xref: /openbmc/linux/arch/arm64/kernel/fpsimd.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /*
2  * FP/SIMD context switching and fault handling
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/bitmap.h>
21 #include <linux/bottom_half.h>
22 #include <linux/bug.h>
23 #include <linux/cache.h>
24 #include <linux/compat.h>
25 #include <linux/cpu.h>
26 #include <linux/cpu_pm.h>
27 #include <linux/kernel.h>
28 #include <linux/linkage.h>
29 #include <linux/irqflags.h>
30 #include <linux/init.h>
31 #include <linux/percpu.h>
32 #include <linux/prctl.h>
33 #include <linux/preempt.h>
34 #include <linux/ptrace.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/signal.h>
38 #include <linux/slab.h>
39 #include <linux/stddef.h>
40 #include <linux/sysctl.h>
41 
42 #include <asm/esr.h>
43 #include <asm/fpsimd.h>
44 #include <asm/cpufeature.h>
45 #include <asm/cputype.h>
46 #include <asm/processor.h>
47 #include <asm/simd.h>
48 #include <asm/sigcontext.h>
49 #include <asm/sysreg.h>
50 #include <asm/traps.h>
51 
52 #define FPEXC_IOF	(1 << 0)
53 #define FPEXC_DZF	(1 << 1)
54 #define FPEXC_OFF	(1 << 2)
55 #define FPEXC_UFF	(1 << 3)
56 #define FPEXC_IXF	(1 << 4)
57 #define FPEXC_IDF	(1 << 7)
58 
59 /*
60  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
61  *
62  * In order to reduce the number of times the FPSIMD state is needlessly saved
63  * and restored, we need to keep track of two things:
64  * (a) for each task, we need to remember which CPU was the last one to have
65  *     the task's FPSIMD state loaded into its FPSIMD registers;
66  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
67  *     been loaded into its FPSIMD registers most recently, or whether it has
68  *     been used to perform kernel mode NEON in the meantime.
69  *
70  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
71  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
72  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
73  * address of the userland FPSIMD state of the task that was loaded onto the CPU
74  * the most recently, or NULL if kernel mode NEON has been performed after that.
75  *
76  * With this in place, we no longer have to restore the next FPSIMD state right
77  * when switching between tasks. Instead, we can defer this check to userland
78  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
79  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
80  * can omit the FPSIMD restore.
81  *
82  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
83  * indicate whether or not the userland FPSIMD state of the current task is
84  * present in the registers. The flag is set unless the FPSIMD registers of this
85  * CPU currently contain the most recent userland FPSIMD state of the current
86  * task.
87  *
88  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
89  * save the task's FPSIMD context back to task_struct from softirq context.
90  * To prevent this from racing with the manipulation of the task's FPSIMD state
91  * from task context and thereby corrupting the state, it is necessary to
92  * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
93  * flag with local_bh_disable() unless softirqs are already masked.
94  *
95  * For a certain task, the sequence may look something like this:
96  * - the task gets scheduled in; if both the task's fpsimd_cpu field
97  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
98  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
99  *   cleared, otherwise it is set;
100  *
101  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
102  *   userland FPSIMD state is copied from memory to the registers, the task's
103  *   fpsimd_cpu field is set to the id of the current CPU, the current
104  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
105  *   TIF_FOREIGN_FPSTATE flag is cleared;
106  *
107  * - the task executes an ordinary syscall; upon return to userland, the
108  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
109  *   restored;
110  *
111  * - the task executes a syscall which executes some NEON instructions; this is
112  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
113  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
114  *   and sets the TIF_FOREIGN_FPSTATE flag;
115  *
116  * - the task gets preempted after kernel_neon_end() is called; as we have not
117  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
118  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
119  */
120 struct fpsimd_last_state_struct {
121 	struct user_fpsimd_state *st;
122 };
123 
124 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
125 
126 /* Default VL for tasks that don't set it explicitly: */
127 static int sve_default_vl = -1;
128 
129 #ifdef CONFIG_ARM64_SVE
130 
131 /* Maximum supported vector length across all CPUs (initially poisoned) */
132 int __ro_after_init sve_max_vl = SVE_VL_MIN;
133 /* Set of available vector lengths, as vq_to_bit(vq): */
134 static __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
135 static void __percpu *efi_sve_state;
136 
137 #else /* ! CONFIG_ARM64_SVE */
138 
139 /* Dummy declaration for code that will be optimised out: */
140 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
141 extern void __percpu *efi_sve_state;
142 
143 #endif /* ! CONFIG_ARM64_SVE */
144 
145 /*
146  * Call __sve_free() directly only if you know task can't be scheduled
147  * or preempted.
148  */
149 static void __sve_free(struct task_struct *task)
150 {
151 	kfree(task->thread.sve_state);
152 	task->thread.sve_state = NULL;
153 }
154 
155 static void sve_free(struct task_struct *task)
156 {
157 	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
158 
159 	__sve_free(task);
160 }
161 
162 /*
163  * TIF_SVE controls whether a task can use SVE without trapping while
164  * in userspace, and also the way a task's FPSIMD/SVE state is stored
165  * in thread_struct.
166  *
167  * The kernel uses this flag to track whether a user task is actively
168  * using SVE, and therefore whether full SVE register state needs to
169  * be tracked.  If not, the cheaper FPSIMD context handling code can
170  * be used instead of the more costly SVE equivalents.
171  *
172  *  * TIF_SVE set:
173  *
174  *    The task can execute SVE instructions while in userspace without
175  *    trapping to the kernel.
176  *
177  *    When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
178  *    corresponding Zn), P0-P15 and FFR are encoded in in
179  *    task->thread.sve_state, formatted appropriately for vector
180  *    length task->thread.sve_vl.
181  *
182  *    task->thread.sve_state must point to a valid buffer at least
183  *    sve_state_size(task) bytes in size.
184  *
185  *    During any syscall, the kernel may optionally clear TIF_SVE and
186  *    discard the vector state except for the FPSIMD subset.
187  *
188  *  * TIF_SVE clear:
189  *
190  *    An attempt by the user task to execute an SVE instruction causes
191  *    do_sve_acc() to be called, which does some preparation and then
192  *    sets TIF_SVE.
193  *
194  *    When stored, FPSIMD registers V0-V31 are encoded in
195  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
196  *    logically zero but not stored anywhere; P0-P15 and FFR are not
197  *    stored and have unspecified values from userspace's point of
198  *    view.  For hygiene purposes, the kernel zeroes them on next use,
199  *    but userspace is discouraged from relying on this.
200  *
201  *    task->thread.sve_state does not need to be non-NULL, valid or any
202  *    particular size: it must not be dereferenced.
203  *
204  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
205  *    irrespective of whether TIF_SVE is clear or set, since these are
206  *    not vector length dependent.
207  */
208 
209 /*
210  * Update current's FPSIMD/SVE registers from thread_struct.
211  *
212  * This function should be called only when the FPSIMD/SVE state in
213  * thread_struct is known to be up to date, when preparing to enter
214  * userspace.
215  *
216  * Softirqs (and preemption) must be disabled.
217  */
218 static void task_fpsimd_load(void)
219 {
220 	WARN_ON(!in_softirq() && !irqs_disabled());
221 
222 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
223 		sve_load_state(sve_pffr(&current->thread),
224 			       &current->thread.uw.fpsimd_state.fpsr,
225 			       sve_vq_from_vl(current->thread.sve_vl) - 1);
226 	else
227 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
228 }
229 
230 /*
231  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
232  * date with respect to the CPU registers.
233  *
234  * Softirqs (and preemption) must be disabled.
235  */
236 void fpsimd_save(void)
237 {
238 	struct user_fpsimd_state *st = __this_cpu_read(fpsimd_last_state.st);
239 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
240 
241 	WARN_ON(!in_softirq() && !irqs_disabled());
242 
243 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
244 		if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
245 			if (WARN_ON(sve_get_vl() != current->thread.sve_vl)) {
246 				/*
247 				 * Can't save the user regs, so current would
248 				 * re-enter user with corrupt state.
249 				 * There's no way to recover, so kill it:
250 				 */
251 				force_signal_inject(SIGKILL, SI_KERNEL, 0);
252 				return;
253 			}
254 
255 			sve_save_state(sve_pffr(&current->thread), &st->fpsr);
256 		} else
257 			fpsimd_save_state(st);
258 	}
259 }
260 
261 /*
262  * Helpers to translate bit indices in sve_vq_map to VQ values (and
263  * vice versa).  This allows find_next_bit() to be used to find the
264  * _maximum_ VQ not exceeding a certain value.
265  */
266 
267 static unsigned int vq_to_bit(unsigned int vq)
268 {
269 	return SVE_VQ_MAX - vq;
270 }
271 
272 static unsigned int bit_to_vq(unsigned int bit)
273 {
274 	if (WARN_ON(bit >= SVE_VQ_MAX))
275 		bit = SVE_VQ_MAX - 1;
276 
277 	return SVE_VQ_MAX - bit;
278 }
279 
280 /*
281  * All vector length selection from userspace comes through here.
282  * We're on a slow path, so some sanity-checks are included.
283  * If things go wrong there's a bug somewhere, but try to fall back to a
284  * safe choice.
285  */
286 static unsigned int find_supported_vector_length(unsigned int vl)
287 {
288 	int bit;
289 	int max_vl = sve_max_vl;
290 
291 	if (WARN_ON(!sve_vl_valid(vl)))
292 		vl = SVE_VL_MIN;
293 
294 	if (WARN_ON(!sve_vl_valid(max_vl)))
295 		max_vl = SVE_VL_MIN;
296 
297 	if (vl > max_vl)
298 		vl = max_vl;
299 
300 	bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
301 			    vq_to_bit(sve_vq_from_vl(vl)));
302 	return sve_vl_from_vq(bit_to_vq(bit));
303 }
304 
305 #ifdef CONFIG_SYSCTL
306 
307 static int sve_proc_do_default_vl(struct ctl_table *table, int write,
308 				  void __user *buffer, size_t *lenp,
309 				  loff_t *ppos)
310 {
311 	int ret;
312 	int vl = sve_default_vl;
313 	struct ctl_table tmp_table = {
314 		.data = &vl,
315 		.maxlen = sizeof(vl),
316 	};
317 
318 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
319 	if (ret || !write)
320 		return ret;
321 
322 	/* Writing -1 has the special meaning "set to max": */
323 	if (vl == -1)
324 		vl = sve_max_vl;
325 
326 	if (!sve_vl_valid(vl))
327 		return -EINVAL;
328 
329 	sve_default_vl = find_supported_vector_length(vl);
330 	return 0;
331 }
332 
333 static struct ctl_table sve_default_vl_table[] = {
334 	{
335 		.procname	= "sve_default_vector_length",
336 		.mode		= 0644,
337 		.proc_handler	= sve_proc_do_default_vl,
338 	},
339 	{ }
340 };
341 
342 static int __init sve_sysctl_init(void)
343 {
344 	if (system_supports_sve())
345 		if (!register_sysctl("abi", sve_default_vl_table))
346 			return -EINVAL;
347 
348 	return 0;
349 }
350 
351 #else /* ! CONFIG_SYSCTL */
352 static int __init sve_sysctl_init(void) { return 0; }
353 #endif /* ! CONFIG_SYSCTL */
354 
355 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
356 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
357 
358 /*
359  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
360  * task->thread.sve_state.
361  *
362  * Task can be a non-runnable task, or current.  In the latter case,
363  * softirqs (and preemption) must be disabled.
364  * task->thread.sve_state must point to at least sve_state_size(task)
365  * bytes of allocated kernel memory.
366  * task->thread.uw.fpsimd_state must be up to date before calling this
367  * function.
368  */
369 static void fpsimd_to_sve(struct task_struct *task)
370 {
371 	unsigned int vq;
372 	void *sst = task->thread.sve_state;
373 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
374 	unsigned int i;
375 
376 	if (!system_supports_sve())
377 		return;
378 
379 	vq = sve_vq_from_vl(task->thread.sve_vl);
380 	for (i = 0; i < 32; ++i)
381 		memcpy(ZREG(sst, vq, i), &fst->vregs[i],
382 		       sizeof(fst->vregs[i]));
383 }
384 
385 /*
386  * Transfer the SVE state in task->thread.sve_state to
387  * task->thread.uw.fpsimd_state.
388  *
389  * Task can be a non-runnable task, or current.  In the latter case,
390  * softirqs (and preemption) must be disabled.
391  * task->thread.sve_state must point to at least sve_state_size(task)
392  * bytes of allocated kernel memory.
393  * task->thread.sve_state must be up to date before calling this function.
394  */
395 static void sve_to_fpsimd(struct task_struct *task)
396 {
397 	unsigned int vq;
398 	void const *sst = task->thread.sve_state;
399 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
400 	unsigned int i;
401 
402 	if (!system_supports_sve())
403 		return;
404 
405 	vq = sve_vq_from_vl(task->thread.sve_vl);
406 	for (i = 0; i < 32; ++i)
407 		memcpy(&fst->vregs[i], ZREG(sst, vq, i),
408 		       sizeof(fst->vregs[i]));
409 }
410 
411 #ifdef CONFIG_ARM64_SVE
412 
413 /*
414  * Return how many bytes of memory are required to store the full SVE
415  * state for task, given task's currently configured vector length.
416  */
417 size_t sve_state_size(struct task_struct const *task)
418 {
419 	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
420 }
421 
422 /*
423  * Ensure that task->thread.sve_state is allocated and sufficiently large.
424  *
425  * This function should be used only in preparation for replacing
426  * task->thread.sve_state with new data.  The memory is always zeroed
427  * here to prevent stale data from showing through: this is done in
428  * the interest of testability and predictability: except in the
429  * do_sve_acc() case, there is no ABI requirement to hide stale data
430  * written previously be task.
431  */
432 void sve_alloc(struct task_struct *task)
433 {
434 	if (task->thread.sve_state) {
435 		memset(task->thread.sve_state, 0, sve_state_size(current));
436 		return;
437 	}
438 
439 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
440 	task->thread.sve_state =
441 		kzalloc(sve_state_size(task), GFP_KERNEL);
442 
443 	/*
444 	 * If future SVE revisions can have larger vectors though,
445 	 * this may cease to be true:
446 	 */
447 	BUG_ON(!task->thread.sve_state);
448 }
449 
450 
451 /*
452  * Ensure that task->thread.sve_state is up to date with respect to
453  * the user task, irrespective of when SVE is in use or not.
454  *
455  * This should only be called by ptrace.  task must be non-runnable.
456  * task->thread.sve_state must point to at least sve_state_size(task)
457  * bytes of allocated kernel memory.
458  */
459 void fpsimd_sync_to_sve(struct task_struct *task)
460 {
461 	if (!test_tsk_thread_flag(task, TIF_SVE))
462 		fpsimd_to_sve(task);
463 }
464 
465 /*
466  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
467  * the user task, irrespective of whether SVE is in use or not.
468  *
469  * This should only be called by ptrace.  task must be non-runnable.
470  * task->thread.sve_state must point to at least sve_state_size(task)
471  * bytes of allocated kernel memory.
472  */
473 void sve_sync_to_fpsimd(struct task_struct *task)
474 {
475 	if (test_tsk_thread_flag(task, TIF_SVE))
476 		sve_to_fpsimd(task);
477 }
478 
479 /*
480  * Ensure that task->thread.sve_state is up to date with respect to
481  * the task->thread.uw.fpsimd_state.
482  *
483  * This should only be called by ptrace to merge new FPSIMD register
484  * values into a task for which SVE is currently active.
485  * task must be non-runnable.
486  * task->thread.sve_state must point to at least sve_state_size(task)
487  * bytes of allocated kernel memory.
488  * task->thread.uw.fpsimd_state must already have been initialised with
489  * the new FPSIMD register values to be merged in.
490  */
491 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
492 {
493 	unsigned int vq;
494 	void *sst = task->thread.sve_state;
495 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
496 	unsigned int i;
497 
498 	if (!test_tsk_thread_flag(task, TIF_SVE))
499 		return;
500 
501 	vq = sve_vq_from_vl(task->thread.sve_vl);
502 
503 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
504 
505 	for (i = 0; i < 32; ++i)
506 		memcpy(ZREG(sst, vq, i), &fst->vregs[i],
507 		       sizeof(fst->vregs[i]));
508 }
509 
510 int sve_set_vector_length(struct task_struct *task,
511 			  unsigned long vl, unsigned long flags)
512 {
513 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
514 				     PR_SVE_SET_VL_ONEXEC))
515 		return -EINVAL;
516 
517 	if (!sve_vl_valid(vl))
518 		return -EINVAL;
519 
520 	/*
521 	 * Clamp to the maximum vector length that VL-agnostic SVE code can
522 	 * work with.  A flag may be assigned in the future to allow setting
523 	 * of larger vector lengths without confusing older software.
524 	 */
525 	if (vl > SVE_VL_ARCH_MAX)
526 		vl = SVE_VL_ARCH_MAX;
527 
528 	vl = find_supported_vector_length(vl);
529 
530 	if (flags & (PR_SVE_VL_INHERIT |
531 		     PR_SVE_SET_VL_ONEXEC))
532 		task->thread.sve_vl_onexec = vl;
533 	else
534 		/* Reset VL to system default on next exec: */
535 		task->thread.sve_vl_onexec = 0;
536 
537 	/* Only actually set the VL if not deferred: */
538 	if (flags & PR_SVE_SET_VL_ONEXEC)
539 		goto out;
540 
541 	if (vl == task->thread.sve_vl)
542 		goto out;
543 
544 	/*
545 	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
546 	 * write any live register state back to task_struct, and convert to a
547 	 * non-SVE thread.
548 	 */
549 	if (task == current) {
550 		local_bh_disable();
551 
552 		fpsimd_save();
553 		set_thread_flag(TIF_FOREIGN_FPSTATE);
554 	}
555 
556 	fpsimd_flush_task_state(task);
557 	if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
558 		sve_to_fpsimd(task);
559 
560 	if (task == current)
561 		local_bh_enable();
562 
563 	/*
564 	 * Force reallocation of task SVE state to the correct size
565 	 * on next use:
566 	 */
567 	sve_free(task);
568 
569 	task->thread.sve_vl = vl;
570 
571 out:
572 	update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
573 			       flags & PR_SVE_VL_INHERIT);
574 
575 	return 0;
576 }
577 
578 /*
579  * Encode the current vector length and flags for return.
580  * This is only required for prctl(): ptrace has separate fields
581  *
582  * flags are as for sve_set_vector_length().
583  */
584 static int sve_prctl_status(unsigned long flags)
585 {
586 	int ret;
587 
588 	if (flags & PR_SVE_SET_VL_ONEXEC)
589 		ret = current->thread.sve_vl_onexec;
590 	else
591 		ret = current->thread.sve_vl;
592 
593 	if (test_thread_flag(TIF_SVE_VL_INHERIT))
594 		ret |= PR_SVE_VL_INHERIT;
595 
596 	return ret;
597 }
598 
599 /* PR_SVE_SET_VL */
600 int sve_set_current_vl(unsigned long arg)
601 {
602 	unsigned long vl, flags;
603 	int ret;
604 
605 	vl = arg & PR_SVE_VL_LEN_MASK;
606 	flags = arg & ~vl;
607 
608 	if (!system_supports_sve())
609 		return -EINVAL;
610 
611 	ret = sve_set_vector_length(current, vl, flags);
612 	if (ret)
613 		return ret;
614 
615 	return sve_prctl_status(flags);
616 }
617 
618 /* PR_SVE_GET_VL */
619 int sve_get_current_vl(void)
620 {
621 	if (!system_supports_sve())
622 		return -EINVAL;
623 
624 	return sve_prctl_status(0);
625 }
626 
627 /*
628  * Bitmap for temporary storage of the per-CPU set of supported vector lengths
629  * during secondary boot.
630  */
631 static DECLARE_BITMAP(sve_secondary_vq_map, SVE_VQ_MAX);
632 
633 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
634 {
635 	unsigned int vq, vl;
636 	unsigned long zcr;
637 
638 	bitmap_zero(map, SVE_VQ_MAX);
639 
640 	zcr = ZCR_ELx_LEN_MASK;
641 	zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
642 
643 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
644 		write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
645 		vl = sve_get_vl();
646 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
647 		set_bit(vq_to_bit(vq), map);
648 	}
649 }
650 
651 void __init sve_init_vq_map(void)
652 {
653 	sve_probe_vqs(sve_vq_map);
654 }
655 
656 /*
657  * If we haven't committed to the set of supported VQs yet, filter out
658  * those not supported by the current CPU.
659  */
660 void sve_update_vq_map(void)
661 {
662 	sve_probe_vqs(sve_secondary_vq_map);
663 	bitmap_and(sve_vq_map, sve_vq_map, sve_secondary_vq_map, SVE_VQ_MAX);
664 }
665 
666 /* Check whether the current CPU supports all VQs in the committed set */
667 int sve_verify_vq_map(void)
668 {
669 	int ret = 0;
670 
671 	sve_probe_vqs(sve_secondary_vq_map);
672 	bitmap_andnot(sve_secondary_vq_map, sve_vq_map, sve_secondary_vq_map,
673 		      SVE_VQ_MAX);
674 	if (!bitmap_empty(sve_secondary_vq_map, SVE_VQ_MAX)) {
675 		pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
676 			smp_processor_id());
677 		ret = -EINVAL;
678 	}
679 
680 	return ret;
681 }
682 
683 static void __init sve_efi_setup(void)
684 {
685 	if (!IS_ENABLED(CONFIG_EFI))
686 		return;
687 
688 	/*
689 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
690 	 * This is evidence of a crippled system and we are returning void,
691 	 * so no attempt is made to handle this situation here.
692 	 */
693 	if (!sve_vl_valid(sve_max_vl))
694 		goto fail;
695 
696 	efi_sve_state = __alloc_percpu(
697 		SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
698 	if (!efi_sve_state)
699 		goto fail;
700 
701 	return;
702 
703 fail:
704 	panic("Cannot allocate percpu memory for EFI SVE save/restore");
705 }
706 
707 /*
708  * Enable SVE for EL1.
709  * Intended for use by the cpufeatures code during CPU boot.
710  */
711 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
712 {
713 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
714 	isb();
715 }
716 
717 /*
718  * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
719  * vector length.
720  *
721  * Use only if SVE is present.
722  * This function clobbers the SVE vector length.
723  */
724 u64 read_zcr_features(void)
725 {
726 	u64 zcr;
727 	unsigned int vq_max;
728 
729 	/*
730 	 * Set the maximum possible VL, and write zeroes to all other
731 	 * bits to see if they stick.
732 	 */
733 	sve_kernel_enable(NULL);
734 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
735 
736 	zcr = read_sysreg_s(SYS_ZCR_EL1);
737 	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
738 	vq_max = sve_vq_from_vl(sve_get_vl());
739 	zcr |= vq_max - 1; /* set LEN field to maximum effective value */
740 
741 	return zcr;
742 }
743 
744 void __init sve_setup(void)
745 {
746 	u64 zcr;
747 
748 	if (!system_supports_sve())
749 		return;
750 
751 	/*
752 	 * The SVE architecture mandates support for 128-bit vectors,
753 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
754 	 * If something went wrong, at least try to patch it up:
755 	 */
756 	if (WARN_ON(!test_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
757 		set_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map);
758 
759 	zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
760 	sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
761 
762 	/*
763 	 * Sanity-check that the max VL we determined through CPU features
764 	 * corresponds properly to sve_vq_map.  If not, do our best:
765 	 */
766 	if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
767 		sve_max_vl = find_supported_vector_length(sve_max_vl);
768 
769 	/*
770 	 * For the default VL, pick the maximum supported value <= 64.
771 	 * VL == 64 is guaranteed not to grow the signal frame.
772 	 */
773 	sve_default_vl = find_supported_vector_length(64);
774 
775 	pr_info("SVE: maximum available vector length %u bytes per vector\n",
776 		sve_max_vl);
777 	pr_info("SVE: default vector length %u bytes per vector\n",
778 		sve_default_vl);
779 
780 	sve_efi_setup();
781 }
782 
783 /*
784  * Called from the put_task_struct() path, which cannot get here
785  * unless dead_task is really dead and not schedulable.
786  */
787 void fpsimd_release_task(struct task_struct *dead_task)
788 {
789 	__sve_free(dead_task);
790 }
791 
792 #endif /* CONFIG_ARM64_SVE */
793 
794 /*
795  * Trapped SVE access
796  *
797  * Storage is allocated for the full SVE state, the current FPSIMD
798  * register contents are migrated across, and TIF_SVE is set so that
799  * the SVE access trap will be disabled the next time this task
800  * reaches ret_to_user.
801  *
802  * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
803  * would have disabled the SVE access trap for userspace during
804  * ret_to_user, making an SVE access trap impossible in that case.
805  */
806 asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
807 {
808 	/* Even if we chose not to use SVE, the hardware could still trap: */
809 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
810 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
811 		return;
812 	}
813 
814 	sve_alloc(current);
815 
816 	local_bh_disable();
817 
818 	fpsimd_save();
819 	fpsimd_to_sve(current);
820 
821 	/* Force ret_to_user to reload the registers: */
822 	fpsimd_flush_task_state(current);
823 	set_thread_flag(TIF_FOREIGN_FPSTATE);
824 
825 	if (test_and_set_thread_flag(TIF_SVE))
826 		WARN_ON(1); /* SVE access shouldn't have trapped */
827 
828 	local_bh_enable();
829 }
830 
831 /*
832  * Trapped FP/ASIMD access.
833  */
834 asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
835 {
836 	/* TODO: implement lazy context saving/restoring */
837 	WARN_ON(1);
838 }
839 
840 /*
841  * Raise a SIGFPE for the current process.
842  */
843 asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
844 {
845 	siginfo_t info;
846 	unsigned int si_code = FPE_FLTUNK;
847 
848 	if (esr & ESR_ELx_FP_EXC_TFV) {
849 		if (esr & FPEXC_IOF)
850 			si_code = FPE_FLTINV;
851 		else if (esr & FPEXC_DZF)
852 			si_code = FPE_FLTDIV;
853 		else if (esr & FPEXC_OFF)
854 			si_code = FPE_FLTOVF;
855 		else if (esr & FPEXC_UFF)
856 			si_code = FPE_FLTUND;
857 		else if (esr & FPEXC_IXF)
858 			si_code = FPE_FLTRES;
859 	}
860 
861 	clear_siginfo(&info);
862 	info.si_signo = SIGFPE;
863 	info.si_code = si_code;
864 	info.si_addr = (void __user *)instruction_pointer(regs);
865 
866 	send_sig_info(SIGFPE, &info, current);
867 }
868 
869 void fpsimd_thread_switch(struct task_struct *next)
870 {
871 	bool wrong_task, wrong_cpu;
872 
873 	if (!system_supports_fpsimd())
874 		return;
875 
876 	/* Save unsaved fpsimd state, if any: */
877 	fpsimd_save();
878 
879 	/*
880 	 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
881 	 * state.  For kernel threads, FPSIMD registers are never loaded
882 	 * and wrong_task and wrong_cpu will always be true.
883 	 */
884 	wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
885 					&next->thread.uw.fpsimd_state;
886 	wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
887 
888 	update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
889 			       wrong_task || wrong_cpu);
890 }
891 
892 void fpsimd_flush_thread(void)
893 {
894 	int vl, supported_vl;
895 
896 	if (!system_supports_fpsimd())
897 		return;
898 
899 	local_bh_disable();
900 
901 	memset(&current->thread.uw.fpsimd_state, 0,
902 	       sizeof(current->thread.uw.fpsimd_state));
903 	fpsimd_flush_task_state(current);
904 
905 	if (system_supports_sve()) {
906 		clear_thread_flag(TIF_SVE);
907 		sve_free(current);
908 
909 		/*
910 		 * Reset the task vector length as required.
911 		 * This is where we ensure that all user tasks have a valid
912 		 * vector length configured: no kernel task can become a user
913 		 * task without an exec and hence a call to this function.
914 		 * By the time the first call to this function is made, all
915 		 * early hardware probing is complete, so sve_default_vl
916 		 * should be valid.
917 		 * If a bug causes this to go wrong, we make some noise and
918 		 * try to fudge thread.sve_vl to a safe value here.
919 		 */
920 		vl = current->thread.sve_vl_onexec ?
921 			current->thread.sve_vl_onexec : sve_default_vl;
922 
923 		if (WARN_ON(!sve_vl_valid(vl)))
924 			vl = SVE_VL_MIN;
925 
926 		supported_vl = find_supported_vector_length(vl);
927 		if (WARN_ON(supported_vl != vl))
928 			vl = supported_vl;
929 
930 		current->thread.sve_vl = vl;
931 
932 		/*
933 		 * If the task is not set to inherit, ensure that the vector
934 		 * length will be reset by a subsequent exec:
935 		 */
936 		if (!test_thread_flag(TIF_SVE_VL_INHERIT))
937 			current->thread.sve_vl_onexec = 0;
938 	}
939 
940 	set_thread_flag(TIF_FOREIGN_FPSTATE);
941 
942 	local_bh_enable();
943 }
944 
945 /*
946  * Save the userland FPSIMD state of 'current' to memory, but only if the state
947  * currently held in the registers does in fact belong to 'current'
948  */
949 void fpsimd_preserve_current_state(void)
950 {
951 	if (!system_supports_fpsimd())
952 		return;
953 
954 	local_bh_disable();
955 	fpsimd_save();
956 	local_bh_enable();
957 }
958 
959 /*
960  * Like fpsimd_preserve_current_state(), but ensure that
961  * current->thread.uw.fpsimd_state is updated so that it can be copied to
962  * the signal frame.
963  */
964 void fpsimd_signal_preserve_current_state(void)
965 {
966 	fpsimd_preserve_current_state();
967 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
968 		sve_to_fpsimd(current);
969 }
970 
971 /*
972  * Associate current's FPSIMD context with this cpu
973  * Preemption must be disabled when calling this function.
974  */
975 void fpsimd_bind_task_to_cpu(void)
976 {
977 	struct fpsimd_last_state_struct *last =
978 		this_cpu_ptr(&fpsimd_last_state);
979 
980 	last->st = &current->thread.uw.fpsimd_state;
981 	current->thread.fpsimd_cpu = smp_processor_id();
982 
983 	if (system_supports_sve()) {
984 		/* Toggle SVE trapping for userspace if needed */
985 		if (test_thread_flag(TIF_SVE))
986 			sve_user_enable();
987 		else
988 			sve_user_disable();
989 
990 		/* Serialised by exception return to user */
991 	}
992 }
993 
994 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st)
995 {
996 	struct fpsimd_last_state_struct *last =
997 		this_cpu_ptr(&fpsimd_last_state);
998 
999 	WARN_ON(!in_softirq() && !irqs_disabled());
1000 
1001 	last->st = st;
1002 }
1003 
1004 /*
1005  * Load the userland FPSIMD state of 'current' from memory, but only if the
1006  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1007  * state of 'current'
1008  */
1009 void fpsimd_restore_current_state(void)
1010 {
1011 	if (!system_supports_fpsimd())
1012 		return;
1013 
1014 	local_bh_disable();
1015 
1016 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1017 		task_fpsimd_load();
1018 		fpsimd_bind_task_to_cpu();
1019 	}
1020 
1021 	local_bh_enable();
1022 }
1023 
1024 /*
1025  * Load an updated userland FPSIMD state for 'current' from memory and set the
1026  * flag that indicates that the FPSIMD register contents are the most recent
1027  * FPSIMD state of 'current'
1028  */
1029 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1030 {
1031 	if (!system_supports_fpsimd())
1032 		return;
1033 
1034 	local_bh_disable();
1035 
1036 	current->thread.uw.fpsimd_state = *state;
1037 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
1038 		fpsimd_to_sve(current);
1039 
1040 	task_fpsimd_load();
1041 	fpsimd_bind_task_to_cpu();
1042 
1043 	clear_thread_flag(TIF_FOREIGN_FPSTATE);
1044 
1045 	local_bh_enable();
1046 }
1047 
1048 /*
1049  * Invalidate live CPU copies of task t's FPSIMD state
1050  */
1051 void fpsimd_flush_task_state(struct task_struct *t)
1052 {
1053 	t->thread.fpsimd_cpu = NR_CPUS;
1054 }
1055 
1056 void fpsimd_flush_cpu_state(void)
1057 {
1058 	__this_cpu_write(fpsimd_last_state.st, NULL);
1059 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1060 }
1061 
1062 #ifdef CONFIG_KERNEL_MODE_NEON
1063 
1064 DEFINE_PER_CPU(bool, kernel_neon_busy);
1065 EXPORT_PER_CPU_SYMBOL(kernel_neon_busy);
1066 
1067 /*
1068  * Kernel-side NEON support functions
1069  */
1070 
1071 /*
1072  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1073  * context
1074  *
1075  * Must not be called unless may_use_simd() returns true.
1076  * Task context in the FPSIMD registers is saved back to memory as necessary.
1077  *
1078  * A matching call to kernel_neon_end() must be made before returning from the
1079  * calling context.
1080  *
1081  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1082  * called.
1083  */
1084 void kernel_neon_begin(void)
1085 {
1086 	if (WARN_ON(!system_supports_fpsimd()))
1087 		return;
1088 
1089 	BUG_ON(!may_use_simd());
1090 
1091 	local_bh_disable();
1092 
1093 	__this_cpu_write(kernel_neon_busy, true);
1094 
1095 	/* Save unsaved fpsimd state, if any: */
1096 	fpsimd_save();
1097 
1098 	/* Invalidate any task state remaining in the fpsimd regs: */
1099 	fpsimd_flush_cpu_state();
1100 
1101 	preempt_disable();
1102 
1103 	local_bh_enable();
1104 }
1105 EXPORT_SYMBOL(kernel_neon_begin);
1106 
1107 /*
1108  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1109  *
1110  * Must be called from a context in which kernel_neon_begin() was previously
1111  * called, with no call to kernel_neon_end() in the meantime.
1112  *
1113  * The caller must not use the FPSIMD registers after this function is called,
1114  * unless kernel_neon_begin() is called again in the meantime.
1115  */
1116 void kernel_neon_end(void)
1117 {
1118 	bool busy;
1119 
1120 	if (!system_supports_fpsimd())
1121 		return;
1122 
1123 	busy = __this_cpu_xchg(kernel_neon_busy, false);
1124 	WARN_ON(!busy);	/* No matching kernel_neon_begin()? */
1125 
1126 	preempt_enable();
1127 }
1128 EXPORT_SYMBOL(kernel_neon_end);
1129 
1130 #ifdef CONFIG_EFI
1131 
1132 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1133 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1134 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1135 
1136 /*
1137  * EFI runtime services support functions
1138  *
1139  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1140  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1141  * is always used rather than being an optional accelerator.
1142  *
1143  * These functions provide the necessary support for ensuring FPSIMD
1144  * save/restore in the contexts from which EFI is used.
1145  *
1146  * Do not use them for any other purpose -- if tempted to do so, you are
1147  * either doing something wrong or you need to propose some refactoring.
1148  */
1149 
1150 /*
1151  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1152  */
1153 void __efi_fpsimd_begin(void)
1154 {
1155 	if (!system_supports_fpsimd())
1156 		return;
1157 
1158 	WARN_ON(preemptible());
1159 
1160 	if (may_use_simd()) {
1161 		kernel_neon_begin();
1162 	} else {
1163 		/*
1164 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1165 		 * preserving:
1166 		 */
1167 		if (system_supports_sve() && likely(efi_sve_state)) {
1168 			char *sve_state = this_cpu_ptr(efi_sve_state);
1169 
1170 			__this_cpu_write(efi_sve_state_used, true);
1171 
1172 			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
1173 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
1174 		} else {
1175 			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1176 		}
1177 
1178 		__this_cpu_write(efi_fpsimd_state_used, true);
1179 	}
1180 }
1181 
1182 /*
1183  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1184  */
1185 void __efi_fpsimd_end(void)
1186 {
1187 	if (!system_supports_fpsimd())
1188 		return;
1189 
1190 	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1191 		kernel_neon_end();
1192 	} else {
1193 		if (system_supports_sve() &&
1194 		    likely(__this_cpu_read(efi_sve_state_used))) {
1195 			char const *sve_state = this_cpu_ptr(efi_sve_state);
1196 
1197 			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
1198 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1199 				       sve_vq_from_vl(sve_get_vl()) - 1);
1200 
1201 			__this_cpu_write(efi_sve_state_used, false);
1202 		} else {
1203 			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1204 		}
1205 	}
1206 }
1207 
1208 #endif /* CONFIG_EFI */
1209 
1210 #endif /* CONFIG_KERNEL_MODE_NEON */
1211 
1212 #ifdef CONFIG_CPU_PM
1213 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1214 				  unsigned long cmd, void *v)
1215 {
1216 	switch (cmd) {
1217 	case CPU_PM_ENTER:
1218 		fpsimd_save();
1219 		fpsimd_flush_cpu_state();
1220 		break;
1221 	case CPU_PM_EXIT:
1222 		break;
1223 	case CPU_PM_ENTER_FAILED:
1224 	default:
1225 		return NOTIFY_DONE;
1226 	}
1227 	return NOTIFY_OK;
1228 }
1229 
1230 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1231 	.notifier_call = fpsimd_cpu_pm_notifier,
1232 };
1233 
1234 static void __init fpsimd_pm_init(void)
1235 {
1236 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1237 }
1238 
1239 #else
1240 static inline void fpsimd_pm_init(void) { }
1241 #endif /* CONFIG_CPU_PM */
1242 
1243 #ifdef CONFIG_HOTPLUG_CPU
1244 static int fpsimd_cpu_dead(unsigned int cpu)
1245 {
1246 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
1247 	return 0;
1248 }
1249 
1250 static inline void fpsimd_hotplug_init(void)
1251 {
1252 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1253 				  NULL, fpsimd_cpu_dead);
1254 }
1255 
1256 #else
1257 static inline void fpsimd_hotplug_init(void) { }
1258 #endif
1259 
1260 /*
1261  * FP/SIMD support code initialisation.
1262  */
1263 static int __init fpsimd_init(void)
1264 {
1265 	if (elf_hwcap & HWCAP_FP) {
1266 		fpsimd_pm_init();
1267 		fpsimd_hotplug_init();
1268 	} else {
1269 		pr_notice("Floating-point is not implemented\n");
1270 	}
1271 
1272 	if (!(elf_hwcap & HWCAP_ASIMD))
1273 		pr_notice("Advanced SIMD is not implemented\n");
1274 
1275 	return sve_sysctl_init();
1276 }
1277 core_initcall(fpsimd_init);
1278