1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * FP/SIMD context switching and fault handling 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * Author: Catalin Marinas <catalin.marinas@arm.com> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/bitops.h> 11 #include <linux/bottom_half.h> 12 #include <linux/bug.h> 13 #include <linux/cache.h> 14 #include <linux/compat.h> 15 #include <linux/cpu.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/kernel.h> 18 #include <linux/linkage.h> 19 #include <linux/irqflags.h> 20 #include <linux/init.h> 21 #include <linux/percpu.h> 22 #include <linux/prctl.h> 23 #include <linux/preempt.h> 24 #include <linux/ptrace.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/signal.h> 28 #include <linux/slab.h> 29 #include <linux/stddef.h> 30 #include <linux/sysctl.h> 31 #include <linux/swab.h> 32 33 #include <asm/esr.h> 34 #include <asm/fpsimd.h> 35 #include <asm/cpufeature.h> 36 #include <asm/cputype.h> 37 #include <asm/processor.h> 38 #include <asm/simd.h> 39 #include <asm/sigcontext.h> 40 #include <asm/sysreg.h> 41 #include <asm/traps.h> 42 #include <asm/virt.h> 43 44 #define FPEXC_IOF (1 << 0) 45 #define FPEXC_DZF (1 << 1) 46 #define FPEXC_OFF (1 << 2) 47 #define FPEXC_UFF (1 << 3) 48 #define FPEXC_IXF (1 << 4) 49 #define FPEXC_IDF (1 << 7) 50 51 /* 52 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.) 53 * 54 * In order to reduce the number of times the FPSIMD state is needlessly saved 55 * and restored, we need to keep track of two things: 56 * (a) for each task, we need to remember which CPU was the last one to have 57 * the task's FPSIMD state loaded into its FPSIMD registers; 58 * (b) for each CPU, we need to remember which task's userland FPSIMD state has 59 * been loaded into its FPSIMD registers most recently, or whether it has 60 * been used to perform kernel mode NEON in the meantime. 61 * 62 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to 63 * the id of the current CPU every time the state is loaded onto a CPU. For (b), 64 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the 65 * address of the userland FPSIMD state of the task that was loaded onto the CPU 66 * the most recently, or NULL if kernel mode NEON has been performed after that. 67 * 68 * With this in place, we no longer have to restore the next FPSIMD state right 69 * when switching between tasks. Instead, we can defer this check to userland 70 * resume, at which time we verify whether the CPU's fpsimd_last_state and the 71 * task's fpsimd_cpu are still mutually in sync. If this is the case, we 72 * can omit the FPSIMD restore. 73 * 74 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to 75 * indicate whether or not the userland FPSIMD state of the current task is 76 * present in the registers. The flag is set unless the FPSIMD registers of this 77 * CPU currently contain the most recent userland FPSIMD state of the current 78 * task. 79 * 80 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may 81 * save the task's FPSIMD context back to task_struct from softirq context. 82 * To prevent this from racing with the manipulation of the task's FPSIMD state 83 * from task context and thereby corrupting the state, it is necessary to 84 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE 85 * flag with local_bh_disable() unless softirqs are already masked. 86 * 87 * For a certain task, the sequence may look something like this: 88 * - the task gets scheduled in; if both the task's fpsimd_cpu field 89 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu 90 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is 91 * cleared, otherwise it is set; 92 * 93 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's 94 * userland FPSIMD state is copied from memory to the registers, the task's 95 * fpsimd_cpu field is set to the id of the current CPU, the current 96 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the 97 * TIF_FOREIGN_FPSTATE flag is cleared; 98 * 99 * - the task executes an ordinary syscall; upon return to userland, the 100 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is 101 * restored; 102 * 103 * - the task executes a syscall which executes some NEON instructions; this is 104 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD 105 * register contents to memory, clears the fpsimd_last_state per-cpu variable 106 * and sets the TIF_FOREIGN_FPSTATE flag; 107 * 108 * - the task gets preempted after kernel_neon_end() is called; as we have not 109 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so 110 * whatever is in the FPSIMD registers is not saved to memory, but discarded. 111 */ 112 struct fpsimd_last_state_struct { 113 struct user_fpsimd_state *st; 114 void *sve_state; 115 unsigned int sve_vl; 116 }; 117 118 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state); 119 120 /* Default VL for tasks that don't set it explicitly: */ 121 static int sve_default_vl = -1; 122 123 #ifdef CONFIG_ARM64_SVE 124 125 /* Maximum supported vector length across all CPUs (initially poisoned) */ 126 int __ro_after_init sve_max_vl = SVE_VL_MIN; 127 int __ro_after_init sve_max_virtualisable_vl = SVE_VL_MIN; 128 129 /* 130 * Set of available vector lengths, 131 * where length vq encoded as bit __vq_to_bit(vq): 132 */ 133 __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX); 134 /* Set of vector lengths present on at least one cpu: */ 135 static __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX); 136 137 static void __percpu *efi_sve_state; 138 139 #else /* ! CONFIG_ARM64_SVE */ 140 141 /* Dummy declaration for code that will be optimised out: */ 142 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX); 143 extern __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX); 144 extern void __percpu *efi_sve_state; 145 146 #endif /* ! CONFIG_ARM64_SVE */ 147 148 /* 149 * Call __sve_free() directly only if you know task can't be scheduled 150 * or preempted. 151 */ 152 static void __sve_free(struct task_struct *task) 153 { 154 kfree(task->thread.sve_state); 155 task->thread.sve_state = NULL; 156 } 157 158 static void sve_free(struct task_struct *task) 159 { 160 WARN_ON(test_tsk_thread_flag(task, TIF_SVE)); 161 162 __sve_free(task); 163 } 164 165 /* 166 * TIF_SVE controls whether a task can use SVE without trapping while 167 * in userspace, and also the way a task's FPSIMD/SVE state is stored 168 * in thread_struct. 169 * 170 * The kernel uses this flag to track whether a user task is actively 171 * using SVE, and therefore whether full SVE register state needs to 172 * be tracked. If not, the cheaper FPSIMD context handling code can 173 * be used instead of the more costly SVE equivalents. 174 * 175 * * TIF_SVE set: 176 * 177 * The task can execute SVE instructions while in userspace without 178 * trapping to the kernel. 179 * 180 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the 181 * corresponding Zn), P0-P15 and FFR are encoded in in 182 * task->thread.sve_state, formatted appropriately for vector 183 * length task->thread.sve_vl. 184 * 185 * task->thread.sve_state must point to a valid buffer at least 186 * sve_state_size(task) bytes in size. 187 * 188 * During any syscall, the kernel may optionally clear TIF_SVE and 189 * discard the vector state except for the FPSIMD subset. 190 * 191 * * TIF_SVE clear: 192 * 193 * An attempt by the user task to execute an SVE instruction causes 194 * do_sve_acc() to be called, which does some preparation and then 195 * sets TIF_SVE. 196 * 197 * When stored, FPSIMD registers V0-V31 are encoded in 198 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are 199 * logically zero but not stored anywhere; P0-P15 and FFR are not 200 * stored and have unspecified values from userspace's point of 201 * view. For hygiene purposes, the kernel zeroes them on next use, 202 * but userspace is discouraged from relying on this. 203 * 204 * task->thread.sve_state does not need to be non-NULL, valid or any 205 * particular size: it must not be dereferenced. 206 * 207 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state 208 * irrespective of whether TIF_SVE is clear or set, since these are 209 * not vector length dependent. 210 */ 211 212 /* 213 * Update current's FPSIMD/SVE registers from thread_struct. 214 * 215 * This function should be called only when the FPSIMD/SVE state in 216 * thread_struct is known to be up to date, when preparing to enter 217 * userspace. 218 * 219 * Softirqs (and preemption) must be disabled. 220 */ 221 static void task_fpsimd_load(void) 222 { 223 WARN_ON(!in_softirq() && !irqs_disabled()); 224 225 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 226 sve_load_state(sve_pffr(¤t->thread), 227 ¤t->thread.uw.fpsimd_state.fpsr, 228 sve_vq_from_vl(current->thread.sve_vl) - 1); 229 else 230 fpsimd_load_state(¤t->thread.uw.fpsimd_state); 231 } 232 233 /* 234 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to 235 * date with respect to the CPU registers. 236 * 237 * Softirqs (and preemption) must be disabled. 238 */ 239 void fpsimd_save(void) 240 { 241 struct fpsimd_last_state_struct const *last = 242 this_cpu_ptr(&fpsimd_last_state); 243 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */ 244 245 WARN_ON(!in_softirq() && !irqs_disabled()); 246 247 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 248 if (system_supports_sve() && test_thread_flag(TIF_SVE)) { 249 if (WARN_ON(sve_get_vl() != last->sve_vl)) { 250 /* 251 * Can't save the user regs, so current would 252 * re-enter user with corrupt state. 253 * There's no way to recover, so kill it: 254 */ 255 force_signal_inject(SIGKILL, SI_KERNEL, 0); 256 return; 257 } 258 259 sve_save_state((char *)last->sve_state + 260 sve_ffr_offset(last->sve_vl), 261 &last->st->fpsr); 262 } else 263 fpsimd_save_state(last->st); 264 } 265 } 266 267 /* 268 * All vector length selection from userspace comes through here. 269 * We're on a slow path, so some sanity-checks are included. 270 * If things go wrong there's a bug somewhere, but try to fall back to a 271 * safe choice. 272 */ 273 static unsigned int find_supported_vector_length(unsigned int vl) 274 { 275 int bit; 276 int max_vl = sve_max_vl; 277 278 if (WARN_ON(!sve_vl_valid(vl))) 279 vl = SVE_VL_MIN; 280 281 if (WARN_ON(!sve_vl_valid(max_vl))) 282 max_vl = SVE_VL_MIN; 283 284 if (vl > max_vl) 285 vl = max_vl; 286 287 bit = find_next_bit(sve_vq_map, SVE_VQ_MAX, 288 __vq_to_bit(sve_vq_from_vl(vl))); 289 return sve_vl_from_vq(__bit_to_vq(bit)); 290 } 291 292 #ifdef CONFIG_SYSCTL 293 294 static int sve_proc_do_default_vl(struct ctl_table *table, int write, 295 void __user *buffer, size_t *lenp, 296 loff_t *ppos) 297 { 298 int ret; 299 int vl = sve_default_vl; 300 struct ctl_table tmp_table = { 301 .data = &vl, 302 .maxlen = sizeof(vl), 303 }; 304 305 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); 306 if (ret || !write) 307 return ret; 308 309 /* Writing -1 has the special meaning "set to max": */ 310 if (vl == -1) 311 vl = sve_max_vl; 312 313 if (!sve_vl_valid(vl)) 314 return -EINVAL; 315 316 sve_default_vl = find_supported_vector_length(vl); 317 return 0; 318 } 319 320 static struct ctl_table sve_default_vl_table[] = { 321 { 322 .procname = "sve_default_vector_length", 323 .mode = 0644, 324 .proc_handler = sve_proc_do_default_vl, 325 }, 326 { } 327 }; 328 329 static int __init sve_sysctl_init(void) 330 { 331 if (system_supports_sve()) 332 if (!register_sysctl("abi", sve_default_vl_table)) 333 return -EINVAL; 334 335 return 0; 336 } 337 338 #else /* ! CONFIG_SYSCTL */ 339 static int __init sve_sysctl_init(void) { return 0; } 340 #endif /* ! CONFIG_SYSCTL */ 341 342 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \ 343 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET)) 344 345 #ifdef CONFIG_CPU_BIG_ENDIAN 346 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 347 { 348 u64 a = swab64(x); 349 u64 b = swab64(x >> 64); 350 351 return ((__uint128_t)a << 64) | b; 352 } 353 #else 354 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 355 { 356 return x; 357 } 358 #endif 359 360 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x) 361 362 /* 363 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to 364 * task->thread.sve_state. 365 * 366 * Task can be a non-runnable task, or current. In the latter case, 367 * softirqs (and preemption) must be disabled. 368 * task->thread.sve_state must point to at least sve_state_size(task) 369 * bytes of allocated kernel memory. 370 * task->thread.uw.fpsimd_state must be up to date before calling this 371 * function. 372 */ 373 static void fpsimd_to_sve(struct task_struct *task) 374 { 375 unsigned int vq; 376 void *sst = task->thread.sve_state; 377 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 378 unsigned int i; 379 __uint128_t *p; 380 381 if (!system_supports_sve()) 382 return; 383 384 vq = sve_vq_from_vl(task->thread.sve_vl); 385 for (i = 0; i < 32; ++i) { 386 p = (__uint128_t *)ZREG(sst, vq, i); 387 *p = arm64_cpu_to_le128(fst->vregs[i]); 388 } 389 } 390 391 /* 392 * Transfer the SVE state in task->thread.sve_state to 393 * task->thread.uw.fpsimd_state. 394 * 395 * Task can be a non-runnable task, or current. In the latter case, 396 * softirqs (and preemption) must be disabled. 397 * task->thread.sve_state must point to at least sve_state_size(task) 398 * bytes of allocated kernel memory. 399 * task->thread.sve_state must be up to date before calling this function. 400 */ 401 static void sve_to_fpsimd(struct task_struct *task) 402 { 403 unsigned int vq; 404 void const *sst = task->thread.sve_state; 405 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state; 406 unsigned int i; 407 __uint128_t const *p; 408 409 if (!system_supports_sve()) 410 return; 411 412 vq = sve_vq_from_vl(task->thread.sve_vl); 413 for (i = 0; i < 32; ++i) { 414 p = (__uint128_t const *)ZREG(sst, vq, i); 415 fst->vregs[i] = arm64_le128_to_cpu(*p); 416 } 417 } 418 419 #ifdef CONFIG_ARM64_SVE 420 421 /* 422 * Return how many bytes of memory are required to store the full SVE 423 * state for task, given task's currently configured vector length. 424 */ 425 size_t sve_state_size(struct task_struct const *task) 426 { 427 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl)); 428 } 429 430 /* 431 * Ensure that task->thread.sve_state is allocated and sufficiently large. 432 * 433 * This function should be used only in preparation for replacing 434 * task->thread.sve_state with new data. The memory is always zeroed 435 * here to prevent stale data from showing through: this is done in 436 * the interest of testability and predictability: except in the 437 * do_sve_acc() case, there is no ABI requirement to hide stale data 438 * written previously be task. 439 */ 440 void sve_alloc(struct task_struct *task) 441 { 442 if (task->thread.sve_state) { 443 memset(task->thread.sve_state, 0, sve_state_size(current)); 444 return; 445 } 446 447 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */ 448 task->thread.sve_state = 449 kzalloc(sve_state_size(task), GFP_KERNEL); 450 451 /* 452 * If future SVE revisions can have larger vectors though, 453 * this may cease to be true: 454 */ 455 BUG_ON(!task->thread.sve_state); 456 } 457 458 459 /* 460 * Ensure that task->thread.sve_state is up to date with respect to 461 * the user task, irrespective of when SVE is in use or not. 462 * 463 * This should only be called by ptrace. task must be non-runnable. 464 * task->thread.sve_state must point to at least sve_state_size(task) 465 * bytes of allocated kernel memory. 466 */ 467 void fpsimd_sync_to_sve(struct task_struct *task) 468 { 469 if (!test_tsk_thread_flag(task, TIF_SVE)) 470 fpsimd_to_sve(task); 471 } 472 473 /* 474 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to 475 * the user task, irrespective of whether SVE is in use or not. 476 * 477 * This should only be called by ptrace. task must be non-runnable. 478 * task->thread.sve_state must point to at least sve_state_size(task) 479 * bytes of allocated kernel memory. 480 */ 481 void sve_sync_to_fpsimd(struct task_struct *task) 482 { 483 if (test_tsk_thread_flag(task, TIF_SVE)) 484 sve_to_fpsimd(task); 485 } 486 487 /* 488 * Ensure that task->thread.sve_state is up to date with respect to 489 * the task->thread.uw.fpsimd_state. 490 * 491 * This should only be called by ptrace to merge new FPSIMD register 492 * values into a task for which SVE is currently active. 493 * task must be non-runnable. 494 * task->thread.sve_state must point to at least sve_state_size(task) 495 * bytes of allocated kernel memory. 496 * task->thread.uw.fpsimd_state must already have been initialised with 497 * the new FPSIMD register values to be merged in. 498 */ 499 void sve_sync_from_fpsimd_zeropad(struct task_struct *task) 500 { 501 unsigned int vq; 502 void *sst = task->thread.sve_state; 503 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 504 unsigned int i; 505 __uint128_t *p; 506 507 if (!test_tsk_thread_flag(task, TIF_SVE)) 508 return; 509 510 vq = sve_vq_from_vl(task->thread.sve_vl); 511 512 memset(sst, 0, SVE_SIG_REGS_SIZE(vq)); 513 514 for (i = 0; i < 32; ++i) { 515 p = (__uint128_t *)ZREG(sst, vq, i); 516 *p = arm64_cpu_to_le128(fst->vregs[i]); 517 } 518 } 519 520 int sve_set_vector_length(struct task_struct *task, 521 unsigned long vl, unsigned long flags) 522 { 523 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT | 524 PR_SVE_SET_VL_ONEXEC)) 525 return -EINVAL; 526 527 if (!sve_vl_valid(vl)) 528 return -EINVAL; 529 530 /* 531 * Clamp to the maximum vector length that VL-agnostic SVE code can 532 * work with. A flag may be assigned in the future to allow setting 533 * of larger vector lengths without confusing older software. 534 */ 535 if (vl > SVE_VL_ARCH_MAX) 536 vl = SVE_VL_ARCH_MAX; 537 538 vl = find_supported_vector_length(vl); 539 540 if (flags & (PR_SVE_VL_INHERIT | 541 PR_SVE_SET_VL_ONEXEC)) 542 task->thread.sve_vl_onexec = vl; 543 else 544 /* Reset VL to system default on next exec: */ 545 task->thread.sve_vl_onexec = 0; 546 547 /* Only actually set the VL if not deferred: */ 548 if (flags & PR_SVE_SET_VL_ONEXEC) 549 goto out; 550 551 if (vl == task->thread.sve_vl) 552 goto out; 553 554 /* 555 * To ensure the FPSIMD bits of the SVE vector registers are preserved, 556 * write any live register state back to task_struct, and convert to a 557 * non-SVE thread. 558 */ 559 if (task == current) { 560 local_bh_disable(); 561 562 fpsimd_save(); 563 } 564 565 fpsimd_flush_task_state(task); 566 if (test_and_clear_tsk_thread_flag(task, TIF_SVE)) 567 sve_to_fpsimd(task); 568 569 if (task == current) 570 local_bh_enable(); 571 572 /* 573 * Force reallocation of task SVE state to the correct size 574 * on next use: 575 */ 576 sve_free(task); 577 578 task->thread.sve_vl = vl; 579 580 out: 581 update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT, 582 flags & PR_SVE_VL_INHERIT); 583 584 return 0; 585 } 586 587 /* 588 * Encode the current vector length and flags for return. 589 * This is only required for prctl(): ptrace has separate fields 590 * 591 * flags are as for sve_set_vector_length(). 592 */ 593 static int sve_prctl_status(unsigned long flags) 594 { 595 int ret; 596 597 if (flags & PR_SVE_SET_VL_ONEXEC) 598 ret = current->thread.sve_vl_onexec; 599 else 600 ret = current->thread.sve_vl; 601 602 if (test_thread_flag(TIF_SVE_VL_INHERIT)) 603 ret |= PR_SVE_VL_INHERIT; 604 605 return ret; 606 } 607 608 /* PR_SVE_SET_VL */ 609 int sve_set_current_vl(unsigned long arg) 610 { 611 unsigned long vl, flags; 612 int ret; 613 614 vl = arg & PR_SVE_VL_LEN_MASK; 615 flags = arg & ~vl; 616 617 if (!system_supports_sve()) 618 return -EINVAL; 619 620 ret = sve_set_vector_length(current, vl, flags); 621 if (ret) 622 return ret; 623 624 return sve_prctl_status(flags); 625 } 626 627 /* PR_SVE_GET_VL */ 628 int sve_get_current_vl(void) 629 { 630 if (!system_supports_sve()) 631 return -EINVAL; 632 633 return sve_prctl_status(0); 634 } 635 636 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX)) 637 { 638 unsigned int vq, vl; 639 unsigned long zcr; 640 641 bitmap_zero(map, SVE_VQ_MAX); 642 643 zcr = ZCR_ELx_LEN_MASK; 644 zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr; 645 646 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) { 647 write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */ 648 vl = sve_get_vl(); 649 vq = sve_vq_from_vl(vl); /* skip intervening lengths */ 650 set_bit(__vq_to_bit(vq), map); 651 } 652 } 653 654 /* 655 * Initialise the set of known supported VQs for the boot CPU. 656 * This is called during kernel boot, before secondary CPUs are brought up. 657 */ 658 void __init sve_init_vq_map(void) 659 { 660 sve_probe_vqs(sve_vq_map); 661 bitmap_copy(sve_vq_partial_map, sve_vq_map, SVE_VQ_MAX); 662 } 663 664 /* 665 * If we haven't committed to the set of supported VQs yet, filter out 666 * those not supported by the current CPU. 667 * This function is called during the bring-up of early secondary CPUs only. 668 */ 669 void sve_update_vq_map(void) 670 { 671 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 672 673 sve_probe_vqs(tmp_map); 674 bitmap_and(sve_vq_map, sve_vq_map, tmp_map, SVE_VQ_MAX); 675 bitmap_or(sve_vq_partial_map, sve_vq_partial_map, tmp_map, SVE_VQ_MAX); 676 } 677 678 /* 679 * Check whether the current CPU supports all VQs in the committed set. 680 * This function is called during the bring-up of late secondary CPUs only. 681 */ 682 int sve_verify_vq_map(void) 683 { 684 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 685 unsigned long b; 686 687 sve_probe_vqs(tmp_map); 688 689 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 690 if (bitmap_intersects(tmp_map, sve_vq_map, SVE_VQ_MAX)) { 691 pr_warn("SVE: cpu%d: Required vector length(s) missing\n", 692 smp_processor_id()); 693 return -EINVAL; 694 } 695 696 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available()) 697 return 0; 698 699 /* 700 * For KVM, it is necessary to ensure that this CPU doesn't 701 * support any vector length that guests may have probed as 702 * unsupported. 703 */ 704 705 /* Recover the set of supported VQs: */ 706 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 707 /* Find VQs supported that are not globally supported: */ 708 bitmap_andnot(tmp_map, tmp_map, sve_vq_map, SVE_VQ_MAX); 709 710 /* Find the lowest such VQ, if any: */ 711 b = find_last_bit(tmp_map, SVE_VQ_MAX); 712 if (b >= SVE_VQ_MAX) 713 return 0; /* no mismatches */ 714 715 /* 716 * Mismatches above sve_max_virtualisable_vl are fine, since 717 * no guest is allowed to configure ZCR_EL2.LEN to exceed this: 718 */ 719 if (sve_vl_from_vq(__bit_to_vq(b)) <= sve_max_virtualisable_vl) { 720 pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n", 721 smp_processor_id()); 722 return -EINVAL; 723 } 724 725 return 0; 726 } 727 728 static void __init sve_efi_setup(void) 729 { 730 if (!IS_ENABLED(CONFIG_EFI)) 731 return; 732 733 /* 734 * alloc_percpu() warns and prints a backtrace if this goes wrong. 735 * This is evidence of a crippled system and we are returning void, 736 * so no attempt is made to handle this situation here. 737 */ 738 if (!sve_vl_valid(sve_max_vl)) 739 goto fail; 740 741 efi_sve_state = __alloc_percpu( 742 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES); 743 if (!efi_sve_state) 744 goto fail; 745 746 return; 747 748 fail: 749 panic("Cannot allocate percpu memory for EFI SVE save/restore"); 750 } 751 752 /* 753 * Enable SVE for EL1. 754 * Intended for use by the cpufeatures code during CPU boot. 755 */ 756 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p) 757 { 758 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1); 759 isb(); 760 } 761 762 /* 763 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE 764 * vector length. 765 * 766 * Use only if SVE is present. 767 * This function clobbers the SVE vector length. 768 */ 769 u64 read_zcr_features(void) 770 { 771 u64 zcr; 772 unsigned int vq_max; 773 774 /* 775 * Set the maximum possible VL, and write zeroes to all other 776 * bits to see if they stick. 777 */ 778 sve_kernel_enable(NULL); 779 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1); 780 781 zcr = read_sysreg_s(SYS_ZCR_EL1); 782 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */ 783 vq_max = sve_vq_from_vl(sve_get_vl()); 784 zcr |= vq_max - 1; /* set LEN field to maximum effective value */ 785 786 return zcr; 787 } 788 789 void __init sve_setup(void) 790 { 791 u64 zcr; 792 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 793 unsigned long b; 794 795 if (!system_supports_sve()) 796 return; 797 798 /* 799 * The SVE architecture mandates support for 128-bit vectors, 800 * so sve_vq_map must have at least SVE_VQ_MIN set. 801 * If something went wrong, at least try to patch it up: 802 */ 803 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map))) 804 set_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map); 805 806 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); 807 sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1); 808 809 /* 810 * Sanity-check that the max VL we determined through CPU features 811 * corresponds properly to sve_vq_map. If not, do our best: 812 */ 813 if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl))) 814 sve_max_vl = find_supported_vector_length(sve_max_vl); 815 816 /* 817 * For the default VL, pick the maximum supported value <= 64. 818 * VL == 64 is guaranteed not to grow the signal frame. 819 */ 820 sve_default_vl = find_supported_vector_length(64); 821 822 bitmap_andnot(tmp_map, sve_vq_partial_map, sve_vq_map, 823 SVE_VQ_MAX); 824 825 b = find_last_bit(tmp_map, SVE_VQ_MAX); 826 if (b >= SVE_VQ_MAX) 827 /* No non-virtualisable VLs found */ 828 sve_max_virtualisable_vl = SVE_VQ_MAX; 829 else if (WARN_ON(b == SVE_VQ_MAX - 1)) 830 /* No virtualisable VLs? This is architecturally forbidden. */ 831 sve_max_virtualisable_vl = SVE_VQ_MIN; 832 else /* b + 1 < SVE_VQ_MAX */ 833 sve_max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1)); 834 835 if (sve_max_virtualisable_vl > sve_max_vl) 836 sve_max_virtualisable_vl = sve_max_vl; 837 838 pr_info("SVE: maximum available vector length %u bytes per vector\n", 839 sve_max_vl); 840 pr_info("SVE: default vector length %u bytes per vector\n", 841 sve_default_vl); 842 843 /* KVM decides whether to support mismatched systems. Just warn here: */ 844 if (sve_max_virtualisable_vl < sve_max_vl) 845 pr_warn("SVE: unvirtualisable vector lengths present\n"); 846 847 sve_efi_setup(); 848 } 849 850 /* 851 * Called from the put_task_struct() path, which cannot get here 852 * unless dead_task is really dead and not schedulable. 853 */ 854 void fpsimd_release_task(struct task_struct *dead_task) 855 { 856 __sve_free(dead_task); 857 } 858 859 #endif /* CONFIG_ARM64_SVE */ 860 861 /* 862 * Trapped SVE access 863 * 864 * Storage is allocated for the full SVE state, the current FPSIMD 865 * register contents are migrated across, and TIF_SVE is set so that 866 * the SVE access trap will be disabled the next time this task 867 * reaches ret_to_user. 868 * 869 * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load() 870 * would have disabled the SVE access trap for userspace during 871 * ret_to_user, making an SVE access trap impossible in that case. 872 */ 873 asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs) 874 { 875 /* Even if we chose not to use SVE, the hardware could still trap: */ 876 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) { 877 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc); 878 return; 879 } 880 881 sve_alloc(current); 882 883 local_bh_disable(); 884 885 fpsimd_save(); 886 887 /* Force ret_to_user to reload the registers: */ 888 fpsimd_flush_task_state(current); 889 890 fpsimd_to_sve(current); 891 if (test_and_set_thread_flag(TIF_SVE)) 892 WARN_ON(1); /* SVE access shouldn't have trapped */ 893 894 local_bh_enable(); 895 } 896 897 /* 898 * Trapped FP/ASIMD access. 899 */ 900 asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs) 901 { 902 /* TODO: implement lazy context saving/restoring */ 903 WARN_ON(1); 904 } 905 906 /* 907 * Raise a SIGFPE for the current process. 908 */ 909 asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs) 910 { 911 unsigned int si_code = FPE_FLTUNK; 912 913 if (esr & ESR_ELx_FP_EXC_TFV) { 914 if (esr & FPEXC_IOF) 915 si_code = FPE_FLTINV; 916 else if (esr & FPEXC_DZF) 917 si_code = FPE_FLTDIV; 918 else if (esr & FPEXC_OFF) 919 si_code = FPE_FLTOVF; 920 else if (esr & FPEXC_UFF) 921 si_code = FPE_FLTUND; 922 else if (esr & FPEXC_IXF) 923 si_code = FPE_FLTRES; 924 } 925 926 send_sig_fault(SIGFPE, si_code, 927 (void __user *)instruction_pointer(regs), 928 current); 929 } 930 931 void fpsimd_thread_switch(struct task_struct *next) 932 { 933 bool wrong_task, wrong_cpu; 934 935 if (!system_supports_fpsimd()) 936 return; 937 938 /* Save unsaved fpsimd state, if any: */ 939 fpsimd_save(); 940 941 /* 942 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's 943 * state. For kernel threads, FPSIMD registers are never loaded 944 * and wrong_task and wrong_cpu will always be true. 945 */ 946 wrong_task = __this_cpu_read(fpsimd_last_state.st) != 947 &next->thread.uw.fpsimd_state; 948 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id(); 949 950 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE, 951 wrong_task || wrong_cpu); 952 } 953 954 void fpsimd_flush_thread(void) 955 { 956 int vl, supported_vl; 957 958 if (!system_supports_fpsimd()) 959 return; 960 961 local_bh_disable(); 962 963 fpsimd_flush_task_state(current); 964 memset(¤t->thread.uw.fpsimd_state, 0, 965 sizeof(current->thread.uw.fpsimd_state)); 966 967 if (system_supports_sve()) { 968 clear_thread_flag(TIF_SVE); 969 sve_free(current); 970 971 /* 972 * Reset the task vector length as required. 973 * This is where we ensure that all user tasks have a valid 974 * vector length configured: no kernel task can become a user 975 * task without an exec and hence a call to this function. 976 * By the time the first call to this function is made, all 977 * early hardware probing is complete, so sve_default_vl 978 * should be valid. 979 * If a bug causes this to go wrong, we make some noise and 980 * try to fudge thread.sve_vl to a safe value here. 981 */ 982 vl = current->thread.sve_vl_onexec ? 983 current->thread.sve_vl_onexec : sve_default_vl; 984 985 if (WARN_ON(!sve_vl_valid(vl))) 986 vl = SVE_VL_MIN; 987 988 supported_vl = find_supported_vector_length(vl); 989 if (WARN_ON(supported_vl != vl)) 990 vl = supported_vl; 991 992 current->thread.sve_vl = vl; 993 994 /* 995 * If the task is not set to inherit, ensure that the vector 996 * length will be reset by a subsequent exec: 997 */ 998 if (!test_thread_flag(TIF_SVE_VL_INHERIT)) 999 current->thread.sve_vl_onexec = 0; 1000 } 1001 1002 local_bh_enable(); 1003 } 1004 1005 /* 1006 * Save the userland FPSIMD state of 'current' to memory, but only if the state 1007 * currently held in the registers does in fact belong to 'current' 1008 */ 1009 void fpsimd_preserve_current_state(void) 1010 { 1011 if (!system_supports_fpsimd()) 1012 return; 1013 1014 local_bh_disable(); 1015 fpsimd_save(); 1016 local_bh_enable(); 1017 } 1018 1019 /* 1020 * Like fpsimd_preserve_current_state(), but ensure that 1021 * current->thread.uw.fpsimd_state is updated so that it can be copied to 1022 * the signal frame. 1023 */ 1024 void fpsimd_signal_preserve_current_state(void) 1025 { 1026 fpsimd_preserve_current_state(); 1027 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 1028 sve_to_fpsimd(current); 1029 } 1030 1031 /* 1032 * Associate current's FPSIMD context with this cpu 1033 * Preemption must be disabled when calling this function. 1034 */ 1035 void fpsimd_bind_task_to_cpu(void) 1036 { 1037 struct fpsimd_last_state_struct *last = 1038 this_cpu_ptr(&fpsimd_last_state); 1039 1040 last->st = ¤t->thread.uw.fpsimd_state; 1041 last->sve_state = current->thread.sve_state; 1042 last->sve_vl = current->thread.sve_vl; 1043 current->thread.fpsimd_cpu = smp_processor_id(); 1044 1045 if (system_supports_sve()) { 1046 /* Toggle SVE trapping for userspace if needed */ 1047 if (test_thread_flag(TIF_SVE)) 1048 sve_user_enable(); 1049 else 1050 sve_user_disable(); 1051 1052 /* Serialised by exception return to user */ 1053 } 1054 } 1055 1056 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state, 1057 unsigned int sve_vl) 1058 { 1059 struct fpsimd_last_state_struct *last = 1060 this_cpu_ptr(&fpsimd_last_state); 1061 1062 WARN_ON(!in_softirq() && !irqs_disabled()); 1063 1064 last->st = st; 1065 last->sve_state = sve_state; 1066 last->sve_vl = sve_vl; 1067 } 1068 1069 /* 1070 * Load the userland FPSIMD state of 'current' from memory, but only if the 1071 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD 1072 * state of 'current' 1073 */ 1074 void fpsimd_restore_current_state(void) 1075 { 1076 if (!system_supports_fpsimd()) 1077 return; 1078 1079 local_bh_disable(); 1080 1081 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { 1082 task_fpsimd_load(); 1083 fpsimd_bind_task_to_cpu(); 1084 } 1085 1086 local_bh_enable(); 1087 } 1088 1089 /* 1090 * Load an updated userland FPSIMD state for 'current' from memory and set the 1091 * flag that indicates that the FPSIMD register contents are the most recent 1092 * FPSIMD state of 'current' 1093 */ 1094 void fpsimd_update_current_state(struct user_fpsimd_state const *state) 1095 { 1096 if (!system_supports_fpsimd()) 1097 return; 1098 1099 local_bh_disable(); 1100 1101 current->thread.uw.fpsimd_state = *state; 1102 if (system_supports_sve() && test_thread_flag(TIF_SVE)) 1103 fpsimd_to_sve(current); 1104 1105 task_fpsimd_load(); 1106 fpsimd_bind_task_to_cpu(); 1107 1108 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1109 1110 local_bh_enable(); 1111 } 1112 1113 /* 1114 * Invalidate live CPU copies of task t's FPSIMD state 1115 * 1116 * This function may be called with preemption enabled. The barrier() 1117 * ensures that the assignment to fpsimd_cpu is visible to any 1118 * preemption/softirq that could race with set_tsk_thread_flag(), so 1119 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared. 1120 * 1121 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any 1122 * subsequent code. 1123 */ 1124 void fpsimd_flush_task_state(struct task_struct *t) 1125 { 1126 t->thread.fpsimd_cpu = NR_CPUS; 1127 1128 barrier(); 1129 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE); 1130 1131 barrier(); 1132 } 1133 1134 /* 1135 * Invalidate any task's FPSIMD state that is present on this cpu. 1136 * This function must be called with softirqs disabled. 1137 */ 1138 void fpsimd_flush_cpu_state(void) 1139 { 1140 __this_cpu_write(fpsimd_last_state.st, NULL); 1141 set_thread_flag(TIF_FOREIGN_FPSTATE); 1142 } 1143 1144 #ifdef CONFIG_KERNEL_MODE_NEON 1145 1146 DEFINE_PER_CPU(bool, kernel_neon_busy); 1147 EXPORT_PER_CPU_SYMBOL(kernel_neon_busy); 1148 1149 /* 1150 * Kernel-side NEON support functions 1151 */ 1152 1153 /* 1154 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling 1155 * context 1156 * 1157 * Must not be called unless may_use_simd() returns true. 1158 * Task context in the FPSIMD registers is saved back to memory as necessary. 1159 * 1160 * A matching call to kernel_neon_end() must be made before returning from the 1161 * calling context. 1162 * 1163 * The caller may freely use the FPSIMD registers until kernel_neon_end() is 1164 * called. 1165 */ 1166 void kernel_neon_begin(void) 1167 { 1168 if (WARN_ON(!system_supports_fpsimd())) 1169 return; 1170 1171 BUG_ON(!may_use_simd()); 1172 1173 local_bh_disable(); 1174 1175 __this_cpu_write(kernel_neon_busy, true); 1176 1177 /* Save unsaved fpsimd state, if any: */ 1178 fpsimd_save(); 1179 1180 /* Invalidate any task state remaining in the fpsimd regs: */ 1181 fpsimd_flush_cpu_state(); 1182 1183 preempt_disable(); 1184 1185 local_bh_enable(); 1186 } 1187 EXPORT_SYMBOL(kernel_neon_begin); 1188 1189 /* 1190 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task 1191 * 1192 * Must be called from a context in which kernel_neon_begin() was previously 1193 * called, with no call to kernel_neon_end() in the meantime. 1194 * 1195 * The caller must not use the FPSIMD registers after this function is called, 1196 * unless kernel_neon_begin() is called again in the meantime. 1197 */ 1198 void kernel_neon_end(void) 1199 { 1200 bool busy; 1201 1202 if (!system_supports_fpsimd()) 1203 return; 1204 1205 busy = __this_cpu_xchg(kernel_neon_busy, false); 1206 WARN_ON(!busy); /* No matching kernel_neon_begin()? */ 1207 1208 preempt_enable(); 1209 } 1210 EXPORT_SYMBOL(kernel_neon_end); 1211 1212 #ifdef CONFIG_EFI 1213 1214 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state); 1215 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used); 1216 static DEFINE_PER_CPU(bool, efi_sve_state_used); 1217 1218 /* 1219 * EFI runtime services support functions 1220 * 1221 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call. 1222 * This means that for EFI (and only for EFI), we have to assume that FPSIMD 1223 * is always used rather than being an optional accelerator. 1224 * 1225 * These functions provide the necessary support for ensuring FPSIMD 1226 * save/restore in the contexts from which EFI is used. 1227 * 1228 * Do not use them for any other purpose -- if tempted to do so, you are 1229 * either doing something wrong or you need to propose some refactoring. 1230 */ 1231 1232 /* 1233 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call 1234 */ 1235 void __efi_fpsimd_begin(void) 1236 { 1237 if (!system_supports_fpsimd()) 1238 return; 1239 1240 WARN_ON(preemptible()); 1241 1242 if (may_use_simd()) { 1243 kernel_neon_begin(); 1244 } else { 1245 /* 1246 * If !efi_sve_state, SVE can't be in use yet and doesn't need 1247 * preserving: 1248 */ 1249 if (system_supports_sve() && likely(efi_sve_state)) { 1250 char *sve_state = this_cpu_ptr(efi_sve_state); 1251 1252 __this_cpu_write(efi_sve_state_used, true); 1253 1254 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl), 1255 &this_cpu_ptr(&efi_fpsimd_state)->fpsr); 1256 } else { 1257 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state)); 1258 } 1259 1260 __this_cpu_write(efi_fpsimd_state_used, true); 1261 } 1262 } 1263 1264 /* 1265 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call 1266 */ 1267 void __efi_fpsimd_end(void) 1268 { 1269 if (!system_supports_fpsimd()) 1270 return; 1271 1272 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) { 1273 kernel_neon_end(); 1274 } else { 1275 if (system_supports_sve() && 1276 likely(__this_cpu_read(efi_sve_state_used))) { 1277 char const *sve_state = this_cpu_ptr(efi_sve_state); 1278 1279 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl), 1280 &this_cpu_ptr(&efi_fpsimd_state)->fpsr, 1281 sve_vq_from_vl(sve_get_vl()) - 1); 1282 1283 __this_cpu_write(efi_sve_state_used, false); 1284 } else { 1285 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state)); 1286 } 1287 } 1288 } 1289 1290 #endif /* CONFIG_EFI */ 1291 1292 #endif /* CONFIG_KERNEL_MODE_NEON */ 1293 1294 #ifdef CONFIG_CPU_PM 1295 static int fpsimd_cpu_pm_notifier(struct notifier_block *self, 1296 unsigned long cmd, void *v) 1297 { 1298 switch (cmd) { 1299 case CPU_PM_ENTER: 1300 fpsimd_save(); 1301 fpsimd_flush_cpu_state(); 1302 break; 1303 case CPU_PM_EXIT: 1304 break; 1305 case CPU_PM_ENTER_FAILED: 1306 default: 1307 return NOTIFY_DONE; 1308 } 1309 return NOTIFY_OK; 1310 } 1311 1312 static struct notifier_block fpsimd_cpu_pm_notifier_block = { 1313 .notifier_call = fpsimd_cpu_pm_notifier, 1314 }; 1315 1316 static void __init fpsimd_pm_init(void) 1317 { 1318 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block); 1319 } 1320 1321 #else 1322 static inline void fpsimd_pm_init(void) { } 1323 #endif /* CONFIG_CPU_PM */ 1324 1325 #ifdef CONFIG_HOTPLUG_CPU 1326 static int fpsimd_cpu_dead(unsigned int cpu) 1327 { 1328 per_cpu(fpsimd_last_state.st, cpu) = NULL; 1329 return 0; 1330 } 1331 1332 static inline void fpsimd_hotplug_init(void) 1333 { 1334 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead", 1335 NULL, fpsimd_cpu_dead); 1336 } 1337 1338 #else 1339 static inline void fpsimd_hotplug_init(void) { } 1340 #endif 1341 1342 /* 1343 * FP/SIMD support code initialisation. 1344 */ 1345 static int __init fpsimd_init(void) 1346 { 1347 if (cpu_have_named_feature(FP)) { 1348 fpsimd_pm_init(); 1349 fpsimd_hotplug_init(); 1350 } else { 1351 pr_notice("Floating-point is not implemented\n"); 1352 } 1353 1354 if (!cpu_have_named_feature(ASIMD)) 1355 pr_notice("Advanced SIMD is not implemented\n"); 1356 1357 return sve_sysctl_init(); 1358 } 1359 core_initcall(fpsimd_init); 1360