xref: /openbmc/linux/arch/arm64/kernel/fpsimd.c (revision 405db98b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FP/SIMD context switching and fault handling
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  * Author: Catalin Marinas <catalin.marinas@arm.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/kernel.h>
19 #include <linux/linkage.h>
20 #include <linux/irqflags.h>
21 #include <linux/init.h>
22 #include <linux/percpu.h>
23 #include <linux/prctl.h>
24 #include <linux/preempt.h>
25 #include <linux/ptrace.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/task_stack.h>
28 #include <linux/signal.h>
29 #include <linux/slab.h>
30 #include <linux/stddef.h>
31 #include <linux/sysctl.h>
32 #include <linux/swab.h>
33 
34 #include <asm/esr.h>
35 #include <asm/exception.h>
36 #include <asm/fpsimd.h>
37 #include <asm/cpufeature.h>
38 #include <asm/cputype.h>
39 #include <asm/neon.h>
40 #include <asm/processor.h>
41 #include <asm/simd.h>
42 #include <asm/sigcontext.h>
43 #include <asm/sysreg.h>
44 #include <asm/traps.h>
45 #include <asm/virt.h>
46 
47 #define FPEXC_IOF	(1 << 0)
48 #define FPEXC_DZF	(1 << 1)
49 #define FPEXC_OFF	(1 << 2)
50 #define FPEXC_UFF	(1 << 3)
51 #define FPEXC_IXF	(1 << 4)
52 #define FPEXC_IDF	(1 << 7)
53 
54 /*
55  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
56  *
57  * In order to reduce the number of times the FPSIMD state is needlessly saved
58  * and restored, we need to keep track of two things:
59  * (a) for each task, we need to remember which CPU was the last one to have
60  *     the task's FPSIMD state loaded into its FPSIMD registers;
61  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
62  *     been loaded into its FPSIMD registers most recently, or whether it has
63  *     been used to perform kernel mode NEON in the meantime.
64  *
65  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
66  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
67  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
68  * address of the userland FPSIMD state of the task that was loaded onto the CPU
69  * the most recently, or NULL if kernel mode NEON has been performed after that.
70  *
71  * With this in place, we no longer have to restore the next FPSIMD state right
72  * when switching between tasks. Instead, we can defer this check to userland
73  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
74  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
75  * can omit the FPSIMD restore.
76  *
77  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
78  * indicate whether or not the userland FPSIMD state of the current task is
79  * present in the registers. The flag is set unless the FPSIMD registers of this
80  * CPU currently contain the most recent userland FPSIMD state of the current
81  * task.
82  *
83  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
84  * save the task's FPSIMD context back to task_struct from softirq context.
85  * To prevent this from racing with the manipulation of the task's FPSIMD state
86  * from task context and thereby corrupting the state, it is necessary to
87  * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
88  * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
89  * run but prevent them to use FPSIMD.
90  *
91  * For a certain task, the sequence may look something like this:
92  * - the task gets scheduled in; if both the task's fpsimd_cpu field
93  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
94  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
95  *   cleared, otherwise it is set;
96  *
97  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
98  *   userland FPSIMD state is copied from memory to the registers, the task's
99  *   fpsimd_cpu field is set to the id of the current CPU, the current
100  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
101  *   TIF_FOREIGN_FPSTATE flag is cleared;
102  *
103  * - the task executes an ordinary syscall; upon return to userland, the
104  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
105  *   restored;
106  *
107  * - the task executes a syscall which executes some NEON instructions; this is
108  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
109  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
110  *   and sets the TIF_FOREIGN_FPSTATE flag;
111  *
112  * - the task gets preempted after kernel_neon_end() is called; as we have not
113  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
114  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
115  */
116 struct fpsimd_last_state_struct {
117 	struct user_fpsimd_state *st;
118 	void *sve_state;
119 	unsigned int sve_vl;
120 };
121 
122 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
123 
124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
125 #ifdef CONFIG_ARM64_SVE
126 	[ARM64_VEC_SVE] = {
127 		.type			= ARM64_VEC_SVE,
128 		.name			= "SVE",
129 		.min_vl			= SVE_VL_MIN,
130 		.max_vl			= SVE_VL_MIN,
131 		.max_virtualisable_vl	= SVE_VL_MIN,
132 	},
133 #endif
134 };
135 
136 static unsigned int vec_vl_inherit_flag(enum vec_type type)
137 {
138 	switch (type) {
139 	case ARM64_VEC_SVE:
140 		return TIF_SVE_VL_INHERIT;
141 	default:
142 		WARN_ON_ONCE(1);
143 		return 0;
144 	}
145 }
146 
147 struct vl_config {
148 	int __default_vl;		/* Default VL for tasks */
149 };
150 
151 static struct vl_config vl_config[ARM64_VEC_MAX];
152 
153 static inline int get_default_vl(enum vec_type type)
154 {
155 	return READ_ONCE(vl_config[type].__default_vl);
156 }
157 
158 #ifdef CONFIG_ARM64_SVE
159 
160 static inline int get_sve_default_vl(void)
161 {
162 	return get_default_vl(ARM64_VEC_SVE);
163 }
164 
165 static inline void set_default_vl(enum vec_type type, int val)
166 {
167 	WRITE_ONCE(vl_config[type].__default_vl, val);
168 }
169 
170 static inline void set_sve_default_vl(int val)
171 {
172 	set_default_vl(ARM64_VEC_SVE, val);
173 }
174 
175 static void __percpu *efi_sve_state;
176 
177 #else /* ! CONFIG_ARM64_SVE */
178 
179 /* Dummy declaration for code that will be optimised out: */
180 extern void __percpu *efi_sve_state;
181 
182 #endif /* ! CONFIG_ARM64_SVE */
183 
184 DEFINE_PER_CPU(bool, fpsimd_context_busy);
185 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
186 
187 static void fpsimd_bind_task_to_cpu(void);
188 
189 static void __get_cpu_fpsimd_context(void)
190 {
191 	bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
192 
193 	WARN_ON(busy);
194 }
195 
196 /*
197  * Claim ownership of the CPU FPSIMD context for use by the calling context.
198  *
199  * The caller may freely manipulate the FPSIMD context metadata until
200  * put_cpu_fpsimd_context() is called.
201  *
202  * The double-underscore version must only be called if you know the task
203  * can't be preempted.
204  */
205 static void get_cpu_fpsimd_context(void)
206 {
207 	local_bh_disable();
208 	__get_cpu_fpsimd_context();
209 }
210 
211 static void __put_cpu_fpsimd_context(void)
212 {
213 	bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
214 
215 	WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
216 }
217 
218 /*
219  * Release the CPU FPSIMD context.
220  *
221  * Must be called from a context in which get_cpu_fpsimd_context() was
222  * previously called, with no call to put_cpu_fpsimd_context() in the
223  * meantime.
224  */
225 static void put_cpu_fpsimd_context(void)
226 {
227 	__put_cpu_fpsimd_context();
228 	local_bh_enable();
229 }
230 
231 static bool have_cpu_fpsimd_context(void)
232 {
233 	return !preemptible() && __this_cpu_read(fpsimd_context_busy);
234 }
235 
236 /*
237  * Call __sve_free() directly only if you know task can't be scheduled
238  * or preempted.
239  */
240 static void __sve_free(struct task_struct *task)
241 {
242 	kfree(task->thread.sve_state);
243 	task->thread.sve_state = NULL;
244 }
245 
246 static void sve_free(struct task_struct *task)
247 {
248 	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
249 
250 	__sve_free(task);
251 }
252 
253 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
254 {
255 	return task->thread.vl[type];
256 }
257 
258 void task_set_vl(struct task_struct *task, enum vec_type type,
259 		 unsigned long vl)
260 {
261 	task->thread.vl[type] = vl;
262 }
263 
264 unsigned int task_get_vl_onexec(const struct task_struct *task,
265 				enum vec_type type)
266 {
267 	return task->thread.vl_onexec[type];
268 }
269 
270 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
271 			unsigned long vl)
272 {
273 	task->thread.vl_onexec[type] = vl;
274 }
275 
276 /*
277  * TIF_SVE controls whether a task can use SVE without trapping while
278  * in userspace, and also the way a task's FPSIMD/SVE state is stored
279  * in thread_struct.
280  *
281  * The kernel uses this flag to track whether a user task is actively
282  * using SVE, and therefore whether full SVE register state needs to
283  * be tracked.  If not, the cheaper FPSIMD context handling code can
284  * be used instead of the more costly SVE equivalents.
285  *
286  *  * TIF_SVE set:
287  *
288  *    The task can execute SVE instructions while in userspace without
289  *    trapping to the kernel.
290  *
291  *    When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
292  *    corresponding Zn), P0-P15 and FFR are encoded in in
293  *    task->thread.sve_state, formatted appropriately for vector
294  *    length task->thread.sve_vl.
295  *
296  *    task->thread.sve_state must point to a valid buffer at least
297  *    sve_state_size(task) bytes in size.
298  *
299  *    During any syscall, the kernel may optionally clear TIF_SVE and
300  *    discard the vector state except for the FPSIMD subset.
301  *
302  *  * TIF_SVE clear:
303  *
304  *    An attempt by the user task to execute an SVE instruction causes
305  *    do_sve_acc() to be called, which does some preparation and then
306  *    sets TIF_SVE.
307  *
308  *    When stored, FPSIMD registers V0-V31 are encoded in
309  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
310  *    logically zero but not stored anywhere; P0-P15 and FFR are not
311  *    stored and have unspecified values from userspace's point of
312  *    view.  For hygiene purposes, the kernel zeroes them on next use,
313  *    but userspace is discouraged from relying on this.
314  *
315  *    task->thread.sve_state does not need to be non-NULL, valid or any
316  *    particular size: it must not be dereferenced.
317  *
318  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
319  *    irrespective of whether TIF_SVE is clear or set, since these are
320  *    not vector length dependent.
321  */
322 
323 /*
324  * Update current's FPSIMD/SVE registers from thread_struct.
325  *
326  * This function should be called only when the FPSIMD/SVE state in
327  * thread_struct is known to be up to date, when preparing to enter
328  * userspace.
329  */
330 static void task_fpsimd_load(void)
331 {
332 	WARN_ON(!system_supports_fpsimd());
333 	WARN_ON(!have_cpu_fpsimd_context());
334 
335 	if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE)) {
336 		sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
337 		sve_load_state(sve_pffr(&current->thread),
338 			       &current->thread.uw.fpsimd_state.fpsr, true);
339 	} else {
340 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
341 	}
342 }
343 
344 /*
345  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
346  * date with respect to the CPU registers.
347  */
348 static void fpsimd_save(void)
349 {
350 	struct fpsimd_last_state_struct const *last =
351 		this_cpu_ptr(&fpsimd_last_state);
352 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
353 
354 	WARN_ON(!system_supports_fpsimd());
355 	WARN_ON(!have_cpu_fpsimd_context());
356 
357 	if (test_thread_flag(TIF_FOREIGN_FPSTATE))
358 		return;
359 
360 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
361 	    test_thread_flag(TIF_SVE)) {
362 		if (WARN_ON(sve_get_vl() != last->sve_vl)) {
363 			/*
364 			 * Can't save the user regs, so current would
365 			 * re-enter user with corrupt state.
366 			 * There's no way to recover, so kill it:
367 			 */
368 			force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
369 			return;
370 		}
371 
372 		sve_save_state((char *)last->sve_state +
373 					sve_ffr_offset(last->sve_vl),
374 			       &last->st->fpsr, true);
375 	} else {
376 		fpsimd_save_state(last->st);
377 	}
378 }
379 
380 /*
381  * All vector length selection from userspace comes through here.
382  * We're on a slow path, so some sanity-checks are included.
383  * If things go wrong there's a bug somewhere, but try to fall back to a
384  * safe choice.
385  */
386 static unsigned int find_supported_vector_length(enum vec_type type,
387 						 unsigned int vl)
388 {
389 	struct vl_info *info = &vl_info[type];
390 	int bit;
391 	int max_vl = info->max_vl;
392 
393 	if (WARN_ON(!sve_vl_valid(vl)))
394 		vl = info->min_vl;
395 
396 	if (WARN_ON(!sve_vl_valid(max_vl)))
397 		max_vl = info->min_vl;
398 
399 	if (vl > max_vl)
400 		vl = max_vl;
401 
402 	bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
403 			    __vq_to_bit(sve_vq_from_vl(vl)));
404 	return sve_vl_from_vq(__bit_to_vq(bit));
405 }
406 
407 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
408 
409 static int sve_proc_do_default_vl(struct ctl_table *table, int write,
410 				  void *buffer, size_t *lenp, loff_t *ppos)
411 {
412 	struct vl_info *info = &vl_info[ARM64_VEC_SVE];
413 	int ret;
414 	int vl = get_sve_default_vl();
415 	struct ctl_table tmp_table = {
416 		.data = &vl,
417 		.maxlen = sizeof(vl),
418 	};
419 
420 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
421 	if (ret || !write)
422 		return ret;
423 
424 	/* Writing -1 has the special meaning "set to max": */
425 	if (vl == -1)
426 		vl = info->max_vl;
427 
428 	if (!sve_vl_valid(vl))
429 		return -EINVAL;
430 
431 	set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, vl));
432 	return 0;
433 }
434 
435 static struct ctl_table sve_default_vl_table[] = {
436 	{
437 		.procname	= "sve_default_vector_length",
438 		.mode		= 0644,
439 		.proc_handler	= sve_proc_do_default_vl,
440 	},
441 	{ }
442 };
443 
444 static int __init sve_sysctl_init(void)
445 {
446 	if (system_supports_sve())
447 		if (!register_sysctl("abi", sve_default_vl_table))
448 			return -EINVAL;
449 
450 	return 0;
451 }
452 
453 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
454 static int __init sve_sysctl_init(void) { return 0; }
455 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
456 
457 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
458 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
459 
460 #ifdef CONFIG_CPU_BIG_ENDIAN
461 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
462 {
463 	u64 a = swab64(x);
464 	u64 b = swab64(x >> 64);
465 
466 	return ((__uint128_t)a << 64) | b;
467 }
468 #else
469 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
470 {
471 	return x;
472 }
473 #endif
474 
475 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
476 
477 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
478 			    unsigned int vq)
479 {
480 	unsigned int i;
481 	__uint128_t *p;
482 
483 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
484 		p = (__uint128_t *)ZREG(sst, vq, i);
485 		*p = arm64_cpu_to_le128(fst->vregs[i]);
486 	}
487 }
488 
489 /*
490  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
491  * task->thread.sve_state.
492  *
493  * Task can be a non-runnable task, or current.  In the latter case,
494  * the caller must have ownership of the cpu FPSIMD context before calling
495  * this function.
496  * task->thread.sve_state must point to at least sve_state_size(task)
497  * bytes of allocated kernel memory.
498  * task->thread.uw.fpsimd_state must be up to date before calling this
499  * function.
500  */
501 static void fpsimd_to_sve(struct task_struct *task)
502 {
503 	unsigned int vq;
504 	void *sst = task->thread.sve_state;
505 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
506 
507 	if (!system_supports_sve())
508 		return;
509 
510 	vq = sve_vq_from_vl(task_get_sve_vl(task));
511 	__fpsimd_to_sve(sst, fst, vq);
512 }
513 
514 /*
515  * Transfer the SVE state in task->thread.sve_state to
516  * task->thread.uw.fpsimd_state.
517  *
518  * Task can be a non-runnable task, or current.  In the latter case,
519  * the caller must have ownership of the cpu FPSIMD context before calling
520  * this function.
521  * task->thread.sve_state must point to at least sve_state_size(task)
522  * bytes of allocated kernel memory.
523  * task->thread.sve_state must be up to date before calling this function.
524  */
525 static void sve_to_fpsimd(struct task_struct *task)
526 {
527 	unsigned int vq;
528 	void const *sst = task->thread.sve_state;
529 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
530 	unsigned int i;
531 	__uint128_t const *p;
532 
533 	if (!system_supports_sve())
534 		return;
535 
536 	vq = sve_vq_from_vl(task_get_sve_vl(task));
537 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
538 		p = (__uint128_t const *)ZREG(sst, vq, i);
539 		fst->vregs[i] = arm64_le128_to_cpu(*p);
540 	}
541 }
542 
543 #ifdef CONFIG_ARM64_SVE
544 
545 /*
546  * Return how many bytes of memory are required to store the full SVE
547  * state for task, given task's currently configured vector length.
548  */
549 static size_t sve_state_size(struct task_struct const *task)
550 {
551 	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task_get_sve_vl(task)));
552 }
553 
554 /*
555  * Ensure that task->thread.sve_state is allocated and sufficiently large.
556  *
557  * This function should be used only in preparation for replacing
558  * task->thread.sve_state with new data.  The memory is always zeroed
559  * here to prevent stale data from showing through: this is done in
560  * the interest of testability and predictability: except in the
561  * do_sve_acc() case, there is no ABI requirement to hide stale data
562  * written previously be task.
563  */
564 void sve_alloc(struct task_struct *task)
565 {
566 	if (task->thread.sve_state) {
567 		memset(task->thread.sve_state, 0, sve_state_size(task));
568 		return;
569 	}
570 
571 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
572 	task->thread.sve_state =
573 		kzalloc(sve_state_size(task), GFP_KERNEL);
574 }
575 
576 
577 /*
578  * Ensure that task->thread.sve_state is up to date with respect to
579  * the user task, irrespective of when SVE is in use or not.
580  *
581  * This should only be called by ptrace.  task must be non-runnable.
582  * task->thread.sve_state must point to at least sve_state_size(task)
583  * bytes of allocated kernel memory.
584  */
585 void fpsimd_sync_to_sve(struct task_struct *task)
586 {
587 	if (!test_tsk_thread_flag(task, TIF_SVE))
588 		fpsimd_to_sve(task);
589 }
590 
591 /*
592  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
593  * the user task, irrespective of whether SVE is in use or not.
594  *
595  * This should only be called by ptrace.  task must be non-runnable.
596  * task->thread.sve_state must point to at least sve_state_size(task)
597  * bytes of allocated kernel memory.
598  */
599 void sve_sync_to_fpsimd(struct task_struct *task)
600 {
601 	if (test_tsk_thread_flag(task, TIF_SVE))
602 		sve_to_fpsimd(task);
603 }
604 
605 /*
606  * Ensure that task->thread.sve_state is up to date with respect to
607  * the task->thread.uw.fpsimd_state.
608  *
609  * This should only be called by ptrace to merge new FPSIMD register
610  * values into a task for which SVE is currently active.
611  * task must be non-runnable.
612  * task->thread.sve_state must point to at least sve_state_size(task)
613  * bytes of allocated kernel memory.
614  * task->thread.uw.fpsimd_state must already have been initialised with
615  * the new FPSIMD register values to be merged in.
616  */
617 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
618 {
619 	unsigned int vq;
620 	void *sst = task->thread.sve_state;
621 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
622 
623 	if (!test_tsk_thread_flag(task, TIF_SVE))
624 		return;
625 
626 	vq = sve_vq_from_vl(task_get_sve_vl(task));
627 
628 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
629 	__fpsimd_to_sve(sst, fst, vq);
630 }
631 
632 int sve_set_vector_length(struct task_struct *task,
633 			  unsigned long vl, unsigned long flags)
634 {
635 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
636 				     PR_SVE_SET_VL_ONEXEC))
637 		return -EINVAL;
638 
639 	if (!sve_vl_valid(vl))
640 		return -EINVAL;
641 
642 	/*
643 	 * Clamp to the maximum vector length that VL-agnostic SVE code can
644 	 * work with.  A flag may be assigned in the future to allow setting
645 	 * of larger vector lengths without confusing older software.
646 	 */
647 	if (vl > SVE_VL_ARCH_MAX)
648 		vl = SVE_VL_ARCH_MAX;
649 
650 	vl = find_supported_vector_length(ARM64_VEC_SVE, vl);
651 
652 	if (flags & (PR_SVE_VL_INHERIT |
653 		     PR_SVE_SET_VL_ONEXEC))
654 		task_set_sve_vl_onexec(task, vl);
655 	else
656 		/* Reset VL to system default on next exec: */
657 		task_set_sve_vl_onexec(task, 0);
658 
659 	/* Only actually set the VL if not deferred: */
660 	if (flags & PR_SVE_SET_VL_ONEXEC)
661 		goto out;
662 
663 	if (vl == task_get_sve_vl(task))
664 		goto out;
665 
666 	/*
667 	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
668 	 * write any live register state back to task_struct, and convert to a
669 	 * non-SVE thread.
670 	 */
671 	if (task == current) {
672 		get_cpu_fpsimd_context();
673 
674 		fpsimd_save();
675 	}
676 
677 	fpsimd_flush_task_state(task);
678 	if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
679 		sve_to_fpsimd(task);
680 
681 	if (task == current)
682 		put_cpu_fpsimd_context();
683 
684 	/*
685 	 * Force reallocation of task SVE state to the correct size
686 	 * on next use:
687 	 */
688 	sve_free(task);
689 
690 	task_set_sve_vl(task, vl);
691 
692 out:
693 	update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
694 			       flags & PR_SVE_VL_INHERIT);
695 
696 	return 0;
697 }
698 
699 /*
700  * Encode the current vector length and flags for return.
701  * This is only required for prctl(): ptrace has separate fields
702  *
703  * flags are as for sve_set_vector_length().
704  */
705 static int sve_prctl_status(unsigned long flags)
706 {
707 	int ret;
708 
709 	if (flags & PR_SVE_SET_VL_ONEXEC)
710 		ret = task_get_sve_vl_onexec(current);
711 	else
712 		ret = task_get_sve_vl(current);
713 
714 	if (test_thread_flag(TIF_SVE_VL_INHERIT))
715 		ret |= PR_SVE_VL_INHERIT;
716 
717 	return ret;
718 }
719 
720 /* PR_SVE_SET_VL */
721 int sve_set_current_vl(unsigned long arg)
722 {
723 	unsigned long vl, flags;
724 	int ret;
725 
726 	vl = arg & PR_SVE_VL_LEN_MASK;
727 	flags = arg & ~vl;
728 
729 	if (!system_supports_sve() || is_compat_task())
730 		return -EINVAL;
731 
732 	ret = sve_set_vector_length(current, vl, flags);
733 	if (ret)
734 		return ret;
735 
736 	return sve_prctl_status(flags);
737 }
738 
739 /* PR_SVE_GET_VL */
740 int sve_get_current_vl(void)
741 {
742 	if (!system_supports_sve() || is_compat_task())
743 		return -EINVAL;
744 
745 	return sve_prctl_status(0);
746 }
747 
748 static void vec_probe_vqs(struct vl_info *info,
749 			  DECLARE_BITMAP(map, SVE_VQ_MAX))
750 {
751 	unsigned int vq, vl;
752 
753 	bitmap_zero(map, SVE_VQ_MAX);
754 
755 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
756 		write_vl(info->type, vq - 1); /* self-syncing */
757 		vl = sve_get_vl();
758 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
759 		set_bit(__vq_to_bit(vq), map);
760 	}
761 }
762 
763 /*
764  * Initialise the set of known supported VQs for the boot CPU.
765  * This is called during kernel boot, before secondary CPUs are brought up.
766  */
767 void __init vec_init_vq_map(enum vec_type type)
768 {
769 	struct vl_info *info = &vl_info[type];
770 	vec_probe_vqs(info, info->vq_map);
771 	bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
772 }
773 
774 /*
775  * If we haven't committed to the set of supported VQs yet, filter out
776  * those not supported by the current CPU.
777  * This function is called during the bring-up of early secondary CPUs only.
778  */
779 void vec_update_vq_map(enum vec_type type)
780 {
781 	struct vl_info *info = &vl_info[type];
782 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
783 
784 	vec_probe_vqs(info, tmp_map);
785 	bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
786 	bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
787 		  SVE_VQ_MAX);
788 }
789 
790 /*
791  * Check whether the current CPU supports all VQs in the committed set.
792  * This function is called during the bring-up of late secondary CPUs only.
793  */
794 int vec_verify_vq_map(enum vec_type type)
795 {
796 	struct vl_info *info = &vl_info[type];
797 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
798 	unsigned long b;
799 
800 	vec_probe_vqs(info, tmp_map);
801 
802 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
803 	if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
804 		pr_warn("%s: cpu%d: Required vector length(s) missing\n",
805 			info->name, smp_processor_id());
806 		return -EINVAL;
807 	}
808 
809 	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
810 		return 0;
811 
812 	/*
813 	 * For KVM, it is necessary to ensure that this CPU doesn't
814 	 * support any vector length that guests may have probed as
815 	 * unsupported.
816 	 */
817 
818 	/* Recover the set of supported VQs: */
819 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
820 	/* Find VQs supported that are not globally supported: */
821 	bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
822 
823 	/* Find the lowest such VQ, if any: */
824 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
825 	if (b >= SVE_VQ_MAX)
826 		return 0; /* no mismatches */
827 
828 	/*
829 	 * Mismatches above sve_max_virtualisable_vl are fine, since
830 	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
831 	 */
832 	if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
833 		pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
834 			info->name, smp_processor_id());
835 		return -EINVAL;
836 	}
837 
838 	return 0;
839 }
840 
841 static void __init sve_efi_setup(void)
842 {
843 	struct vl_info *info = &vl_info[ARM64_VEC_SVE];
844 
845 	if (!IS_ENABLED(CONFIG_EFI))
846 		return;
847 
848 	/*
849 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
850 	 * This is evidence of a crippled system and we are returning void,
851 	 * so no attempt is made to handle this situation here.
852 	 */
853 	if (!sve_vl_valid(info->max_vl))
854 		goto fail;
855 
856 	efi_sve_state = __alloc_percpu(
857 		SVE_SIG_REGS_SIZE(sve_vq_from_vl(info->max_vl)), SVE_VQ_BYTES);
858 	if (!efi_sve_state)
859 		goto fail;
860 
861 	return;
862 
863 fail:
864 	panic("Cannot allocate percpu memory for EFI SVE save/restore");
865 }
866 
867 /*
868  * Enable SVE for EL1.
869  * Intended for use by the cpufeatures code during CPU boot.
870  */
871 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
872 {
873 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
874 	isb();
875 }
876 
877 /*
878  * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
879  * vector length.
880  *
881  * Use only if SVE is present.
882  * This function clobbers the SVE vector length.
883  */
884 u64 read_zcr_features(void)
885 {
886 	u64 zcr;
887 	unsigned int vq_max;
888 
889 	/*
890 	 * Set the maximum possible VL, and write zeroes to all other
891 	 * bits to see if they stick.
892 	 */
893 	sve_kernel_enable(NULL);
894 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
895 
896 	zcr = read_sysreg_s(SYS_ZCR_EL1);
897 	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
898 	vq_max = sve_vq_from_vl(sve_get_vl());
899 	zcr |= vq_max - 1; /* set LEN field to maximum effective value */
900 
901 	return zcr;
902 }
903 
904 void __init sve_setup(void)
905 {
906 	struct vl_info *info = &vl_info[ARM64_VEC_SVE];
907 	u64 zcr;
908 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
909 	unsigned long b;
910 
911 	if (!system_supports_sve())
912 		return;
913 
914 	/*
915 	 * The SVE architecture mandates support for 128-bit vectors,
916 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
917 	 * If something went wrong, at least try to patch it up:
918 	 */
919 	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
920 		set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
921 
922 	zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
923 	info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
924 
925 	/*
926 	 * Sanity-check that the max VL we determined through CPU features
927 	 * corresponds properly to sve_vq_map.  If not, do our best:
928 	 */
929 	if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
930 								 info->max_vl)))
931 		info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
932 							    info->max_vl);
933 
934 	/*
935 	 * For the default VL, pick the maximum supported value <= 64.
936 	 * VL == 64 is guaranteed not to grow the signal frame.
937 	 */
938 	set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
939 
940 	bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
941 		      SVE_VQ_MAX);
942 
943 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
944 	if (b >= SVE_VQ_MAX)
945 		/* No non-virtualisable VLs found */
946 		info->max_virtualisable_vl = SVE_VQ_MAX;
947 	else if (WARN_ON(b == SVE_VQ_MAX - 1))
948 		/* No virtualisable VLs?  This is architecturally forbidden. */
949 		info->max_virtualisable_vl = SVE_VQ_MIN;
950 	else /* b + 1 < SVE_VQ_MAX */
951 		info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
952 
953 	if (info->max_virtualisable_vl > info->max_vl)
954 		info->max_virtualisable_vl = info->max_vl;
955 
956 	pr_info("%s: maximum available vector length %u bytes per vector\n",
957 		info->name, info->max_vl);
958 	pr_info("%s: default vector length %u bytes per vector\n",
959 		info->name, get_sve_default_vl());
960 
961 	/* KVM decides whether to support mismatched systems. Just warn here: */
962 	if (sve_max_virtualisable_vl() < sve_max_vl())
963 		pr_warn("%s: unvirtualisable vector lengths present\n",
964 			info->name);
965 
966 	sve_efi_setup();
967 }
968 
969 /*
970  * Called from the put_task_struct() path, which cannot get here
971  * unless dead_task is really dead and not schedulable.
972  */
973 void fpsimd_release_task(struct task_struct *dead_task)
974 {
975 	__sve_free(dead_task);
976 }
977 
978 #endif /* CONFIG_ARM64_SVE */
979 
980 /*
981  * Trapped SVE access
982  *
983  * Storage is allocated for the full SVE state, the current FPSIMD
984  * register contents are migrated across, and the access trap is
985  * disabled.
986  *
987  * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
988  * would have disabled the SVE access trap for userspace during
989  * ret_to_user, making an SVE access trap impossible in that case.
990  */
991 void do_sve_acc(unsigned int esr, struct pt_regs *regs)
992 {
993 	/* Even if we chose not to use SVE, the hardware could still trap: */
994 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
995 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
996 		return;
997 	}
998 
999 	sve_alloc(current);
1000 	if (!current->thread.sve_state) {
1001 		force_sig(SIGKILL);
1002 		return;
1003 	}
1004 
1005 	get_cpu_fpsimd_context();
1006 
1007 	if (test_and_set_thread_flag(TIF_SVE))
1008 		WARN_ON(1); /* SVE access shouldn't have trapped */
1009 
1010 	/*
1011 	 * Convert the FPSIMD state to SVE, zeroing all the state that
1012 	 * is not shared with FPSIMD. If (as is likely) the current
1013 	 * state is live in the registers then do this there and
1014 	 * update our metadata for the current task including
1015 	 * disabling the trap, otherwise update our in-memory copy.
1016 	 */
1017 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1018 		unsigned long vq_minus_one =
1019 			sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1020 		sve_set_vq(vq_minus_one);
1021 		sve_flush_live(true, vq_minus_one);
1022 		fpsimd_bind_task_to_cpu();
1023 	} else {
1024 		fpsimd_to_sve(current);
1025 	}
1026 
1027 	put_cpu_fpsimd_context();
1028 }
1029 
1030 /*
1031  * Trapped FP/ASIMD access.
1032  */
1033 void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
1034 {
1035 	/* TODO: implement lazy context saving/restoring */
1036 	WARN_ON(1);
1037 }
1038 
1039 /*
1040  * Raise a SIGFPE for the current process.
1041  */
1042 void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
1043 {
1044 	unsigned int si_code = FPE_FLTUNK;
1045 
1046 	if (esr & ESR_ELx_FP_EXC_TFV) {
1047 		if (esr & FPEXC_IOF)
1048 			si_code = FPE_FLTINV;
1049 		else if (esr & FPEXC_DZF)
1050 			si_code = FPE_FLTDIV;
1051 		else if (esr & FPEXC_OFF)
1052 			si_code = FPE_FLTOVF;
1053 		else if (esr & FPEXC_UFF)
1054 			si_code = FPE_FLTUND;
1055 		else if (esr & FPEXC_IXF)
1056 			si_code = FPE_FLTRES;
1057 	}
1058 
1059 	send_sig_fault(SIGFPE, si_code,
1060 		       (void __user *)instruction_pointer(regs),
1061 		       current);
1062 }
1063 
1064 void fpsimd_thread_switch(struct task_struct *next)
1065 {
1066 	bool wrong_task, wrong_cpu;
1067 
1068 	if (!system_supports_fpsimd())
1069 		return;
1070 
1071 	__get_cpu_fpsimd_context();
1072 
1073 	/* Save unsaved fpsimd state, if any: */
1074 	fpsimd_save();
1075 
1076 	/*
1077 	 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1078 	 * state.  For kernel threads, FPSIMD registers are never loaded
1079 	 * and wrong_task and wrong_cpu will always be true.
1080 	 */
1081 	wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1082 					&next->thread.uw.fpsimd_state;
1083 	wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1084 
1085 	update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1086 			       wrong_task || wrong_cpu);
1087 
1088 	__put_cpu_fpsimd_context();
1089 }
1090 
1091 static void fpsimd_flush_thread_vl(enum vec_type type)
1092 {
1093 	int vl, supported_vl;
1094 
1095 	/*
1096 	 * Reset the task vector length as required.  This is where we
1097 	 * ensure that all user tasks have a valid vector length
1098 	 * configured: no kernel task can become a user task without
1099 	 * an exec and hence a call to this function.  By the time the
1100 	 * first call to this function is made, all early hardware
1101 	 * probing is complete, so __sve_default_vl should be valid.
1102 	 * If a bug causes this to go wrong, we make some noise and
1103 	 * try to fudge thread.sve_vl to a safe value here.
1104 	 */
1105 	vl = task_get_vl_onexec(current, type);
1106 	if (!vl)
1107 		vl = get_default_vl(type);
1108 
1109 	if (WARN_ON(!sve_vl_valid(vl)))
1110 		vl = SVE_VL_MIN;
1111 
1112 	supported_vl = find_supported_vector_length(type, vl);
1113 	if (WARN_ON(supported_vl != vl))
1114 		vl = supported_vl;
1115 
1116 	task_set_vl(current, type, vl);
1117 
1118 	/*
1119 	 * If the task is not set to inherit, ensure that the vector
1120 	 * length will be reset by a subsequent exec:
1121 	 */
1122 	if (!test_thread_flag(vec_vl_inherit_flag(type)))
1123 		task_set_vl_onexec(current, type, 0);
1124 }
1125 
1126 void fpsimd_flush_thread(void)
1127 {
1128 	if (!system_supports_fpsimd())
1129 		return;
1130 
1131 	get_cpu_fpsimd_context();
1132 
1133 	fpsimd_flush_task_state(current);
1134 	memset(&current->thread.uw.fpsimd_state, 0,
1135 	       sizeof(current->thread.uw.fpsimd_state));
1136 
1137 	if (system_supports_sve()) {
1138 		clear_thread_flag(TIF_SVE);
1139 		sve_free(current);
1140 		fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1141 	}
1142 
1143 	put_cpu_fpsimd_context();
1144 }
1145 
1146 /*
1147  * Save the userland FPSIMD state of 'current' to memory, but only if the state
1148  * currently held in the registers does in fact belong to 'current'
1149  */
1150 void fpsimd_preserve_current_state(void)
1151 {
1152 	if (!system_supports_fpsimd())
1153 		return;
1154 
1155 	get_cpu_fpsimd_context();
1156 	fpsimd_save();
1157 	put_cpu_fpsimd_context();
1158 }
1159 
1160 /*
1161  * Like fpsimd_preserve_current_state(), but ensure that
1162  * current->thread.uw.fpsimd_state is updated so that it can be copied to
1163  * the signal frame.
1164  */
1165 void fpsimd_signal_preserve_current_state(void)
1166 {
1167 	fpsimd_preserve_current_state();
1168 	if (test_thread_flag(TIF_SVE))
1169 		sve_to_fpsimd(current);
1170 }
1171 
1172 /*
1173  * Associate current's FPSIMD context with this cpu
1174  * The caller must have ownership of the cpu FPSIMD context before calling
1175  * this function.
1176  */
1177 static void fpsimd_bind_task_to_cpu(void)
1178 {
1179 	struct fpsimd_last_state_struct *last =
1180 		this_cpu_ptr(&fpsimd_last_state);
1181 
1182 	WARN_ON(!system_supports_fpsimd());
1183 	last->st = &current->thread.uw.fpsimd_state;
1184 	last->sve_state = current->thread.sve_state;
1185 	last->sve_vl = task_get_sve_vl(current);
1186 	current->thread.fpsimd_cpu = smp_processor_id();
1187 
1188 	if (system_supports_sve()) {
1189 		/* Toggle SVE trapping for userspace if needed */
1190 		if (test_thread_flag(TIF_SVE))
1191 			sve_user_enable();
1192 		else
1193 			sve_user_disable();
1194 
1195 		/* Serialised by exception return to user */
1196 	}
1197 }
1198 
1199 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1200 			      unsigned int sve_vl)
1201 {
1202 	struct fpsimd_last_state_struct *last =
1203 		this_cpu_ptr(&fpsimd_last_state);
1204 
1205 	WARN_ON(!system_supports_fpsimd());
1206 	WARN_ON(!in_softirq() && !irqs_disabled());
1207 
1208 	last->st = st;
1209 	last->sve_state = sve_state;
1210 	last->sve_vl = sve_vl;
1211 }
1212 
1213 /*
1214  * Load the userland FPSIMD state of 'current' from memory, but only if the
1215  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1216  * state of 'current'
1217  */
1218 void fpsimd_restore_current_state(void)
1219 {
1220 	/*
1221 	 * For the tasks that were created before we detected the absence of
1222 	 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1223 	 * e.g, init. This could be then inherited by the children processes.
1224 	 * If we later detect that the system doesn't support FP/SIMD,
1225 	 * we must clear the flag for  all the tasks to indicate that the
1226 	 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1227 	 * do_notify_resume().
1228 	 */
1229 	if (!system_supports_fpsimd()) {
1230 		clear_thread_flag(TIF_FOREIGN_FPSTATE);
1231 		return;
1232 	}
1233 
1234 	get_cpu_fpsimd_context();
1235 
1236 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1237 		task_fpsimd_load();
1238 		fpsimd_bind_task_to_cpu();
1239 	}
1240 
1241 	put_cpu_fpsimd_context();
1242 }
1243 
1244 /*
1245  * Load an updated userland FPSIMD state for 'current' from memory and set the
1246  * flag that indicates that the FPSIMD register contents are the most recent
1247  * FPSIMD state of 'current'
1248  */
1249 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1250 {
1251 	if (WARN_ON(!system_supports_fpsimd()))
1252 		return;
1253 
1254 	get_cpu_fpsimd_context();
1255 
1256 	current->thread.uw.fpsimd_state = *state;
1257 	if (test_thread_flag(TIF_SVE))
1258 		fpsimd_to_sve(current);
1259 
1260 	task_fpsimd_load();
1261 	fpsimd_bind_task_to_cpu();
1262 
1263 	clear_thread_flag(TIF_FOREIGN_FPSTATE);
1264 
1265 	put_cpu_fpsimd_context();
1266 }
1267 
1268 /*
1269  * Invalidate live CPU copies of task t's FPSIMD state
1270  *
1271  * This function may be called with preemption enabled.  The barrier()
1272  * ensures that the assignment to fpsimd_cpu is visible to any
1273  * preemption/softirq that could race with set_tsk_thread_flag(), so
1274  * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1275  *
1276  * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1277  * subsequent code.
1278  */
1279 void fpsimd_flush_task_state(struct task_struct *t)
1280 {
1281 	t->thread.fpsimd_cpu = NR_CPUS;
1282 	/*
1283 	 * If we don't support fpsimd, bail out after we have
1284 	 * reset the fpsimd_cpu for this task and clear the
1285 	 * FPSTATE.
1286 	 */
1287 	if (!system_supports_fpsimd())
1288 		return;
1289 	barrier();
1290 	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1291 
1292 	barrier();
1293 }
1294 
1295 /*
1296  * Invalidate any task's FPSIMD state that is present on this cpu.
1297  * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1298  * before calling this function.
1299  */
1300 static void fpsimd_flush_cpu_state(void)
1301 {
1302 	WARN_ON(!system_supports_fpsimd());
1303 	__this_cpu_write(fpsimd_last_state.st, NULL);
1304 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1305 }
1306 
1307 /*
1308  * Save the FPSIMD state to memory and invalidate cpu view.
1309  * This function must be called with preemption disabled.
1310  */
1311 void fpsimd_save_and_flush_cpu_state(void)
1312 {
1313 	if (!system_supports_fpsimd())
1314 		return;
1315 	WARN_ON(preemptible());
1316 	__get_cpu_fpsimd_context();
1317 	fpsimd_save();
1318 	fpsimd_flush_cpu_state();
1319 	__put_cpu_fpsimd_context();
1320 }
1321 
1322 #ifdef CONFIG_KERNEL_MODE_NEON
1323 
1324 /*
1325  * Kernel-side NEON support functions
1326  */
1327 
1328 /*
1329  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1330  * context
1331  *
1332  * Must not be called unless may_use_simd() returns true.
1333  * Task context in the FPSIMD registers is saved back to memory as necessary.
1334  *
1335  * A matching call to kernel_neon_end() must be made before returning from the
1336  * calling context.
1337  *
1338  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1339  * called.
1340  */
1341 void kernel_neon_begin(void)
1342 {
1343 	if (WARN_ON(!system_supports_fpsimd()))
1344 		return;
1345 
1346 	BUG_ON(!may_use_simd());
1347 
1348 	get_cpu_fpsimd_context();
1349 
1350 	/* Save unsaved fpsimd state, if any: */
1351 	fpsimd_save();
1352 
1353 	/* Invalidate any task state remaining in the fpsimd regs: */
1354 	fpsimd_flush_cpu_state();
1355 }
1356 EXPORT_SYMBOL(kernel_neon_begin);
1357 
1358 /*
1359  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1360  *
1361  * Must be called from a context in which kernel_neon_begin() was previously
1362  * called, with no call to kernel_neon_end() in the meantime.
1363  *
1364  * The caller must not use the FPSIMD registers after this function is called,
1365  * unless kernel_neon_begin() is called again in the meantime.
1366  */
1367 void kernel_neon_end(void)
1368 {
1369 	if (!system_supports_fpsimd())
1370 		return;
1371 
1372 	put_cpu_fpsimd_context();
1373 }
1374 EXPORT_SYMBOL(kernel_neon_end);
1375 
1376 #ifdef CONFIG_EFI
1377 
1378 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1379 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1380 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1381 
1382 /*
1383  * EFI runtime services support functions
1384  *
1385  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1386  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1387  * is always used rather than being an optional accelerator.
1388  *
1389  * These functions provide the necessary support for ensuring FPSIMD
1390  * save/restore in the contexts from which EFI is used.
1391  *
1392  * Do not use them for any other purpose -- if tempted to do so, you are
1393  * either doing something wrong or you need to propose some refactoring.
1394  */
1395 
1396 /*
1397  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1398  */
1399 void __efi_fpsimd_begin(void)
1400 {
1401 	if (!system_supports_fpsimd())
1402 		return;
1403 
1404 	WARN_ON(preemptible());
1405 
1406 	if (may_use_simd()) {
1407 		kernel_neon_begin();
1408 	} else {
1409 		/*
1410 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1411 		 * preserving:
1412 		 */
1413 		if (system_supports_sve() && likely(efi_sve_state)) {
1414 			char *sve_state = this_cpu_ptr(efi_sve_state);
1415 
1416 			__this_cpu_write(efi_sve_state_used, true);
1417 
1418 			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
1419 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1420 				       true);
1421 		} else {
1422 			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1423 		}
1424 
1425 		__this_cpu_write(efi_fpsimd_state_used, true);
1426 	}
1427 }
1428 
1429 /*
1430  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1431  */
1432 void __efi_fpsimd_end(void)
1433 {
1434 	if (!system_supports_fpsimd())
1435 		return;
1436 
1437 	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1438 		kernel_neon_end();
1439 	} else {
1440 		if (system_supports_sve() &&
1441 		    likely(__this_cpu_read(efi_sve_state_used))) {
1442 			char const *sve_state = this_cpu_ptr(efi_sve_state);
1443 
1444 			sve_set_vq(sve_vq_from_vl(sve_get_vl()) - 1);
1445 			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
1446 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1447 				       true);
1448 
1449 			__this_cpu_write(efi_sve_state_used, false);
1450 		} else {
1451 			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1452 		}
1453 	}
1454 }
1455 
1456 #endif /* CONFIG_EFI */
1457 
1458 #endif /* CONFIG_KERNEL_MODE_NEON */
1459 
1460 #ifdef CONFIG_CPU_PM
1461 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1462 				  unsigned long cmd, void *v)
1463 {
1464 	switch (cmd) {
1465 	case CPU_PM_ENTER:
1466 		fpsimd_save_and_flush_cpu_state();
1467 		break;
1468 	case CPU_PM_EXIT:
1469 		break;
1470 	case CPU_PM_ENTER_FAILED:
1471 	default:
1472 		return NOTIFY_DONE;
1473 	}
1474 	return NOTIFY_OK;
1475 }
1476 
1477 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1478 	.notifier_call = fpsimd_cpu_pm_notifier,
1479 };
1480 
1481 static void __init fpsimd_pm_init(void)
1482 {
1483 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1484 }
1485 
1486 #else
1487 static inline void fpsimd_pm_init(void) { }
1488 #endif /* CONFIG_CPU_PM */
1489 
1490 #ifdef CONFIG_HOTPLUG_CPU
1491 static int fpsimd_cpu_dead(unsigned int cpu)
1492 {
1493 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
1494 	return 0;
1495 }
1496 
1497 static inline void fpsimd_hotplug_init(void)
1498 {
1499 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1500 				  NULL, fpsimd_cpu_dead);
1501 }
1502 
1503 #else
1504 static inline void fpsimd_hotplug_init(void) { }
1505 #endif
1506 
1507 /*
1508  * FP/SIMD support code initialisation.
1509  */
1510 static int __init fpsimd_init(void)
1511 {
1512 	if (cpu_have_named_feature(FP)) {
1513 		fpsimd_pm_init();
1514 		fpsimd_hotplug_init();
1515 	} else {
1516 		pr_notice("Floating-point is not implemented\n");
1517 	}
1518 
1519 	if (!cpu_have_named_feature(ASIMD))
1520 		pr_notice("Advanced SIMD is not implemented\n");
1521 
1522 	return sve_sysctl_init();
1523 }
1524 core_initcall(fpsimd_init);
1525