xref: /openbmc/linux/arch/arm64/kernel/fpsimd.c (revision 4f6cce39)
1 /*
2  * FP/SIMD context switching and fault handling
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/cpu.h>
21 #include <linux/cpu_pm.h>
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/sched/signal.h>
25 #include <linux/signal.h>
26 #include <linux/hardirq.h>
27 
28 #include <asm/fpsimd.h>
29 #include <asm/cputype.h>
30 
31 #define FPEXC_IOF	(1 << 0)
32 #define FPEXC_DZF	(1 << 1)
33 #define FPEXC_OFF	(1 << 2)
34 #define FPEXC_UFF	(1 << 3)
35 #define FPEXC_IXF	(1 << 4)
36 #define FPEXC_IDF	(1 << 7)
37 
38 /*
39  * In order to reduce the number of times the FPSIMD state is needlessly saved
40  * and restored, we need to keep track of two things:
41  * (a) for each task, we need to remember which CPU was the last one to have
42  *     the task's FPSIMD state loaded into its FPSIMD registers;
43  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
44  *     been loaded into its FPSIMD registers most recently, or whether it has
45  *     been used to perform kernel mode NEON in the meantime.
46  *
47  * For (a), we add a 'cpu' field to struct fpsimd_state, which gets updated to
48  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
49  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
50  * address of the userland FPSIMD state of the task that was loaded onto the CPU
51  * the most recently, or NULL if kernel mode NEON has been performed after that.
52  *
53  * With this in place, we no longer have to restore the next FPSIMD state right
54  * when switching between tasks. Instead, we can defer this check to userland
55  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
56  * task's fpsimd_state.cpu are still mutually in sync. If this is the case, we
57  * can omit the FPSIMD restore.
58  *
59  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
60  * indicate whether or not the userland FPSIMD state of the current task is
61  * present in the registers. The flag is set unless the FPSIMD registers of this
62  * CPU currently contain the most recent userland FPSIMD state of the current
63  * task.
64  *
65  * For a certain task, the sequence may look something like this:
66  * - the task gets scheduled in; if both the task's fpsimd_state.cpu field
67  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
68  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
69  *   cleared, otherwise it is set;
70  *
71  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
72  *   userland FPSIMD state is copied from memory to the registers, the task's
73  *   fpsimd_state.cpu field is set to the id of the current CPU, the current
74  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
75  *   TIF_FOREIGN_FPSTATE flag is cleared;
76  *
77  * - the task executes an ordinary syscall; upon return to userland, the
78  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
79  *   restored;
80  *
81  * - the task executes a syscall which executes some NEON instructions; this is
82  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
83  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
84  *   and sets the TIF_FOREIGN_FPSTATE flag;
85  *
86  * - the task gets preempted after kernel_neon_end() is called; as we have not
87  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
88  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
89  */
90 static DEFINE_PER_CPU(struct fpsimd_state *, fpsimd_last_state);
91 
92 /*
93  * Trapped FP/ASIMD access.
94  */
95 void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
96 {
97 	/* TODO: implement lazy context saving/restoring */
98 	WARN_ON(1);
99 }
100 
101 /*
102  * Raise a SIGFPE for the current process.
103  */
104 void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
105 {
106 	siginfo_t info;
107 	unsigned int si_code = 0;
108 
109 	if (esr & FPEXC_IOF)
110 		si_code = FPE_FLTINV;
111 	else if (esr & FPEXC_DZF)
112 		si_code = FPE_FLTDIV;
113 	else if (esr & FPEXC_OFF)
114 		si_code = FPE_FLTOVF;
115 	else if (esr & FPEXC_UFF)
116 		si_code = FPE_FLTUND;
117 	else if (esr & FPEXC_IXF)
118 		si_code = FPE_FLTRES;
119 
120 	memset(&info, 0, sizeof(info));
121 	info.si_signo = SIGFPE;
122 	info.si_code = si_code;
123 	info.si_addr = (void __user *)instruction_pointer(regs);
124 
125 	send_sig_info(SIGFPE, &info, current);
126 }
127 
128 void fpsimd_thread_switch(struct task_struct *next)
129 {
130 	if (!system_supports_fpsimd())
131 		return;
132 	/*
133 	 * Save the current FPSIMD state to memory, but only if whatever is in
134 	 * the registers is in fact the most recent userland FPSIMD state of
135 	 * 'current'.
136 	 */
137 	if (current->mm && !test_thread_flag(TIF_FOREIGN_FPSTATE))
138 		fpsimd_save_state(&current->thread.fpsimd_state);
139 
140 	if (next->mm) {
141 		/*
142 		 * If we are switching to a task whose most recent userland
143 		 * FPSIMD state is already in the registers of *this* cpu,
144 		 * we can skip loading the state from memory. Otherwise, set
145 		 * the TIF_FOREIGN_FPSTATE flag so the state will be loaded
146 		 * upon the next return to userland.
147 		 */
148 		struct fpsimd_state *st = &next->thread.fpsimd_state;
149 
150 		if (__this_cpu_read(fpsimd_last_state) == st
151 		    && st->cpu == smp_processor_id())
152 			clear_ti_thread_flag(task_thread_info(next),
153 					     TIF_FOREIGN_FPSTATE);
154 		else
155 			set_ti_thread_flag(task_thread_info(next),
156 					   TIF_FOREIGN_FPSTATE);
157 	}
158 }
159 
160 void fpsimd_flush_thread(void)
161 {
162 	if (!system_supports_fpsimd())
163 		return;
164 	memset(&current->thread.fpsimd_state, 0, sizeof(struct fpsimd_state));
165 	fpsimd_flush_task_state(current);
166 	set_thread_flag(TIF_FOREIGN_FPSTATE);
167 }
168 
169 /*
170  * Save the userland FPSIMD state of 'current' to memory, but only if the state
171  * currently held in the registers does in fact belong to 'current'
172  */
173 void fpsimd_preserve_current_state(void)
174 {
175 	if (!system_supports_fpsimd())
176 		return;
177 	preempt_disable();
178 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE))
179 		fpsimd_save_state(&current->thread.fpsimd_state);
180 	preempt_enable();
181 }
182 
183 /*
184  * Load the userland FPSIMD state of 'current' from memory, but only if the
185  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
186  * state of 'current'
187  */
188 void fpsimd_restore_current_state(void)
189 {
190 	if (!system_supports_fpsimd())
191 		return;
192 	preempt_disable();
193 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
194 		struct fpsimd_state *st = &current->thread.fpsimd_state;
195 
196 		fpsimd_load_state(st);
197 		this_cpu_write(fpsimd_last_state, st);
198 		st->cpu = smp_processor_id();
199 	}
200 	preempt_enable();
201 }
202 
203 /*
204  * Load an updated userland FPSIMD state for 'current' from memory and set the
205  * flag that indicates that the FPSIMD register contents are the most recent
206  * FPSIMD state of 'current'
207  */
208 void fpsimd_update_current_state(struct fpsimd_state *state)
209 {
210 	if (!system_supports_fpsimd())
211 		return;
212 	preempt_disable();
213 	fpsimd_load_state(state);
214 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
215 		struct fpsimd_state *st = &current->thread.fpsimd_state;
216 
217 		this_cpu_write(fpsimd_last_state, st);
218 		st->cpu = smp_processor_id();
219 	}
220 	preempt_enable();
221 }
222 
223 /*
224  * Invalidate live CPU copies of task t's FPSIMD state
225  */
226 void fpsimd_flush_task_state(struct task_struct *t)
227 {
228 	t->thread.fpsimd_state.cpu = NR_CPUS;
229 }
230 
231 #ifdef CONFIG_KERNEL_MODE_NEON
232 
233 static DEFINE_PER_CPU(struct fpsimd_partial_state, hardirq_fpsimdstate);
234 static DEFINE_PER_CPU(struct fpsimd_partial_state, softirq_fpsimdstate);
235 
236 /*
237  * Kernel-side NEON support functions
238  */
239 void kernel_neon_begin_partial(u32 num_regs)
240 {
241 	if (WARN_ON(!system_supports_fpsimd()))
242 		return;
243 	if (in_interrupt()) {
244 		struct fpsimd_partial_state *s = this_cpu_ptr(
245 			in_irq() ? &hardirq_fpsimdstate : &softirq_fpsimdstate);
246 
247 		BUG_ON(num_regs > 32);
248 		fpsimd_save_partial_state(s, roundup(num_regs, 2));
249 	} else {
250 		/*
251 		 * Save the userland FPSIMD state if we have one and if we
252 		 * haven't done so already. Clear fpsimd_last_state to indicate
253 		 * that there is no longer userland FPSIMD state in the
254 		 * registers.
255 		 */
256 		preempt_disable();
257 		if (current->mm &&
258 		    !test_and_set_thread_flag(TIF_FOREIGN_FPSTATE))
259 			fpsimd_save_state(&current->thread.fpsimd_state);
260 		this_cpu_write(fpsimd_last_state, NULL);
261 	}
262 }
263 EXPORT_SYMBOL(kernel_neon_begin_partial);
264 
265 void kernel_neon_end(void)
266 {
267 	if (!system_supports_fpsimd())
268 		return;
269 	if (in_interrupt()) {
270 		struct fpsimd_partial_state *s = this_cpu_ptr(
271 			in_irq() ? &hardirq_fpsimdstate : &softirq_fpsimdstate);
272 		fpsimd_load_partial_state(s);
273 	} else {
274 		preempt_enable();
275 	}
276 }
277 EXPORT_SYMBOL(kernel_neon_end);
278 
279 #endif /* CONFIG_KERNEL_MODE_NEON */
280 
281 #ifdef CONFIG_CPU_PM
282 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
283 				  unsigned long cmd, void *v)
284 {
285 	switch (cmd) {
286 	case CPU_PM_ENTER:
287 		if (current->mm && !test_thread_flag(TIF_FOREIGN_FPSTATE))
288 			fpsimd_save_state(&current->thread.fpsimd_state);
289 		this_cpu_write(fpsimd_last_state, NULL);
290 		break;
291 	case CPU_PM_EXIT:
292 		if (current->mm)
293 			set_thread_flag(TIF_FOREIGN_FPSTATE);
294 		break;
295 	case CPU_PM_ENTER_FAILED:
296 	default:
297 		return NOTIFY_DONE;
298 	}
299 	return NOTIFY_OK;
300 }
301 
302 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
303 	.notifier_call = fpsimd_cpu_pm_notifier,
304 };
305 
306 static void __init fpsimd_pm_init(void)
307 {
308 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
309 }
310 
311 #else
312 static inline void fpsimd_pm_init(void) { }
313 #endif /* CONFIG_CPU_PM */
314 
315 #ifdef CONFIG_HOTPLUG_CPU
316 static int fpsimd_cpu_dead(unsigned int cpu)
317 {
318 	per_cpu(fpsimd_last_state, cpu) = NULL;
319 	return 0;
320 }
321 
322 static inline void fpsimd_hotplug_init(void)
323 {
324 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
325 				  NULL, fpsimd_cpu_dead);
326 }
327 
328 #else
329 static inline void fpsimd_hotplug_init(void) { }
330 #endif
331 
332 /*
333  * FP/SIMD support code initialisation.
334  */
335 static int __init fpsimd_init(void)
336 {
337 	if (elf_hwcap & HWCAP_FP) {
338 		fpsimd_pm_init();
339 		fpsimd_hotplug_init();
340 	} else {
341 		pr_notice("Floating-point is not implemented\n");
342 	}
343 
344 	if (!(elf_hwcap & HWCAP_ASIMD))
345 		pr_notice("Advanced SIMD is not implemented\n");
346 
347 	return 0;
348 }
349 late_initcall(fpsimd_init);
350