xref: /openbmc/linux/arch/arm64/kernel/fpsimd.c (revision 4b4f3acc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FP/SIMD context switching and fault handling
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  * Author: Catalin Marinas <catalin.marinas@arm.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/kernel.h>
18 #include <linux/linkage.h>
19 #include <linux/irqflags.h>
20 #include <linux/init.h>
21 #include <linux/percpu.h>
22 #include <linux/prctl.h>
23 #include <linux/preempt.h>
24 #include <linux/ptrace.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/signal.h>
28 #include <linux/slab.h>
29 #include <linux/stddef.h>
30 #include <linux/sysctl.h>
31 #include <linux/swab.h>
32 
33 #include <asm/esr.h>
34 #include <asm/fpsimd.h>
35 #include <asm/cpufeature.h>
36 #include <asm/cputype.h>
37 #include <asm/processor.h>
38 #include <asm/simd.h>
39 #include <asm/sigcontext.h>
40 #include <asm/sysreg.h>
41 #include <asm/traps.h>
42 #include <asm/virt.h>
43 
44 #define FPEXC_IOF	(1 << 0)
45 #define FPEXC_DZF	(1 << 1)
46 #define FPEXC_OFF	(1 << 2)
47 #define FPEXC_UFF	(1 << 3)
48 #define FPEXC_IXF	(1 << 4)
49 #define FPEXC_IDF	(1 << 7)
50 
51 /*
52  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
53  *
54  * In order to reduce the number of times the FPSIMD state is needlessly saved
55  * and restored, we need to keep track of two things:
56  * (a) for each task, we need to remember which CPU was the last one to have
57  *     the task's FPSIMD state loaded into its FPSIMD registers;
58  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
59  *     been loaded into its FPSIMD registers most recently, or whether it has
60  *     been used to perform kernel mode NEON in the meantime.
61  *
62  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
63  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
64  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
65  * address of the userland FPSIMD state of the task that was loaded onto the CPU
66  * the most recently, or NULL if kernel mode NEON has been performed after that.
67  *
68  * With this in place, we no longer have to restore the next FPSIMD state right
69  * when switching between tasks. Instead, we can defer this check to userland
70  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
71  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
72  * can omit the FPSIMD restore.
73  *
74  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
75  * indicate whether or not the userland FPSIMD state of the current task is
76  * present in the registers. The flag is set unless the FPSIMD registers of this
77  * CPU currently contain the most recent userland FPSIMD state of the current
78  * task.
79  *
80  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
81  * save the task's FPSIMD context back to task_struct from softirq context.
82  * To prevent this from racing with the manipulation of the task's FPSIMD state
83  * from task context and thereby corrupting the state, it is necessary to
84  * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
85  * flag with local_bh_disable() unless softirqs are already masked.
86  *
87  * For a certain task, the sequence may look something like this:
88  * - the task gets scheduled in; if both the task's fpsimd_cpu field
89  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
90  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
91  *   cleared, otherwise it is set;
92  *
93  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
94  *   userland FPSIMD state is copied from memory to the registers, the task's
95  *   fpsimd_cpu field is set to the id of the current CPU, the current
96  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
97  *   TIF_FOREIGN_FPSTATE flag is cleared;
98  *
99  * - the task executes an ordinary syscall; upon return to userland, the
100  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
101  *   restored;
102  *
103  * - the task executes a syscall which executes some NEON instructions; this is
104  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
105  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
106  *   and sets the TIF_FOREIGN_FPSTATE flag;
107  *
108  * - the task gets preempted after kernel_neon_end() is called; as we have not
109  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
110  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
111  */
112 struct fpsimd_last_state_struct {
113 	struct user_fpsimd_state *st;
114 	void *sve_state;
115 	unsigned int sve_vl;
116 };
117 
118 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
119 
120 /* Default VL for tasks that don't set it explicitly: */
121 static int sve_default_vl = -1;
122 
123 #ifdef CONFIG_ARM64_SVE
124 
125 /* Maximum supported vector length across all CPUs (initially poisoned) */
126 int __ro_after_init sve_max_vl = SVE_VL_MIN;
127 int __ro_after_init sve_max_virtualisable_vl = SVE_VL_MIN;
128 
129 /*
130  * Set of available vector lengths,
131  * where length vq encoded as bit __vq_to_bit(vq):
132  */
133 __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
134 /* Set of vector lengths present on at least one cpu: */
135 static __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
136 
137 static void __percpu *efi_sve_state;
138 
139 #else /* ! CONFIG_ARM64_SVE */
140 
141 /* Dummy declaration for code that will be optimised out: */
142 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
143 extern __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
144 extern void __percpu *efi_sve_state;
145 
146 #endif /* ! CONFIG_ARM64_SVE */
147 
148 /*
149  * Call __sve_free() directly only if you know task can't be scheduled
150  * or preempted.
151  */
152 static void __sve_free(struct task_struct *task)
153 {
154 	kfree(task->thread.sve_state);
155 	task->thread.sve_state = NULL;
156 }
157 
158 static void sve_free(struct task_struct *task)
159 {
160 	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
161 
162 	__sve_free(task);
163 }
164 
165 /*
166  * TIF_SVE controls whether a task can use SVE without trapping while
167  * in userspace, and also the way a task's FPSIMD/SVE state is stored
168  * in thread_struct.
169  *
170  * The kernel uses this flag to track whether a user task is actively
171  * using SVE, and therefore whether full SVE register state needs to
172  * be tracked.  If not, the cheaper FPSIMD context handling code can
173  * be used instead of the more costly SVE equivalents.
174  *
175  *  * TIF_SVE set:
176  *
177  *    The task can execute SVE instructions while in userspace without
178  *    trapping to the kernel.
179  *
180  *    When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
181  *    corresponding Zn), P0-P15 and FFR are encoded in in
182  *    task->thread.sve_state, formatted appropriately for vector
183  *    length task->thread.sve_vl.
184  *
185  *    task->thread.sve_state must point to a valid buffer at least
186  *    sve_state_size(task) bytes in size.
187  *
188  *    During any syscall, the kernel may optionally clear TIF_SVE and
189  *    discard the vector state except for the FPSIMD subset.
190  *
191  *  * TIF_SVE clear:
192  *
193  *    An attempt by the user task to execute an SVE instruction causes
194  *    do_sve_acc() to be called, which does some preparation and then
195  *    sets TIF_SVE.
196  *
197  *    When stored, FPSIMD registers V0-V31 are encoded in
198  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
199  *    logically zero but not stored anywhere; P0-P15 and FFR are not
200  *    stored and have unspecified values from userspace's point of
201  *    view.  For hygiene purposes, the kernel zeroes them on next use,
202  *    but userspace is discouraged from relying on this.
203  *
204  *    task->thread.sve_state does not need to be non-NULL, valid or any
205  *    particular size: it must not be dereferenced.
206  *
207  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
208  *    irrespective of whether TIF_SVE is clear or set, since these are
209  *    not vector length dependent.
210  */
211 
212 /*
213  * Update current's FPSIMD/SVE registers from thread_struct.
214  *
215  * This function should be called only when the FPSIMD/SVE state in
216  * thread_struct is known to be up to date, when preparing to enter
217  * userspace.
218  *
219  * Softirqs (and preemption) must be disabled.
220  */
221 static void task_fpsimd_load(void)
222 {
223 	WARN_ON(!in_softirq() && !irqs_disabled());
224 
225 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
226 		sve_load_state(sve_pffr(&current->thread),
227 			       &current->thread.uw.fpsimd_state.fpsr,
228 			       sve_vq_from_vl(current->thread.sve_vl) - 1);
229 	else
230 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
231 }
232 
233 /*
234  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
235  * date with respect to the CPU registers.
236  *
237  * Softirqs (and preemption) must be disabled.
238  */
239 void fpsimd_save(void)
240 {
241 	struct fpsimd_last_state_struct const *last =
242 		this_cpu_ptr(&fpsimd_last_state);
243 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
244 
245 	WARN_ON(!in_softirq() && !irqs_disabled());
246 
247 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
248 		if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
249 			if (WARN_ON(sve_get_vl() != last->sve_vl)) {
250 				/*
251 				 * Can't save the user regs, so current would
252 				 * re-enter user with corrupt state.
253 				 * There's no way to recover, so kill it:
254 				 */
255 				force_signal_inject(SIGKILL, SI_KERNEL, 0);
256 				return;
257 			}
258 
259 			sve_save_state((char *)last->sve_state +
260 						sve_ffr_offset(last->sve_vl),
261 				       &last->st->fpsr);
262 		} else
263 			fpsimd_save_state(last->st);
264 	}
265 }
266 
267 /*
268  * All vector length selection from userspace comes through here.
269  * We're on a slow path, so some sanity-checks are included.
270  * If things go wrong there's a bug somewhere, but try to fall back to a
271  * safe choice.
272  */
273 static unsigned int find_supported_vector_length(unsigned int vl)
274 {
275 	int bit;
276 	int max_vl = sve_max_vl;
277 
278 	if (WARN_ON(!sve_vl_valid(vl)))
279 		vl = SVE_VL_MIN;
280 
281 	if (WARN_ON(!sve_vl_valid(max_vl)))
282 		max_vl = SVE_VL_MIN;
283 
284 	if (vl > max_vl)
285 		vl = max_vl;
286 
287 	bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
288 			    __vq_to_bit(sve_vq_from_vl(vl)));
289 	return sve_vl_from_vq(__bit_to_vq(bit));
290 }
291 
292 #ifdef CONFIG_SYSCTL
293 
294 static int sve_proc_do_default_vl(struct ctl_table *table, int write,
295 				  void __user *buffer, size_t *lenp,
296 				  loff_t *ppos)
297 {
298 	int ret;
299 	int vl = sve_default_vl;
300 	struct ctl_table tmp_table = {
301 		.data = &vl,
302 		.maxlen = sizeof(vl),
303 	};
304 
305 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
306 	if (ret || !write)
307 		return ret;
308 
309 	/* Writing -1 has the special meaning "set to max": */
310 	if (vl == -1)
311 		vl = sve_max_vl;
312 
313 	if (!sve_vl_valid(vl))
314 		return -EINVAL;
315 
316 	sve_default_vl = find_supported_vector_length(vl);
317 	return 0;
318 }
319 
320 static struct ctl_table sve_default_vl_table[] = {
321 	{
322 		.procname	= "sve_default_vector_length",
323 		.mode		= 0644,
324 		.proc_handler	= sve_proc_do_default_vl,
325 	},
326 	{ }
327 };
328 
329 static int __init sve_sysctl_init(void)
330 {
331 	if (system_supports_sve())
332 		if (!register_sysctl("abi", sve_default_vl_table))
333 			return -EINVAL;
334 
335 	return 0;
336 }
337 
338 #else /* ! CONFIG_SYSCTL */
339 static int __init sve_sysctl_init(void) { return 0; }
340 #endif /* ! CONFIG_SYSCTL */
341 
342 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
343 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
344 
345 #ifdef CONFIG_CPU_BIG_ENDIAN
346 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
347 {
348 	u64 a = swab64(x);
349 	u64 b = swab64(x >> 64);
350 
351 	return ((__uint128_t)a << 64) | b;
352 }
353 #else
354 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
355 {
356 	return x;
357 }
358 #endif
359 
360 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
361 
362 /*
363  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
364  * task->thread.sve_state.
365  *
366  * Task can be a non-runnable task, or current.  In the latter case,
367  * softirqs (and preemption) must be disabled.
368  * task->thread.sve_state must point to at least sve_state_size(task)
369  * bytes of allocated kernel memory.
370  * task->thread.uw.fpsimd_state must be up to date before calling this
371  * function.
372  */
373 static void fpsimd_to_sve(struct task_struct *task)
374 {
375 	unsigned int vq;
376 	void *sst = task->thread.sve_state;
377 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
378 	unsigned int i;
379 	__uint128_t *p;
380 
381 	if (!system_supports_sve())
382 		return;
383 
384 	vq = sve_vq_from_vl(task->thread.sve_vl);
385 	for (i = 0; i < 32; ++i) {
386 		p = (__uint128_t *)ZREG(sst, vq, i);
387 		*p = arm64_cpu_to_le128(fst->vregs[i]);
388 	}
389 }
390 
391 /*
392  * Transfer the SVE state in task->thread.sve_state to
393  * task->thread.uw.fpsimd_state.
394  *
395  * Task can be a non-runnable task, or current.  In the latter case,
396  * softirqs (and preemption) must be disabled.
397  * task->thread.sve_state must point to at least sve_state_size(task)
398  * bytes of allocated kernel memory.
399  * task->thread.sve_state must be up to date before calling this function.
400  */
401 static void sve_to_fpsimd(struct task_struct *task)
402 {
403 	unsigned int vq;
404 	void const *sst = task->thread.sve_state;
405 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
406 	unsigned int i;
407 	__uint128_t const *p;
408 
409 	if (!system_supports_sve())
410 		return;
411 
412 	vq = sve_vq_from_vl(task->thread.sve_vl);
413 	for (i = 0; i < 32; ++i) {
414 		p = (__uint128_t const *)ZREG(sst, vq, i);
415 		fst->vregs[i] = arm64_le128_to_cpu(*p);
416 	}
417 }
418 
419 #ifdef CONFIG_ARM64_SVE
420 
421 /*
422  * Return how many bytes of memory are required to store the full SVE
423  * state for task, given task's currently configured vector length.
424  */
425 size_t sve_state_size(struct task_struct const *task)
426 {
427 	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
428 }
429 
430 /*
431  * Ensure that task->thread.sve_state is allocated and sufficiently large.
432  *
433  * This function should be used only in preparation for replacing
434  * task->thread.sve_state with new data.  The memory is always zeroed
435  * here to prevent stale data from showing through: this is done in
436  * the interest of testability and predictability: except in the
437  * do_sve_acc() case, there is no ABI requirement to hide stale data
438  * written previously be task.
439  */
440 void sve_alloc(struct task_struct *task)
441 {
442 	if (task->thread.sve_state) {
443 		memset(task->thread.sve_state, 0, sve_state_size(current));
444 		return;
445 	}
446 
447 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
448 	task->thread.sve_state =
449 		kzalloc(sve_state_size(task), GFP_KERNEL);
450 
451 	/*
452 	 * If future SVE revisions can have larger vectors though,
453 	 * this may cease to be true:
454 	 */
455 	BUG_ON(!task->thread.sve_state);
456 }
457 
458 
459 /*
460  * Ensure that task->thread.sve_state is up to date with respect to
461  * the user task, irrespective of when SVE is in use or not.
462  *
463  * This should only be called by ptrace.  task must be non-runnable.
464  * task->thread.sve_state must point to at least sve_state_size(task)
465  * bytes of allocated kernel memory.
466  */
467 void fpsimd_sync_to_sve(struct task_struct *task)
468 {
469 	if (!test_tsk_thread_flag(task, TIF_SVE))
470 		fpsimd_to_sve(task);
471 }
472 
473 /*
474  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
475  * the user task, irrespective of whether SVE is in use or not.
476  *
477  * This should only be called by ptrace.  task must be non-runnable.
478  * task->thread.sve_state must point to at least sve_state_size(task)
479  * bytes of allocated kernel memory.
480  */
481 void sve_sync_to_fpsimd(struct task_struct *task)
482 {
483 	if (test_tsk_thread_flag(task, TIF_SVE))
484 		sve_to_fpsimd(task);
485 }
486 
487 /*
488  * Ensure that task->thread.sve_state is up to date with respect to
489  * the task->thread.uw.fpsimd_state.
490  *
491  * This should only be called by ptrace to merge new FPSIMD register
492  * values into a task for which SVE is currently active.
493  * task must be non-runnable.
494  * task->thread.sve_state must point to at least sve_state_size(task)
495  * bytes of allocated kernel memory.
496  * task->thread.uw.fpsimd_state must already have been initialised with
497  * the new FPSIMD register values to be merged in.
498  */
499 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
500 {
501 	unsigned int vq;
502 	void *sst = task->thread.sve_state;
503 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
504 	unsigned int i;
505 	__uint128_t *p;
506 
507 	if (!test_tsk_thread_flag(task, TIF_SVE))
508 		return;
509 
510 	vq = sve_vq_from_vl(task->thread.sve_vl);
511 
512 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
513 
514 	for (i = 0; i < 32; ++i) {
515 		p = (__uint128_t *)ZREG(sst, vq, i);
516 		*p = arm64_cpu_to_le128(fst->vregs[i]);
517 	}
518 }
519 
520 int sve_set_vector_length(struct task_struct *task,
521 			  unsigned long vl, unsigned long flags)
522 {
523 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
524 				     PR_SVE_SET_VL_ONEXEC))
525 		return -EINVAL;
526 
527 	if (!sve_vl_valid(vl))
528 		return -EINVAL;
529 
530 	/*
531 	 * Clamp to the maximum vector length that VL-agnostic SVE code can
532 	 * work with.  A flag may be assigned in the future to allow setting
533 	 * of larger vector lengths without confusing older software.
534 	 */
535 	if (vl > SVE_VL_ARCH_MAX)
536 		vl = SVE_VL_ARCH_MAX;
537 
538 	vl = find_supported_vector_length(vl);
539 
540 	if (flags & (PR_SVE_VL_INHERIT |
541 		     PR_SVE_SET_VL_ONEXEC))
542 		task->thread.sve_vl_onexec = vl;
543 	else
544 		/* Reset VL to system default on next exec: */
545 		task->thread.sve_vl_onexec = 0;
546 
547 	/* Only actually set the VL if not deferred: */
548 	if (flags & PR_SVE_SET_VL_ONEXEC)
549 		goto out;
550 
551 	if (vl == task->thread.sve_vl)
552 		goto out;
553 
554 	/*
555 	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
556 	 * write any live register state back to task_struct, and convert to a
557 	 * non-SVE thread.
558 	 */
559 	if (task == current) {
560 		local_bh_disable();
561 
562 		fpsimd_save();
563 	}
564 
565 	fpsimd_flush_task_state(task);
566 	if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
567 		sve_to_fpsimd(task);
568 
569 	if (task == current)
570 		local_bh_enable();
571 
572 	/*
573 	 * Force reallocation of task SVE state to the correct size
574 	 * on next use:
575 	 */
576 	sve_free(task);
577 
578 	task->thread.sve_vl = vl;
579 
580 out:
581 	update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
582 			       flags & PR_SVE_VL_INHERIT);
583 
584 	return 0;
585 }
586 
587 /*
588  * Encode the current vector length and flags for return.
589  * This is only required for prctl(): ptrace has separate fields
590  *
591  * flags are as for sve_set_vector_length().
592  */
593 static int sve_prctl_status(unsigned long flags)
594 {
595 	int ret;
596 
597 	if (flags & PR_SVE_SET_VL_ONEXEC)
598 		ret = current->thread.sve_vl_onexec;
599 	else
600 		ret = current->thread.sve_vl;
601 
602 	if (test_thread_flag(TIF_SVE_VL_INHERIT))
603 		ret |= PR_SVE_VL_INHERIT;
604 
605 	return ret;
606 }
607 
608 /* PR_SVE_SET_VL */
609 int sve_set_current_vl(unsigned long arg)
610 {
611 	unsigned long vl, flags;
612 	int ret;
613 
614 	vl = arg & PR_SVE_VL_LEN_MASK;
615 	flags = arg & ~vl;
616 
617 	if (!system_supports_sve())
618 		return -EINVAL;
619 
620 	ret = sve_set_vector_length(current, vl, flags);
621 	if (ret)
622 		return ret;
623 
624 	return sve_prctl_status(flags);
625 }
626 
627 /* PR_SVE_GET_VL */
628 int sve_get_current_vl(void)
629 {
630 	if (!system_supports_sve())
631 		return -EINVAL;
632 
633 	return sve_prctl_status(0);
634 }
635 
636 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
637 {
638 	unsigned int vq, vl;
639 	unsigned long zcr;
640 
641 	bitmap_zero(map, SVE_VQ_MAX);
642 
643 	zcr = ZCR_ELx_LEN_MASK;
644 	zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
645 
646 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
647 		write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
648 		vl = sve_get_vl();
649 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
650 		set_bit(__vq_to_bit(vq), map);
651 	}
652 }
653 
654 /*
655  * Initialise the set of known supported VQs for the boot CPU.
656  * This is called during kernel boot, before secondary CPUs are brought up.
657  */
658 void __init sve_init_vq_map(void)
659 {
660 	sve_probe_vqs(sve_vq_map);
661 	bitmap_copy(sve_vq_partial_map, sve_vq_map, SVE_VQ_MAX);
662 }
663 
664 /*
665  * If we haven't committed to the set of supported VQs yet, filter out
666  * those not supported by the current CPU.
667  * This function is called during the bring-up of early secondary CPUs only.
668  */
669 void sve_update_vq_map(void)
670 {
671 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
672 
673 	sve_probe_vqs(tmp_map);
674 	bitmap_and(sve_vq_map, sve_vq_map, tmp_map, SVE_VQ_MAX);
675 	bitmap_or(sve_vq_partial_map, sve_vq_partial_map, tmp_map, SVE_VQ_MAX);
676 }
677 
678 /*
679  * Check whether the current CPU supports all VQs in the committed set.
680  * This function is called during the bring-up of late secondary CPUs only.
681  */
682 int sve_verify_vq_map(void)
683 {
684 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
685 	unsigned long b;
686 
687 	sve_probe_vqs(tmp_map);
688 
689 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
690 	if (bitmap_intersects(tmp_map, sve_vq_map, SVE_VQ_MAX)) {
691 		pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
692 			smp_processor_id());
693 		return -EINVAL;
694 	}
695 
696 	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
697 		return 0;
698 
699 	/*
700 	 * For KVM, it is necessary to ensure that this CPU doesn't
701 	 * support any vector length that guests may have probed as
702 	 * unsupported.
703 	 */
704 
705 	/* Recover the set of supported VQs: */
706 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
707 	/* Find VQs supported that are not globally supported: */
708 	bitmap_andnot(tmp_map, tmp_map, sve_vq_map, SVE_VQ_MAX);
709 
710 	/* Find the lowest such VQ, if any: */
711 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
712 	if (b >= SVE_VQ_MAX)
713 		return 0; /* no mismatches */
714 
715 	/*
716 	 * Mismatches above sve_max_virtualisable_vl are fine, since
717 	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
718 	 */
719 	if (sve_vl_from_vq(__bit_to_vq(b)) <= sve_max_virtualisable_vl) {
720 		pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n",
721 			smp_processor_id());
722 		return -EINVAL;
723 	}
724 
725 	return 0;
726 }
727 
728 static void __init sve_efi_setup(void)
729 {
730 	if (!IS_ENABLED(CONFIG_EFI))
731 		return;
732 
733 	/*
734 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
735 	 * This is evidence of a crippled system and we are returning void,
736 	 * so no attempt is made to handle this situation here.
737 	 */
738 	if (!sve_vl_valid(sve_max_vl))
739 		goto fail;
740 
741 	efi_sve_state = __alloc_percpu(
742 		SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
743 	if (!efi_sve_state)
744 		goto fail;
745 
746 	return;
747 
748 fail:
749 	panic("Cannot allocate percpu memory for EFI SVE save/restore");
750 }
751 
752 /*
753  * Enable SVE for EL1.
754  * Intended for use by the cpufeatures code during CPU boot.
755  */
756 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
757 {
758 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
759 	isb();
760 }
761 
762 /*
763  * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
764  * vector length.
765  *
766  * Use only if SVE is present.
767  * This function clobbers the SVE vector length.
768  */
769 u64 read_zcr_features(void)
770 {
771 	u64 zcr;
772 	unsigned int vq_max;
773 
774 	/*
775 	 * Set the maximum possible VL, and write zeroes to all other
776 	 * bits to see if they stick.
777 	 */
778 	sve_kernel_enable(NULL);
779 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
780 
781 	zcr = read_sysreg_s(SYS_ZCR_EL1);
782 	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
783 	vq_max = sve_vq_from_vl(sve_get_vl());
784 	zcr |= vq_max - 1; /* set LEN field to maximum effective value */
785 
786 	return zcr;
787 }
788 
789 void __init sve_setup(void)
790 {
791 	u64 zcr;
792 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
793 	unsigned long b;
794 
795 	if (!system_supports_sve())
796 		return;
797 
798 	/*
799 	 * The SVE architecture mandates support for 128-bit vectors,
800 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
801 	 * If something went wrong, at least try to patch it up:
802 	 */
803 	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
804 		set_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map);
805 
806 	zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
807 	sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
808 
809 	/*
810 	 * Sanity-check that the max VL we determined through CPU features
811 	 * corresponds properly to sve_vq_map.  If not, do our best:
812 	 */
813 	if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
814 		sve_max_vl = find_supported_vector_length(sve_max_vl);
815 
816 	/*
817 	 * For the default VL, pick the maximum supported value <= 64.
818 	 * VL == 64 is guaranteed not to grow the signal frame.
819 	 */
820 	sve_default_vl = find_supported_vector_length(64);
821 
822 	bitmap_andnot(tmp_map, sve_vq_partial_map, sve_vq_map,
823 		      SVE_VQ_MAX);
824 
825 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
826 	if (b >= SVE_VQ_MAX)
827 		/* No non-virtualisable VLs found */
828 		sve_max_virtualisable_vl = SVE_VQ_MAX;
829 	else if (WARN_ON(b == SVE_VQ_MAX - 1))
830 		/* No virtualisable VLs?  This is architecturally forbidden. */
831 		sve_max_virtualisable_vl = SVE_VQ_MIN;
832 	else /* b + 1 < SVE_VQ_MAX */
833 		sve_max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
834 
835 	if (sve_max_virtualisable_vl > sve_max_vl)
836 		sve_max_virtualisable_vl = sve_max_vl;
837 
838 	pr_info("SVE: maximum available vector length %u bytes per vector\n",
839 		sve_max_vl);
840 	pr_info("SVE: default vector length %u bytes per vector\n",
841 		sve_default_vl);
842 
843 	/* KVM decides whether to support mismatched systems. Just warn here: */
844 	if (sve_max_virtualisable_vl < sve_max_vl)
845 		pr_warn("SVE: unvirtualisable vector lengths present\n");
846 
847 	sve_efi_setup();
848 }
849 
850 /*
851  * Called from the put_task_struct() path, which cannot get here
852  * unless dead_task is really dead and not schedulable.
853  */
854 void fpsimd_release_task(struct task_struct *dead_task)
855 {
856 	__sve_free(dead_task);
857 }
858 
859 #endif /* CONFIG_ARM64_SVE */
860 
861 /*
862  * Trapped SVE access
863  *
864  * Storage is allocated for the full SVE state, the current FPSIMD
865  * register contents are migrated across, and TIF_SVE is set so that
866  * the SVE access trap will be disabled the next time this task
867  * reaches ret_to_user.
868  *
869  * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
870  * would have disabled the SVE access trap for userspace during
871  * ret_to_user, making an SVE access trap impossible in that case.
872  */
873 asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
874 {
875 	/* Even if we chose not to use SVE, the hardware could still trap: */
876 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
877 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
878 		return;
879 	}
880 
881 	sve_alloc(current);
882 
883 	local_bh_disable();
884 
885 	fpsimd_save();
886 
887 	/* Force ret_to_user to reload the registers: */
888 	fpsimd_flush_task_state(current);
889 
890 	fpsimd_to_sve(current);
891 	if (test_and_set_thread_flag(TIF_SVE))
892 		WARN_ON(1); /* SVE access shouldn't have trapped */
893 
894 	local_bh_enable();
895 }
896 
897 /*
898  * Trapped FP/ASIMD access.
899  */
900 asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
901 {
902 	/* TODO: implement lazy context saving/restoring */
903 	WARN_ON(1);
904 }
905 
906 /*
907  * Raise a SIGFPE for the current process.
908  */
909 asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
910 {
911 	unsigned int si_code = FPE_FLTUNK;
912 
913 	if (esr & ESR_ELx_FP_EXC_TFV) {
914 		if (esr & FPEXC_IOF)
915 			si_code = FPE_FLTINV;
916 		else if (esr & FPEXC_DZF)
917 			si_code = FPE_FLTDIV;
918 		else if (esr & FPEXC_OFF)
919 			si_code = FPE_FLTOVF;
920 		else if (esr & FPEXC_UFF)
921 			si_code = FPE_FLTUND;
922 		else if (esr & FPEXC_IXF)
923 			si_code = FPE_FLTRES;
924 	}
925 
926 	send_sig_fault(SIGFPE, si_code,
927 		       (void __user *)instruction_pointer(regs),
928 		       current);
929 }
930 
931 void fpsimd_thread_switch(struct task_struct *next)
932 {
933 	bool wrong_task, wrong_cpu;
934 
935 	if (!system_supports_fpsimd())
936 		return;
937 
938 	/* Save unsaved fpsimd state, if any: */
939 	fpsimd_save();
940 
941 	/*
942 	 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
943 	 * state.  For kernel threads, FPSIMD registers are never loaded
944 	 * and wrong_task and wrong_cpu will always be true.
945 	 */
946 	wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
947 					&next->thread.uw.fpsimd_state;
948 	wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
949 
950 	update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
951 			       wrong_task || wrong_cpu);
952 }
953 
954 void fpsimd_flush_thread(void)
955 {
956 	int vl, supported_vl;
957 
958 	if (!system_supports_fpsimd())
959 		return;
960 
961 	local_bh_disable();
962 
963 	fpsimd_flush_task_state(current);
964 	memset(&current->thread.uw.fpsimd_state, 0,
965 	       sizeof(current->thread.uw.fpsimd_state));
966 
967 	if (system_supports_sve()) {
968 		clear_thread_flag(TIF_SVE);
969 		sve_free(current);
970 
971 		/*
972 		 * Reset the task vector length as required.
973 		 * This is where we ensure that all user tasks have a valid
974 		 * vector length configured: no kernel task can become a user
975 		 * task without an exec and hence a call to this function.
976 		 * By the time the first call to this function is made, all
977 		 * early hardware probing is complete, so sve_default_vl
978 		 * should be valid.
979 		 * If a bug causes this to go wrong, we make some noise and
980 		 * try to fudge thread.sve_vl to a safe value here.
981 		 */
982 		vl = current->thread.sve_vl_onexec ?
983 			current->thread.sve_vl_onexec : sve_default_vl;
984 
985 		if (WARN_ON(!sve_vl_valid(vl)))
986 			vl = SVE_VL_MIN;
987 
988 		supported_vl = find_supported_vector_length(vl);
989 		if (WARN_ON(supported_vl != vl))
990 			vl = supported_vl;
991 
992 		current->thread.sve_vl = vl;
993 
994 		/*
995 		 * If the task is not set to inherit, ensure that the vector
996 		 * length will be reset by a subsequent exec:
997 		 */
998 		if (!test_thread_flag(TIF_SVE_VL_INHERIT))
999 			current->thread.sve_vl_onexec = 0;
1000 	}
1001 
1002 	local_bh_enable();
1003 }
1004 
1005 /*
1006  * Save the userland FPSIMD state of 'current' to memory, but only if the state
1007  * currently held in the registers does in fact belong to 'current'
1008  */
1009 void fpsimd_preserve_current_state(void)
1010 {
1011 	if (!system_supports_fpsimd())
1012 		return;
1013 
1014 	local_bh_disable();
1015 	fpsimd_save();
1016 	local_bh_enable();
1017 }
1018 
1019 /*
1020  * Like fpsimd_preserve_current_state(), but ensure that
1021  * current->thread.uw.fpsimd_state is updated so that it can be copied to
1022  * the signal frame.
1023  */
1024 void fpsimd_signal_preserve_current_state(void)
1025 {
1026 	fpsimd_preserve_current_state();
1027 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
1028 		sve_to_fpsimd(current);
1029 }
1030 
1031 /*
1032  * Associate current's FPSIMD context with this cpu
1033  * Preemption must be disabled when calling this function.
1034  */
1035 void fpsimd_bind_task_to_cpu(void)
1036 {
1037 	struct fpsimd_last_state_struct *last =
1038 		this_cpu_ptr(&fpsimd_last_state);
1039 
1040 	last->st = &current->thread.uw.fpsimd_state;
1041 	last->sve_state = current->thread.sve_state;
1042 	last->sve_vl = current->thread.sve_vl;
1043 	current->thread.fpsimd_cpu = smp_processor_id();
1044 
1045 	if (system_supports_sve()) {
1046 		/* Toggle SVE trapping for userspace if needed */
1047 		if (test_thread_flag(TIF_SVE))
1048 			sve_user_enable();
1049 		else
1050 			sve_user_disable();
1051 
1052 		/* Serialised by exception return to user */
1053 	}
1054 }
1055 
1056 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1057 			      unsigned int sve_vl)
1058 {
1059 	struct fpsimd_last_state_struct *last =
1060 		this_cpu_ptr(&fpsimd_last_state);
1061 
1062 	WARN_ON(!in_softirq() && !irqs_disabled());
1063 
1064 	last->st = st;
1065 	last->sve_state = sve_state;
1066 	last->sve_vl = sve_vl;
1067 }
1068 
1069 /*
1070  * Load the userland FPSIMD state of 'current' from memory, but only if the
1071  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1072  * state of 'current'
1073  */
1074 void fpsimd_restore_current_state(void)
1075 {
1076 	if (!system_supports_fpsimd())
1077 		return;
1078 
1079 	local_bh_disable();
1080 
1081 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1082 		task_fpsimd_load();
1083 		fpsimd_bind_task_to_cpu();
1084 	}
1085 
1086 	local_bh_enable();
1087 }
1088 
1089 /*
1090  * Load an updated userland FPSIMD state for 'current' from memory and set the
1091  * flag that indicates that the FPSIMD register contents are the most recent
1092  * FPSIMD state of 'current'
1093  */
1094 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1095 {
1096 	if (!system_supports_fpsimd())
1097 		return;
1098 
1099 	local_bh_disable();
1100 
1101 	current->thread.uw.fpsimd_state = *state;
1102 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
1103 		fpsimd_to_sve(current);
1104 
1105 	task_fpsimd_load();
1106 	fpsimd_bind_task_to_cpu();
1107 
1108 	clear_thread_flag(TIF_FOREIGN_FPSTATE);
1109 
1110 	local_bh_enable();
1111 }
1112 
1113 /*
1114  * Invalidate live CPU copies of task t's FPSIMD state
1115  *
1116  * This function may be called with preemption enabled.  The barrier()
1117  * ensures that the assignment to fpsimd_cpu is visible to any
1118  * preemption/softirq that could race with set_tsk_thread_flag(), so
1119  * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1120  *
1121  * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1122  * subsequent code.
1123  */
1124 void fpsimd_flush_task_state(struct task_struct *t)
1125 {
1126 	t->thread.fpsimd_cpu = NR_CPUS;
1127 
1128 	barrier();
1129 	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1130 
1131 	barrier();
1132 }
1133 
1134 /*
1135  * Invalidate any task's FPSIMD state that is present on this cpu.
1136  * This function must be called with softirqs disabled.
1137  */
1138 void fpsimd_flush_cpu_state(void)
1139 {
1140 	__this_cpu_write(fpsimd_last_state.st, NULL);
1141 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1142 }
1143 
1144 #ifdef CONFIG_KERNEL_MODE_NEON
1145 
1146 DEFINE_PER_CPU(bool, kernel_neon_busy);
1147 EXPORT_PER_CPU_SYMBOL(kernel_neon_busy);
1148 
1149 /*
1150  * Kernel-side NEON support functions
1151  */
1152 
1153 /*
1154  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1155  * context
1156  *
1157  * Must not be called unless may_use_simd() returns true.
1158  * Task context in the FPSIMD registers is saved back to memory as necessary.
1159  *
1160  * A matching call to kernel_neon_end() must be made before returning from the
1161  * calling context.
1162  *
1163  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1164  * called.
1165  */
1166 void kernel_neon_begin(void)
1167 {
1168 	if (WARN_ON(!system_supports_fpsimd()))
1169 		return;
1170 
1171 	BUG_ON(!may_use_simd());
1172 
1173 	local_bh_disable();
1174 
1175 	__this_cpu_write(kernel_neon_busy, true);
1176 
1177 	/* Save unsaved fpsimd state, if any: */
1178 	fpsimd_save();
1179 
1180 	/* Invalidate any task state remaining in the fpsimd regs: */
1181 	fpsimd_flush_cpu_state();
1182 
1183 	preempt_disable();
1184 
1185 	local_bh_enable();
1186 }
1187 EXPORT_SYMBOL(kernel_neon_begin);
1188 
1189 /*
1190  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1191  *
1192  * Must be called from a context in which kernel_neon_begin() was previously
1193  * called, with no call to kernel_neon_end() in the meantime.
1194  *
1195  * The caller must not use the FPSIMD registers after this function is called,
1196  * unless kernel_neon_begin() is called again in the meantime.
1197  */
1198 void kernel_neon_end(void)
1199 {
1200 	bool busy;
1201 
1202 	if (!system_supports_fpsimd())
1203 		return;
1204 
1205 	busy = __this_cpu_xchg(kernel_neon_busy, false);
1206 	WARN_ON(!busy);	/* No matching kernel_neon_begin()? */
1207 
1208 	preempt_enable();
1209 }
1210 EXPORT_SYMBOL(kernel_neon_end);
1211 
1212 #ifdef CONFIG_EFI
1213 
1214 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1215 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1216 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1217 
1218 /*
1219  * EFI runtime services support functions
1220  *
1221  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1222  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1223  * is always used rather than being an optional accelerator.
1224  *
1225  * These functions provide the necessary support for ensuring FPSIMD
1226  * save/restore in the contexts from which EFI is used.
1227  *
1228  * Do not use them for any other purpose -- if tempted to do so, you are
1229  * either doing something wrong or you need to propose some refactoring.
1230  */
1231 
1232 /*
1233  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1234  */
1235 void __efi_fpsimd_begin(void)
1236 {
1237 	if (!system_supports_fpsimd())
1238 		return;
1239 
1240 	WARN_ON(preemptible());
1241 
1242 	if (may_use_simd()) {
1243 		kernel_neon_begin();
1244 	} else {
1245 		/*
1246 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1247 		 * preserving:
1248 		 */
1249 		if (system_supports_sve() && likely(efi_sve_state)) {
1250 			char *sve_state = this_cpu_ptr(efi_sve_state);
1251 
1252 			__this_cpu_write(efi_sve_state_used, true);
1253 
1254 			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
1255 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
1256 		} else {
1257 			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1258 		}
1259 
1260 		__this_cpu_write(efi_fpsimd_state_used, true);
1261 	}
1262 }
1263 
1264 /*
1265  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1266  */
1267 void __efi_fpsimd_end(void)
1268 {
1269 	if (!system_supports_fpsimd())
1270 		return;
1271 
1272 	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1273 		kernel_neon_end();
1274 	} else {
1275 		if (system_supports_sve() &&
1276 		    likely(__this_cpu_read(efi_sve_state_used))) {
1277 			char const *sve_state = this_cpu_ptr(efi_sve_state);
1278 
1279 			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
1280 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1281 				       sve_vq_from_vl(sve_get_vl()) - 1);
1282 
1283 			__this_cpu_write(efi_sve_state_used, false);
1284 		} else {
1285 			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1286 		}
1287 	}
1288 }
1289 
1290 #endif /* CONFIG_EFI */
1291 
1292 #endif /* CONFIG_KERNEL_MODE_NEON */
1293 
1294 #ifdef CONFIG_CPU_PM
1295 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1296 				  unsigned long cmd, void *v)
1297 {
1298 	switch (cmd) {
1299 	case CPU_PM_ENTER:
1300 		fpsimd_save();
1301 		fpsimd_flush_cpu_state();
1302 		break;
1303 	case CPU_PM_EXIT:
1304 		break;
1305 	case CPU_PM_ENTER_FAILED:
1306 	default:
1307 		return NOTIFY_DONE;
1308 	}
1309 	return NOTIFY_OK;
1310 }
1311 
1312 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1313 	.notifier_call = fpsimd_cpu_pm_notifier,
1314 };
1315 
1316 static void __init fpsimd_pm_init(void)
1317 {
1318 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1319 }
1320 
1321 #else
1322 static inline void fpsimd_pm_init(void) { }
1323 #endif /* CONFIG_CPU_PM */
1324 
1325 #ifdef CONFIG_HOTPLUG_CPU
1326 static int fpsimd_cpu_dead(unsigned int cpu)
1327 {
1328 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
1329 	return 0;
1330 }
1331 
1332 static inline void fpsimd_hotplug_init(void)
1333 {
1334 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1335 				  NULL, fpsimd_cpu_dead);
1336 }
1337 
1338 #else
1339 static inline void fpsimd_hotplug_init(void) { }
1340 #endif
1341 
1342 /*
1343  * FP/SIMD support code initialisation.
1344  */
1345 static int __init fpsimd_init(void)
1346 {
1347 	if (cpu_have_named_feature(FP)) {
1348 		fpsimd_pm_init();
1349 		fpsimd_hotplug_init();
1350 	} else {
1351 		pr_notice("Floating-point is not implemented\n");
1352 	}
1353 
1354 	if (!cpu_have_named_feature(ASIMD))
1355 		pr_notice("Advanced SIMD is not implemented\n");
1356 
1357 	return sve_sysctl_init();
1358 }
1359 core_initcall(fpsimd_init);
1360