 #include <asm/esr.h>
45 #include <asm/fpsimd.h>
46 #include <asm/cpufeature.h>
47 #include <asm/cputype.h>
48 #include <asm/processor.h>
49 #include <asm/simd.h>
50 #include <asm/sigcontext.h>
51 #include <asm/sysreg.h>
52 #include <asm/traps.h>
53 #include <asm/virt.h>
54 
55 #define FPEXC_IOF	(1 << 0)
56 #define FPEXC_DZF	(1 << 1)
57 #define FPEXC_OFF	(1 << 2)
58 #define FPEXC_UFF	(1 << 3)
59 #define FPEXC_IXF	(1 << 4)
60 #define FPEXC_IDF	(1 << 7)
61 
62 /*
63  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
64  *
65  * In order to reduce the number of times the FPSIMD state is needlessly saved
66  * and restored, we need to keep track of two things:
67  * (a) for each task, we need to remember which CPU was the last one to have
68  *     the task's FPSIMD state loaded into its FPSIMD registers;
69  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
70  *     been loaded into its FPSIMD registers most recently, or whether it has
71  *     been used to perform kernel mode NEON in the meantime.
72  *
73  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
74  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
75  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
76  * address of the userland FPSIMD state of the task that was loaded onto the CPU
77  * the most recently, or NULL if kernel mode NEON has been performed after that.
78  *
79  * With this in place, we no longer have to restore the next FPSIMD state right
80  * when switching between tasks. Instead, we can defer this check to userland
81  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
82  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
83  * can omit the FPSIMD restore.
84  *
85  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
86  * indicate whether or not the userland FPSIMD state of the current task is
87  * present in the registers. The flag is set unless the FPSIMD registers of this
88  * CPU currently contain the most recent userland FPSIMD state of the current
89  * task.
90  *
91  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
92  * save the task's FPSIMD context back to task_struct from softirq context.
93  * To prevent this from racing with the manipulation of the task's FPSIMD state
94  * from task context and thereby corrupting the state, it is necessary to
95  * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
96  * flag with local_bh_disable() unless softirqs are already masked.
97  *
98  * For a certain task, the sequence may look something like this:
99  * - the task gets scheduled in; if both the task's fpsimd_cpu field
100  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
101  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
102  *   cleared, otherwise it is set;
103  *
104  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
105  *   userland FPSIMD state is copied from memory to the registers, the task's
106  *   fpsimd_cpu field is set to the id of the current CPU, the current
107  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
108  *   TIF_FOREIGN_FPSTATE flag is cleared;
109  *
110  * - the task executes an ordinary syscall; upon return to userland, the
111  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
112  *   restored;
113  *
114  * - the task executes a syscall which executes some NEON instructions; this is
115  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
116  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
117  *   and sets the TIF_FOREIGN_FPSTATE flag;
118  *
119  * - the task gets preempted after kernel_neon_end() is called; as we have not
120  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
121  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
122  */
123 struct fpsimd_last_state_struct {
124 	struct user_fpsimd_state *st;
125 	void *sve_state;
126 	unsigned int sve_vl;
127 };
128 
129 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
130 
131 /* Default VL for tasks that don't set it explicitly: */
132 static int sve_default_vl = -1;
133 
134 #ifdef CONFIG_ARM64_SVE
135 
136 /* Maximum supported vector length across all CPUs (initially poisoned) */
137 int __ro_after_init sve_max_vl = SVE_VL_MIN;
138 int __ro_after_init sve_max_virtualisable_vl = SVE_VL_MIN;
139 
140 /*
141  * Set of available vector lengths,
142  * where length vq encoded as bit __vq_to_bit(vq):
143  */
144 __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
145 /* Set of vector lengths present on at least one cpu: */
146 static __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
147 
148 static void __percpu *efi_sve_state;
149 
150 #else /* ! CONFIG_ARM64_SVE */
151 
152 /* Dummy declaration for code that will be optimised out: */
153 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
154 extern __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
155 extern void __percpu *efi_sve_state;
156 
157 #endif /* ! CONFIG_ARM64_SVE */
158 
159 /*
160  * Call __sve_free() directly only if you know task can't be scheduled
161  * or preempted.
162  */
163 static void __sve_free(struct task_struct *task)
164 {
165 	kfree(task->thread.sve_state);
166 	task->thread.sve_state = NULL;
167 }
168 
169 static void sve_free(struct task_struct *task)
170 {
171 	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
172 
173 	__sve_free(task);
174 }
175 
176 /*
177  * TIF_SVE controls whether a task can use SVE without trapping while
178  * in userspace, and also the way a task's FPSIMD/SVE state is stored
179  * in thread_struct.
180  *
181  * The kernel uses this flag to track whether a user task is actively
182  * using SVE, and therefore whether full SVE register state needs to
183  * be tracked.  If not, the cheaper FPSIMD context handling code can
184  * be used instead of the more costly SVE equivalents.
185  *
186  *  * TIF_SVE set:
187  *
188  *    The task can execute SVE instructions while in userspace without
189  *    trapping to the kernel.
190  *
191  *    When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
192  *    corresponding Zn), P0-P15 and FFR are encoded in in
193  *    task->thread.sve_state, formatted appropriately for vector
194  *    length task->thread.sve_vl.
195  *
196  *    task->thread.sve_state must point to a valid buffer at least
197  *    sve_state_size(task) bytes in size.
198  *
199  *    During any syscall, the kernel may optionally clear TIF_SVE and
200  *    discard the vector state except for the FPSIMD subset.
201  *
202  *  * TIF_SVE clear:
203  *
204  *    An attempt by the user task to execute an SVE instruction causes
205  *    do_sve_acc() to be called, which does some preparation and then
206  *    sets TIF_SVE.
207  *
208  *    When stored, FPSIMD registers V0-V31 are encoded in
209  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
210  *    logically zero but not stored anywhere; P0-P15 and FFR are not
211  *    stored and have unspecified values from userspace's point of
212  *    view.  For hygiene purposes, the kernel zeroes them on next use,
213  *    but userspace is discouraged from relying on this.
214  *
215  *    task->thread.sve_state does not need to be non-NULL, valid or any
216  *    particular size: it must not be dereferenced.
217  *
218  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
219  *    irrespective of whether TIF_SVE is clear or set, since these are
220  *    not vector length dependent.
221  */
222 
223 /*
224  * Update current's FPSIMD/SVE registers from thread_struct.
225  *
226  * This function should be called only when the FPSIMD/SVE state in
227  * thread_struct is known to be up to date, when preparing to enter
228  * userspace.
229  *
230  * Softirqs (and preemption) must be disabled.
231  */
232 static void task_fpsimd_load(void)
233 {
234 	WARN_ON(!in_softirq() && !irqs_disabled());
235 
236 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
237 		sve_load_state(sve_pffr(&current->thread),
238 			       &current->thread.uw.fpsimd_state.fpsr,
239 			       sve_vq_from_vl(current->thread.sve_vl) - 1);
240 	else
241 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
242 }
243 
244 /*
245  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
246  * date with respect to the CPU registers.
247  *
248  * Softirqs (and preemption) must be disabled.
249  */
250 void fpsimd_save(void)
251 {
252 	struct fpsimd_last_state_struct const *last =
253 		this_cpu_ptr(&fpsimd_last_state);
254 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
255 
256 	WARN_ON(!in_softirq() && !irqs_disabled());
257 
258 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
259 		if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
260 			if (WARN_ON(sve_get_vl() != last->sve_vl)) {
261 				/*
262 				 * Can't save the user regs, so current would
263 				 * re-enter user with corrupt state.
264 				 * There's no way to recover, so kill it:
265 				 */
266 				force_signal_inject(SIGKILL, SI_KERNEL, 0);
267 				return;
268 			}
269 
270 			sve_save_state((char *)last->sve_state +
271 						sve_ffr_offset(last->sve_vl),
272 				       &last->st->fpsr);
273 		} else
274 			fpsimd_save_state(last->st);
275 	}
276 }
277 
278 /*
279  * All vector length selection from userspace comes through here.
280  * We're on a slow path, so some sanity-checks are included.
281  * If things go wrong there's a bug somewhere, but try to fall back to a
282  * safe choice.
283  */
284 static unsigned int find_supported_vector_length(unsigned int vl)
285 {
286 	int bit;
287 	int max_vl = sve_max_vl;
288 
289 	if (WARN_ON(!sve_vl_valid(vl)))
290 		vl = SVE_VL_MIN;
291 
292 	if (WARN_ON(!sve_vl_valid(max_vl)))
293 		max_vl = SVE_VL_MIN;
294 
295 	if (vl > max_vl)
296 		vl = max_vl;
297 
298 	bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
299 			    __vq_to_bit(sve_vq_from_vl(vl)));
300 	return sve_vl_from_vq(__bit_to_vq(bit));
301 }
302 
303 #ifdef CONFIG_SYSCTL
304 
305 static int sve_proc_do_default_vl(struct ctl_table *table, int write,
306 				  void __user *buffer, size_t *lenp,
307 				  loff_t *ppos)
308 {
309 	int ret;
310 	int vl = sve_default_vl;
311 	struct ctl_table tmp_table = {
312 		.data = &vl,
313 		.maxlen = sizeof(vl),
314 	};
315 
316 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
317 	if (ret || !write)
318 		return ret;
319 
320 	/* Writing -1 has the special meaning "set to max": */
321 	if (vl == -1)
322 		vl = sve_max_vl;
323 
324 	if (!sve_vl_valid(vl))
325 		return -EINVAL;
326 
327 	sve_default_vl = find_supported_vector_length(vl);
328 	return 0;
329 }
330 
331 static struct ctl_table sve_default_vl_table[] = {
332 	{
333 		.procname	= "sve_default_vector_length",
334 		.mode		= 0644,
335 		.proc_handler	= sve_proc_do_default_vl,
336 	},
337 	{ }
338 };
339 
340 static int __init sve_sysctl_init(void)
341 {
342 	if (system_supports_sve())
343 		if (!register_sysctl("abi", sve_default_vl_table))
344 			return -EINVAL;
345 
346 	return 0;
347 }
348 
349 #else /* ! CONFIG_SYSCTL */
350 static int __init sve_sysctl_init(void) { return 0; }
351 #endif /* ! CONFIG_SYSCTL */
352 
353 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
354 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
355 
356 #ifdef CONFIG_CPU_BIG_ENDIAN
357 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
358 {
359 	u64 a = swab64(x);
360 	u64 b = swab64(x >> 64);
361 
362 	return ((__uint128_t)a << 64) | b;
363 }
364 #else
365 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
366 {
367 	return x;
368 }
369 #endif
370 
371 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
372 
373 /*
374  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
375  * task->thread.sve_state.
376  *
377  * Task can be a non-runnable task, or current.  In the latter case,
378  * softirqs (and preemption) must be disabled.
379  * task->thread.sve_state must point to at least sve_state_size(task)
380  * bytes of allocated kernel memory.
381  * task->thread.uw.fpsimd_state must be up to date before calling this
382  * function.
383  */
384 static void fpsimd_to_sve(struct task_struct *task)
385 {
386 	unsigned int vq;
387 	void *sst = task->thread.sve_state;
388 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
389 	unsigned int i;
390 	__uint128_t *p;
391 
392 	if (!system_supports_sve())
393 		return;
394 
395 	vq = sve_vq_from_vl(task->thread.sve_vl);
396 	for (i = 0; i < 32; ++i) {
397 		p = (__uint128_t *)ZREG(sst, vq, i);
398 		*p = arm64_cpu_to_le128(fst->vregs[i]);
399 	}
400 }
401 
402 /*
403  * Transfer the SVE state in task->thread.sve_state to
404  * task->thread.uw.fpsimd_state.
405  *
406  * Task can be a non-runnable task, or current.  In the latter case,
407  * softirqs (and preemption) must be disabled.
408  * task->thread.sve_state must point to at least sve_state_size(task)
409  * bytes of allocated kernel memory.
410  * task->thread.sve_state must be up to date before calling this function.
411  */
412 static void sve_to_fpsimd(struct task_struct *task)
413 {
414 	unsigned int vq;
415 	void const *sst = task->thread.sve_state;
416 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
417 	unsigned int i;
418 	__uint128_t const *p;
419 
420 	if (!system_supports_sve())
421 		return;
422 
423 	vq = sve_vq_from_vl(task->thread.sve_vl);
424 	for (i = 0; i < 32; ++i) {
425 		p = (__uint128_t const *)ZREG(sst, vq, i);
426 		fst->vregs[i] = arm64_le128_to_cpu(*p);
427 	}
428 }
429 
430 #ifdef CONFIG_ARM64_SVE
431 
432 /*
433  * Return how many bytes of memory are required to store the full SVE
434  * state for task, given task's currently configured vector length.
435  */
436 size_t sve_state_size(struct task_struct const *task)
437 {
438 	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
439 }
440 
441 /*
442  * Ensure that task->thread.sve_state is allocated and sufficiently large.
443  *
444  * This function should be used only in preparation for replacing
445  * task->thread.sve_state with new data.  The memory is always zeroed
446  * here to prevent stale data from showing through: this is done in
447  * the interest of testability and predictability: except in the
448  * do_sve_acc() case, there is no ABI requirement to hide stale data
449  * written previously be task.
450  */
451 void sve_alloc(struct task_struct *task)
452 {
453 	if (task->thread.sve_state) {
454 		memset(task->thread.sve_state, 0, sve_state_size(current));
455 		return;
456 	}
457 
458 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
459 	task->thread.sve_state =
460 		kzalloc(sve_state_size(task), GFP_KERNEL);
461 
462 	/*
463 	 * If future SVE revisions can have larger vectors though,
464 	 * this may cease to be true:
465 	 */
466 	BUG_ON(!task->thread.sve_state);
467 }
468 
469 
470 /*
471  * Ensure that task->thread.sve_state is up to date with respect to
472  * the user task, irrespective of when SVE is in use or not.
473  *
474  * This should only be called by ptrace.  task must be non-runnable.
475  * task->thread.sve_state must point to at least sve_state_size(task)
476  * bytes of allocated kernel memory.
477  */
478 void fpsimd_sync_to_sve(struct task_struct *task)
479 {
480 	if (!test_tsk_thread_flag(task, TIF_SVE))
481 		fpsimd_to_sve(task);
482 }
483 
484 /*
485  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
486  * the user task, irrespective of whether SVE is in use or not.
487  *
488  * This should only be called by ptrace.  task must be non-runnable.
489  * task->thread.sve_state must point to at least sve_state_size(task)
490  * bytes of allocated kernel memory.
491  */
492 void sve_sync_to_fpsimd(struct task_struct *task)
493 {
494 	if (test_tsk_thread_flag(task, TIF_SVE))
495 		sve_to_fpsimd(task);
496 }
497 
498 /*
499  * Ensure that task->thread.sve_state is up to date with respect to
500  * the task->thread.uw.fpsimd_state.
501  *
502  * This should only be called by ptrace to merge new FPSIMD register
503  * values into a task for which SVE is currently active.
504  * task must be non-runnable.
505  * task->thread.sve_state must point to at least sve_state_size(task)
506  * bytes of allocated kernel memory.
507  * task->thread.uw.fpsimd_state must already have been initialised with
508  * the new FPSIMD register values to be merged in.
509  */
510 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
511 {
512 	unsigned int vq;
513 	void *sst = task->thread.sve_state;
514 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
515 	unsigned int i;
516 	__uint128_t *p;
517 
518 	if (!test_tsk_thread_flag(task, TIF_SVE))
519 		return;
520 
521 	vq = sve_vq_from_vl(task->thread.sve_vl);
522 
523 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
524 
525 	for (i = 0; i < 32; ++i) {
526 		p = (__uint128_t *)ZREG(sst, vq, i);
527 		*p = arm64_cpu_to_le128(fst->vregs[i]);
528 	}
529 }
530 
531 int sve_set_vector_length(struct task_struct *task,
532 			  unsigned long vl, unsigned long flags)
533 {
534 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
535 				     PR_SVE_SET_VL_ONEXEC))
536 		return -EINVAL;
537 
538 	if (!sve_vl_valid(vl))
539 		return -EINVAL;
540 
541 	/*
542 	 * Clamp to the maximum vector length that VL-agnostic SVE code can
543 	 * work with.  A flag may be assigned in the future to allow setting
544 	 * of larger vector lengths without confusing older software.
545 	 */
546 	if (vl > SVE_VL_ARCH_MAX)
547 		vl = SVE_VL_ARCH_MAX;
548 
549 	vl = find_supported_vector_length(vl);
550 
551 	if (flags & (PR_SVE_VL_INHERIT |
552 		     PR_SVE_SET_VL_ONEXEC))
553 		task->thread.sve_vl_onexec = vl;
554 	else
555 		/* Reset VL to system default on next exec: */
556 		task->thread.sve_vl_onexec = 0;
557 
558 	/* Only actually set the VL if not deferred: */
559 	if (flags & PR_SVE_SET_VL_ONEXEC)
560 		goto out;
561 
562 	if (vl == task->thread.sve_vl)
563 		goto out;
564 
565 	/*
566 	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
567 	 * write any live register state back to task_struct, and convert to a
568 	 * non-SVE thread.
569 	 */
570 	if (task == current) {
571 		local_bh_disable();
572 
573 		fpsimd_save();
574 	}
575 
576 	fpsimd_flush_task_state(task);
577 	if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
578 		sve_to_fpsimd(task);
579 
580 	if (task == current)
581 		local_bh_enable();
582 
583 	/*
584 	 * Force reallocation of task SVE state to the correct size
585 	 * on next use:
586 	 */
587 	sve_free(task);
588 
589 	task->thread.sve_vl = vl;
590 
591 out:
592 	update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
593 			       flags & PR_SVE_VL_INHERIT);
594 
595 	return 0;
596 }
597 
598 /*
599  * Encode the current vector length and flags for return.
600  * This is only required for prctl(): ptrace has separate fields
601  *
602  * flags are as for sve_set_vector_length().
603  */
604 static int sve_prctl_status(unsigned long flags)
605 {
606 	int ret;
607 
608 	if (flags & PR_SVE_SET_VL_ONEXEC)
609 		ret = current->thread.sve_vl_onexec;
610 	else
611 		ret = current->thread.sve_vl;
612 
613 	if (test_thread_flag(TIF_SVE_VL_INHERIT))
614 		ret |= PR_SVE_VL_INHERIT;
615 
616 	return ret;
617 }
618 
619 /* PR_SVE_SET_VL */
620 int sve_set_current_vl(unsigned long arg)
621 {
622 	unsigned long vl, flags;
623 	int ret;
624 
625 	vl = arg & PR_SVE_VL_LEN_MASK;
626 	flags = arg & ~vl;
627 
628 	if (!system_supports_sve())
629 		return -EINVAL;
630 
631 	ret = sve_set_vector_length(current, vl, flags);
632 	if (ret)
633 		return ret;
634 
635 	return sve_prctl_status(flags);
636 }
637 
638 /* PR_SVE_GET_VL */
639 int sve_get_current_vl(void)
640 {
641 	if (!system_supports_sve())
642 		return -EINVAL;
643 
644 	return sve_prctl_status(0);
645 }
646 
647 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
648 {
649 	unsigned int vq, vl;
650 	unsigned long zcr;
651 
652 	bitmap_zero(map, SVE_VQ_MAX);
653 
654 	zcr = ZCR_ELx_LEN_MASK;
655 	zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
656 
657 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
658 		write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
659 		vl = sve_get_vl();
660 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
661 		set_bit(__vq_to_bit(vq), map);
662 	}
663 }
664 
665 /*
666  * Initialise the set of known supported VQs for the boot CPU.
667  * This is called during kernel boot, before secondary CPUs are brought up.
668  */
669 void __init sve_init_vq_map(void)
670 {
671 	sve_probe_vqs(sve_vq_map);
672 	bitmap_copy(sve_vq_partial_map, sve_vq_map, SVE_VQ_MAX);
673 }
674 
675 /*
676  * If we haven't committed to the set of supported VQs yet, filter out
677  * those not supported by the current CPU.
678  * This function is called during the bring-up of early secondary CPUs only.
679  */
680 void sve_update_vq_map(void)
681 {
682 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
683 
684 	sve_probe_vqs(tmp_map);
685 	bitmap_and(sve_vq_map, sve_vq_map, tmp_map, SVE_VQ_MAX);
686 	bitmap_or(sve_vq_partial_map, sve_vq_partial_map, tmp_map, SVE_VQ_MAX);
687 }
688 
689 /*
690  * Check whether the current CPU supports all VQs in the committed set.
691  * This function is called during the bring-up of late secondary CPUs only.
692  */
693 int sve_verify_vq_map(void)
694 {
695 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
696 	unsigned long b;
697 
698 	sve_probe_vqs(tmp_map);
699 
700 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
701 	if (bitmap_intersects(tmp_map, sve_vq_map, SVE_VQ_MAX)) {
702 		pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
703 			smp_processor_id());
704 		return -EINVAL;
705 	}
706 
707 	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
708 		return 0;
709 
710 	/*
711 	 * For KVM, it is necessary to ensure that this CPU doesn't
712 	 * support any vector length that guests may have probed as
713 	 * unsupported.
714 	 */
715 
716 	/* Recover the set of supported VQs: */
717 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
718 	/* Find VQs supported that are not globally supported: */
719 	bitmap_andnot(tmp_map, tmp_map, sve_vq_map, SVE_VQ_MAX);
720 
721 	/* Find the lowest such VQ, if any: */
722 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
723 	if (b >= SVE_VQ_MAX)
724 		return 0; /* no mismatches */
725 
726 	/*
727 	 * Mismatches above sve_max_virtualisable_vl are fine, since
728 	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
729 	 */
730 	if (sve_vl_from_vq(__bit_to_vq(b)) <= sve_max_virtualisable_vl) {
731 		pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n",
732 			smp_processor_id());
733 		return -EINVAL;
734 	}
735 
736 	return 0;
737 }
738 
739 static void __init sve_efi_setup(void)
740 {
741 	if (!IS_ENABLED(CONFIG_EFI))
742 		return;
743 
744 	/*
745 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
746 	 * This is evidence of a crippled system and we are returning void,
747 	 * so no attempt is made to handle this situation here.
748 	 */
749 	if (!sve_vl_valid(sve_max_vl))
750 		goto fail;
751 
752 	efi_sve_state = __alloc_percpu(
753 		SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
754 	if (!efi_sve_state)
755 		goto fail;
756 
757 	return;
758 
759 fail:
760 	panic("Cannot allocate percpu memory for EFI SVE save/restore");
761 }
762 
763 /*
764  * Enable SVE for EL1.
765  * Intended for use by the cpufeatures code during CPU boot.
766  */
767 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
768 {
769 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
770 	isb();
771 }
772 
773 /*
774  * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
775  * vector length.
776  *
777  * Use only if SVE is present.
778  * This function clobbers the SVE vector length.
779  */
780 u64 read_zcr_features(void)
781 {
782 	u64 zcr;
783 	unsigned int vq_max;
784 
785 	/*
786 	 * Set the maximum possible VL, and write zeroes to all other
787 	 * bits to see if they stick.
788 	 */
789 	sve_kernel_enable(NULL);
790 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
791 
792 	zcr = read_sysreg_s(SYS_ZCR_EL1);
793 	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
794 	vq_max = sve_vq_from_vl(sve_get_vl());
795 	zcr |= vq_max - 1; /* set LEN field to maximum effective value */
796 
797 	return zcr;
798 }
799 
800 void __init sve_setup(void)
801 {
802 	u64 zcr;
803 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
804 	unsigned long b;
805 
806 	if (!system_supports_sve())
807 		return;
808 
809 	/*
810 	 * The SVE architecture mandates support for 128-bit vectors,
811 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
812 	 * If something went wrong, at least try to patch it up:
813 	 */
814 	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
815 		set_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map);
816 
817 	zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
818 	sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
819 
820 	/*
821 	 * Sanity-check that the max VL we determined through CPU features
822 	 * corresponds properly to sve_vq_map.  If not, do our best:
823 	 */
824 	if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
825 		sve_max_vl = find_supported_vector_length(sve_max_vl);
826 
827 	/*
828 	 * For the default VL, pick the maximum supported value <= 64.
829 	 * VL == 64 is guaranteed not to grow the signal frame.
830 	 */
831 	sve_default_vl = find_supported_vector_length(64);
832 
833 	bitmap_andnot(tmp_map, sve_vq_partial_map, sve_vq_map,
834 		      SVE_VQ_MAX);
835 
836 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
837 	if (b >= SVE_VQ_MAX)
838 		/* No non-virtualisable VLs found */
839 		sve_max_virtualisable_vl = SVE_VQ_MAX;
840 	else if (WARN_ON(b == SVE_VQ_MAX - 1))
841 		/* No virtualisable VLs?  This is architecturally forbidden. */
842 		sve_max_virtualisable_vl = SVE_VQ_MIN;
843 	else /* b + 1 < SVE_VQ_MAX */
844 		sve_max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
845 
846 	if (sve_max_virtualisable_vl > sve_max_vl)
847 		sve_max_virtualisable_vl = sve_max_vl;
848 
849 	pr_info("SVE: maximum available vector length %u bytes per vector\n",
850 		sve_max_vl);
851 	pr_info("SVE: default vector length %u bytes per vector\n",
852 		sve_default_vl);
853 
854 	/* KVM decides whether to support mismatched systems. Just warn here: */
855 	if (sve_max_virtualisable_vl < sve_max_vl)
856 		pr_warn("SVE: unvirtualisable vector lengths present\n");
857 
858 	sve_efi_setup();
859 }
860 
861 /*
862  * Called from the put_task_struct() path, which cannot get here
863  * unless dead_task is really dead and not schedulable.
864  */
865 void fpsimd_release_task(struct task_struct *dead_task)
866 {
867 	__sve_free(dead_task);
868 }
869 
870 #endif /* CONFIG_ARM64_SVE */
871 
872 /*
873  * Trapped SVE access
874  *
875  * Storage is allocated for the full SVE state, the current FPSIMD
876  * register contents are migrated across, and TIF_SVE is set so that
877  * the SVE access trap will be disabled the next time this task
878  * reaches ret_to_user.
879  *
880  * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
881  * would have disabled the SVE access trap for userspace during
882  * ret_to_user, making an SVE access trap impossible in that case.
883  */
884 asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
885 {
886 	/* Even if we chose not to use SVE, the hardware could still trap: */
887 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
888 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
889 		return;
890 	}
891 
892 	sve_alloc(current);
893 
894 	local_bh_disable();
895 
896 	fpsimd_save();
897 
898 	/* Force ret_to_user to reload the registers: */
899 	fpsimd_flush_task_state(current);
900 
901 	fpsimd_to_sve(current);
902 	if (test_and_set_thread_flag(TIF_SVE))
903 		WARN_ON(1); /* SVE access shouldn't have trapped */
904 
905 	local_bh_enable();
906 }
907 
908 /*
909  * Trapped FP/ASIMD access.
910  */
911 asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
912 {
913 	/* TODO: implement lazy context saving/restoring */
914 	WARN_ON(1);
915 }
916 
917 /*
918  * Raise a SIGFPE for the current process.
919  */
920 asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
921 {
922 	unsigned int si_code = FPE_FLTUNK;
923 
924 	if (esr & ESR_ELx_FP_EXC_TFV) {
925 		if (esr & FPEXC_IOF)
926 			si_code = FPE_FLTINV;
927 		else if (esr & FPEXC_DZF)
928 			si_code = FPE_FLTDIV;
929 		else if (esr & FPEXC_OFF)
930 			si_code = FPE_FLTOVF;
931 		else if (esr & FPEXC_UFF)
932 			si_code = FPE_FLTUND;
933 		else if (esr & FPEXC_IXF)
934 			si_code = FPE_FLTRES;
935 	}
936 
937 	send_sig_fault(SIGFPE, si_code,
938 		       (void __user *)instruction_pointer(regs),
939 		       current);
940 }
941 
942 void fpsimd_thread_switch(struct task_struct *next)
943 {
944 	bool wrong_task, wrong_cpu;
945 
946 	if (!system_supports_fpsimd())
947 		return;
948 
949 	/* Save unsaved fpsimd state, if any: */
950 	fpsimd_save();
951 
952 	/*
953 	 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
954 	 * state.  For kernel threads, FPSIMD registers are never loaded
955 	 * and wrong_task and wrong_cpu will always be true.
956 	 */
957 	wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
958 					&next->thread.uw.fpsimd_state;
959 	wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
960 
961 	update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
962 			       wrong_task || wrong_cpu);
963 }
964 
965 void fpsimd_flush_thread(void)
966 {
967 	int vl, supported_vl;
968 
969 	if (!system_supports_fpsimd())
970 		return;
971 
972 	local_bh_disable();
973 
974 	fpsimd_flush_task_state(current);
975 	memset(&current->thread.uw.fpsimd_state, 0,
976 	       sizeof(current->thread.uw.fpsimd_state));
977 
978 	if (system_supports_sve()) {
979 		clear_thread_flag(TIF_SVE);
980 		sve_free(current);
981 
982 		/*
983 		 * Reset the task vector length as required.
984 		 * This is where we ensure that all user tasks have a valid
985 		 * vector length configured: no kernel task can become a user
986 		 * task without an exec and hence a call to this function.
987 		 * By the time the first call to this function is made, all
988 		 * early hardware probing is complete, so sve_default_vl
989 		 * should be valid.
990 		 * If a bug causes this to go wrong, we make some noise and
991 		 * try to fudge thread.sve_vl to a safe value here.
992 		 */
993 		vl = current->thread.sve_vl_onexec ?
994 			current->thread.sve_vl_onexec : sve_default_vl;
995 
996 		if (WARN_ON(!sve_vl_valid(vl)))
997 			vl = SVE_VL_MIN;
998 
999 		supported_vl = find_supported_vector_length(vl);
1000 		if (WARN_ON(supported_vl != vl))
1001 			vl = supported_vl;
1002 
1003 		current->thread.sve_vl = vl;
1004 
1005 		/*
1006 		 * If the task is not set to inherit, ensure that the vector
1007 		 * length will be reset by a subsequent exec:
1008 		 */
1009 		if (!test_thread_flag(TIF_SVE_VL_INHERIT))
1010 			current->thread.sve_vl_onexec = 0;
1011 	}
1012 
1013 	local_bh_enable();
1014 }
1015 
1016 /*
1017  * Save the userland FPSIMD state of 'current' to memory, but only if the state
1018  * currently held in the registers does in fact belong to 'current'
1019  */
1020 void fpsimd_preserve_current_state(void)
1021 {
1022 	if (!system_supports_fpsimd())
1023 		return;
1024 
1025 	local_bh_disable();
1026 	fpsimd_save();
1027 	local_bh_enable();
1028 }
1029 
1030 /*
1031  * Like fpsimd_preserve_current_state(), but ensure that
1032  * current->thread.uw.fpsimd_state is updated so that it can be copied to
1033  * the signal frame.
1034  */
1035 void fpsimd_signal_preserve_current_state(void)
1036 {
1037 	fpsimd_preserve_current_state();
1038 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
1039 		sve_to_fpsimd(current);
1040 }
1041 
1042 /*
1043  * Associate current's FPSIMD context with this cpu
1044  * Preemption must be disabled when calling this function.
1045  */
1046 void fpsimd_bind_task_to_cpu(void)
1047 {
1048 	struct fpsimd_last_state_struct *last =
1049 		this_cpu_ptr(&fpsimd_last_state);
1050 
1051 	last->st = &current->thread.uw.fpsimd_state;
1052 	last->sve_state = current->thread.sve_state;
1053 	last->sve_vl = current->thread.sve_vl;
1054 	current->thread.fpsimd_cpu = smp_processor_id();
1055 
1056 	if (system_supports_sve()) {
1057 		/* Toggle SVE trapping for userspace if needed */
1058 		if (test_thread_flag(TIF_SVE))
1059 			sve_user_enable();
1060 		else
1061 			sve_user_disable();
1062 
1063 		/* Serialised by exception return to user */
1064 	}
1065 }
1066 
1067 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1068 			      unsigned int sve_vl)
1069 {
1070 	struct fpsimd_last_state_struct *last =
1071 		this_cpu_ptr(&fpsimd_last_state);
1072 
1073 	WARN_ON(!in_softirq() && !irqs_disabled());
1074 
1075 	last->st = st;
1076 	last->sve_state = sve_state;
1077 	last->sve_vl = sve_vl;
1078 }
1079 
1080 /*
1081  * Load the userland FPSIMD state of 'current' from memory, but only if the
1082  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1083  * state of 'current'
1084  */
1085 void fpsimd_restore_current_state(void)
1086 {
1087 	if (!system_supports_fpsimd())
1088 		return;
1089 
1090 	local_bh_disable();
1091 
1092 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1093 		task_fpsimd_load();
1094 		fpsimd_bind_task_to_cpu();
1095 	}
1096 
1097 	local_bh_enable();
1098 }
1099 
1100 /*
1101  * Load an updated userland FPSIMD state for 'current' from memory and set the
1102  * flag that indicates that the FPSIMD register contents are the most recent
1103  * FPSIMD state of 'current'
1104  */
1105 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1106 {
1107 	if (!system_supports_fpsimd())
1108 		return;
1109 
1110 	local_bh_disable();
1111 
1112 	current->thread.uw.fpsimd_state = *state;
1113 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
1114 		fpsimd_to_sve(current);
1115 
1116 	task_fpsimd_load();
1117 	fpsimd_bind_task_to_cpu();
1118 
1119 	clear_thread_flag(TIF_FOREIGN_FPSTATE);
1120 
1121 	local_bh_enable();
1122 }
1123 
1124 /*
1125  * Invalidate live CPU copies of task t's FPSIMD state
1126  *
1127  * This function may be called with preemption enabled.  The barrier()
1128  * ensures that the assignment to fpsimd_cpu is visible to any
1129  * preemption/softirq that could race with set_tsk_thread_flag(), so
1130  * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1131  *
1132  * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1133  * subsequent code.
1134  */
1135 void fpsimd_flush_task_state(struct task_struct *t)
1136 {
1137 	t->thread.fpsimd_cpu = NR_CPUS;
1138 
1139 	barrier();
1140 	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1141 
1142 	barrier();
1143 }
1144 
1145 /*
1146  * Invalidate any task's FPSIMD state that is present on this cpu.
1147  * This function must be called with softirqs disabled.
1148  */
1149 void fpsimd_flush_cpu_state(void)
1150 {
1151 	__this_cpu_write(fpsimd_last_state.st, NULL);
1152 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1153 }
1154 
1155 #ifdef CONFIG_KERNEL_MODE_NEON
1156 
1157 DEFINE_PER_CPU(bool, kernel_neon_busy);
1158 EXPORT_PER_CPU_SYMBOL(kernel_neon_busy);
1159 
1160 /*
1161  * Kernel-side NEON support functions
1162  */
1163 
1164 /*
1165  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1166  * context
1167  *
1168  * Must not be called unless may_use_simd() returns true.
1169  * Task context in the FPSIMD registers is saved back to memory as necessary.
1170  *
1171  * A matching call to kernel_neon_end() must be made before returning from the
1172  * calling context.
1173  *
1174  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1175  * called.
1176  */
1177 void kernel_neon_begin(void)
1178 {
1179 	if (WARN_ON(!system_supports_fpsimd()))
1180 		return;
1181 
1182 	BUG_ON(!may_use_simd());
1183 
1184 	local_bh_disable();
1185 
1186 	__this_cpu_write(kernel_neon_busy, true);
1187 
1188 	/* Save unsaved fpsimd state, if any: */
1189 	fpsimd_save();
1190 
1191 	/* Invalidate any task state remaining in the fpsimd regs: */
1192 	fpsimd_flush_cpu_state();
1193 
1194 	preempt_disable();
1195 
1196 	local_bh_enable();
1197 }
1198 EXPORT_SYMBOL(kernel_neon_begin);
1199 
1200 /*
1201  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1202  *
1203  * Must be called from a context in which kernel_neon_begin() was previously
1204  * called, with no call to kernel_neon_end() in the meantime.
1205  *
1206  * The caller must not use the FPSIMD registers after this function is called,
1207  * unless kernel_neon_begin() is called again in the meantime.
1208  */
1209 void kernel_neon_end(void)
1210 {
1211 	bool busy;
1212 
1213 	if (!system_supports_fpsimd())
1214 		return;
1215 
1216 	busy = __this_cpu_xchg(kernel_neon_busy, false);
1217 	WARN_ON(!busy);	/* No matching kernel_neon_begin()? */
1218 
1219 	preempt_enable();
1220 }
1221 EXPORT_SYMBOL(kernel_neon_end);
1222 
1223 #ifdef CONFIG_EFI
1224 
1225 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1226 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1227 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1228 
1229 /*
1230  * EFI runtime services support functions
1231  *
1232  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1233  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1234  * is always used rather than being an optional accelerator.
1235  *
1236  * These functions provide the necessary support for ensuring FPSIMD
1237  * save/restore in the contexts from which EFI is used.
1238  *
1239  * Do not use them for any other purpose -- if tempted to do so, you are
1240  * either doing something wrong or you need to propose some refactoring.
1241  */
1242 
1243 /*
1244  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1245  */
1246 void __efi_fpsimd_begin(void)
1247 {
1248 	if (!system_supports_fpsimd())
1249 		return;
1250 
1251 	WARN_ON(preemptible());
1252 
1253 	if (may_use_simd()) {
1254 		kernel_neon_begin();
1255 	} else {
1256 		/*
1257 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1258 		 * preserving:
1259 		 */
1260 		if (system_supports_sve() && likely(efi_sve_state)) {
1261 			char *sve_state = this_cpu_ptr(efi_sve_state);
1262 
1263 			__this_cpu_write(efi_sve_state_used, true);
1264 
1265 			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
1266 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
1267 		} else {
1268 			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1269 		}
1270 
1271 		__this_cpu_write(efi_fpsimd_state_used, true);
1272 	}
1273 }
1274 
1275 /*
1276  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1277  */
1278 void __efi_fpsimd_end(void)
1279 {
1280 	if (!system_supports_fpsimd())
1281 		return;
1282 
1283 	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1284 		kernel_neon_end();
1285 	} else {
1286 		if (system_supports_sve() &&
1287 		    likely(__this_cpu_read(efi_sve_state_used))) {
1288 			char const *sve_state = this_cpu_ptr(efi_sve_state);
1289 
1290 			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
1291 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1292 				       sve_vq_from_vl(sve_get_vl()) - 1);
1293 
1294 			__this_cpu_write(efi_sve_state_used, false);
1295 		} else {
1296 			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1297 		}
1298 	}
1299 }
1300 
1301 #endif /* CONFIG_EFI */
1302 
1303 #endif /* CONFIG_KERNEL_MODE_NEON */
1304 
1305 #ifdef CONFIG_CPU_PM
1306 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1307 				  unsigned long cmd, void *v)
1308 {
1309 	switch (cmd) {
1310 	case CPU_PM_ENTER:
1311 		fpsimd_save();
1312 		fpsimd_flush_cpu_state();
1313 		break;
1314 	case CPU_PM_EXIT:
1315 		break;
1316 	case CPU_PM_ENTER_FAILED:
1317 	default:
1318 		return NOTIFY_DONE;
1319 	}
1320 	return NOTIFY_OK;
1321 }
1322 
1323 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1324 	.notifier_call = fpsimd_cpu_pm_notifier,
1325 };
1326 
1327 static void __init fpsimd_pm_init(void)
1328 {
1329 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1330 }
1331 
1332 #else
1333 static inline void fpsimd_pm_init(void) { }
1334 #endif /* CONFIG_CPU_PM */
1335 
1336 #ifdef CONFIG_HOTPLUG_CPU
1337 static int fpsimd_cpu_dead(unsigned int cpu)
1338 {
1339 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
1340 	return 0;
1341 }
1342 
1343 static inline void fpsimd_hotplug_init(void)
1344 {
1345 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1346 				  NULL, fpsimd_cpu_dead);
1347 }
1348 
1349 #else
1350 static inline void fpsimd_hotplug_init(void) { }
1351 #endif
1352 
1353 /*
1354  * FP/SIMD support code initialisation.
1355  */
1356 static int __init fpsimd_init(void)
1357 {
1358 	if (cpu_have_named_feature(FP)) {
1359 		fpsimd_pm_init();
1360 		fpsimd_hotplug_init();
1361 	} else {
1362 		pr_notice("Floating-point is not implemented\n");
1363 	}
1364 
1365 	if (!cpu_have_named_feature(ASIMD))
1366 		pr_notice("Advanced SIMD is not implemented\n");
1367 
1368 	return sve_sysctl_init();
1369 }
1370 core_initcall(fpsimd_init);
1371