xref: /openbmc/linux/arch/arm64/kernel/fpsimd.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 /*
2  * FP/SIMD context switching and fault handling
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/bitmap.h>
21 #include <linux/bitops.h>
22 #include <linux/bottom_half.h>
23 #include <linux/bug.h>
24 #include <linux/cache.h>
25 #include <linux/compat.h>
26 #include <linux/cpu.h>
27 #include <linux/cpu_pm.h>
28 #include <linux/kernel.h>
29 #include <linux/linkage.h>
30 #include <linux/irqflags.h>
31 #include <linux/init.h>
32 #include <linux/percpu.h>
33 #include <linux/prctl.h>
34 #include <linux/preempt.h>
35 #include <linux/ptrace.h>
36 #include <linux/sched/signal.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/signal.h>
39 #include <linux/slab.h>
40 #include <linux/stddef.h>
41 #include <linux/sysctl.h>
42 
43 #include <asm/esr.h>
44 #include <asm/fpsimd.h>
45 #include <asm/cpufeature.h>
46 #include <asm/cputype.h>
47 #include <asm/processor.h>
48 #include <asm/simd.h>
49 #include <asm/sigcontext.h>
50 #include <asm/sysreg.h>
51 #include <asm/traps.h>
52 #include <asm/virt.h>
53 
54 #define FPEXC_IOF	(1 << 0)
55 #define FPEXC_DZF	(1 << 1)
56 #define FPEXC_OFF	(1 << 2)
57 #define FPEXC_UFF	(1 << 3)
58 #define FPEXC_IXF	(1 << 4)
59 #define FPEXC_IDF	(1 << 7)
60 
61 /*
62  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
63  *
64  * In order to reduce the number of times the FPSIMD state is needlessly saved
65  * and restored, we need to keep track of two things:
66  * (a) for each task, we need to remember which CPU was the last one to have
67  *     the task's FPSIMD state loaded into its FPSIMD registers;
68  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
69  *     been loaded into its FPSIMD registers most recently, or whether it has
70  *     been used to perform kernel mode NEON in the meantime.
71  *
72  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
73  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
74  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
75  * address of the userland FPSIMD state of the task that was loaded onto the CPU
76  * the most recently, or NULL if kernel mode NEON has been performed after that.
77  *
78  * With this in place, we no longer have to restore the next FPSIMD state right
79  * when switching between tasks. Instead, we can defer this check to userland
80  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
81  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
82  * can omit the FPSIMD restore.
83  *
84  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
85  * indicate whether or not the userland FPSIMD state of the current task is
86  * present in the registers. The flag is set unless the FPSIMD registers of this
87  * CPU currently contain the most recent userland FPSIMD state of the current
88  * task.
89  *
90  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
91  * save the task's FPSIMD context back to task_struct from softirq context.
92  * To prevent this from racing with the manipulation of the task's FPSIMD state
93  * from task context and thereby corrupting the state, it is necessary to
94  * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
95  * flag with local_bh_disable() unless softirqs are already masked.
96  *
97  * For a certain task, the sequence may look something like this:
98  * - the task gets scheduled in; if both the task's fpsimd_cpu field
99  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
100  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
101  *   cleared, otherwise it is set;
102  *
103  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
104  *   userland FPSIMD state is copied from memory to the registers, the task's
105  *   fpsimd_cpu field is set to the id of the current CPU, the current
106  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
107  *   TIF_FOREIGN_FPSTATE flag is cleared;
108  *
109  * - the task executes an ordinary syscall; upon return to userland, the
110  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
111  *   restored;
112  *
113  * - the task executes a syscall which executes some NEON instructions; this is
114  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
115  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
116  *   and sets the TIF_FOREIGN_FPSTATE flag;
117  *
118  * - the task gets preempted after kernel_neon_end() is called; as we have not
119  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
120  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
121  */
122 struct fpsimd_last_state_struct {
123 	struct user_fpsimd_state *st;
124 	void *sve_state;
125 	unsigned int sve_vl;
126 };
127 
128 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
129 
130 /* Default VL for tasks that don't set it explicitly: */
131 static int sve_default_vl = -1;
132 
133 #ifdef CONFIG_ARM64_SVE
134 
135 /* Maximum supported vector length across all CPUs (initially poisoned) */
136 int __ro_after_init sve_max_vl = SVE_VL_MIN;
137 int __ro_after_init sve_max_virtualisable_vl = SVE_VL_MIN;
138 
139 /*
140  * Set of available vector lengths,
141  * where length vq encoded as bit __vq_to_bit(vq):
142  */
143 __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
144 /* Set of vector lengths present on at least one cpu: */
145 static __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
146 
147 static void __percpu *efi_sve_state;
148 
149 #else /* ! CONFIG_ARM64_SVE */
150 
151 /* Dummy declaration for code that will be optimised out: */
152 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
153 extern __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
154 extern void __percpu *efi_sve_state;
155 
156 #endif /* ! CONFIG_ARM64_SVE */
157 
158 /*
159  * Call __sve_free() directly only if you know task can't be scheduled
160  * or preempted.
161  */
162 static void __sve_free(struct task_struct *task)
163 {
164 	kfree(task->thread.sve_state);
165 	task->thread.sve_state = NULL;
166 }
167 
168 static void sve_free(struct task_struct *task)
169 {
170 	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
171 
172 	__sve_free(task);
173 }
174 
175 /*
176  * TIF_SVE controls whether a task can use SVE without trapping while
177  * in userspace, and also the way a task's FPSIMD/SVE state is stored
178  * in thread_struct.
179  *
180  * The kernel uses this flag to track whether a user task is actively
181  * using SVE, and therefore whether full SVE register state needs to
182  * be tracked.  If not, the cheaper FPSIMD context handling code can
183  * be used instead of the more costly SVE equivalents.
184  *
185  *  * TIF_SVE set:
186  *
187  *    The task can execute SVE instructions while in userspace without
188  *    trapping to the kernel.
189  *
190  *    When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
191  *    corresponding Zn), P0-P15 and FFR are encoded in in
192  *    task->thread.sve_state, formatted appropriately for vector
193  *    length task->thread.sve_vl.
194  *
195  *    task->thread.sve_state must point to a valid buffer at least
196  *    sve_state_size(task) bytes in size.
197  *
198  *    During any syscall, the kernel may optionally clear TIF_SVE and
199  *    discard the vector state except for the FPSIMD subset.
200  *
201  *  * TIF_SVE clear:
202  *
203  *    An attempt by the user task to execute an SVE instruction causes
204  *    do_sve_acc() to be called, which does some preparation and then
205  *    sets TIF_SVE.
206  *
207  *    When stored, FPSIMD registers V0-V31 are encoded in
208  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
209  *    logically zero but not stored anywhere; P0-P15 and FFR are not
210  *    stored and have unspecified values from userspace's point of
211  *    view.  For hygiene purposes, the kernel zeroes them on next use,
212  *    but userspace is discouraged from relying on this.
213  *
214  *    task->thread.sve_state does not need to be non-NULL, valid or any
215  *    particular size: it must not be dereferenced.
216  *
217  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
218  *    irrespective of whether TIF_SVE is clear or set, since these are
219  *    not vector length dependent.
220  */
221 
222 /*
223  * Update current's FPSIMD/SVE registers from thread_struct.
224  *
225  * This function should be called only when the FPSIMD/SVE state in
226  * thread_struct is known to be up to date, when preparing to enter
227  * userspace.
228  *
229  * Softirqs (and preemption) must be disabled.
230  */
231 static void task_fpsimd_load(void)
232 {
233 	WARN_ON(!in_softirq() && !irqs_disabled());
234 
235 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
236 		sve_load_state(sve_pffr(&current->thread),
237 			       &current->thread.uw.fpsimd_state.fpsr,
238 			       sve_vq_from_vl(current->thread.sve_vl) - 1);
239 	else
240 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
241 }
242 
243 /*
244  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
245  * date with respect to the CPU registers.
246  *
247  * Softirqs (and preemption) must be disabled.
248  */
249 void fpsimd_save(void)
250 {
251 	struct fpsimd_last_state_struct const *last =
252 		this_cpu_ptr(&fpsimd_last_state);
253 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
254 
255 	WARN_ON(!in_softirq() && !irqs_disabled());
256 
257 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
258 		if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
259 			if (WARN_ON(sve_get_vl() != last->sve_vl)) {
260 				/*
261 				 * Can't save the user regs, so current would
262 				 * re-enter user with corrupt state.
263 				 * There's no way to recover, so kill it:
264 				 */
265 				force_signal_inject(SIGKILL, SI_KERNEL, 0);
266 				return;
267 			}
268 
269 			sve_save_state((char *)last->sve_state +
270 						sve_ffr_offset(last->sve_vl),
271 				       &last->st->fpsr);
272 		} else
273 			fpsimd_save_state(last->st);
274 	}
275 }
276 
277 /*
278  * All vector length selection from userspace comes through here.
279  * We're on a slow path, so some sanity-checks are included.
280  * If things go wrong there's a bug somewhere, but try to fall back to a
281  * safe choice.
282  */
283 static unsigned int find_supported_vector_length(unsigned int vl)
284 {
285 	int bit;
286 	int max_vl = sve_max_vl;
287 
288 	if (WARN_ON(!sve_vl_valid(vl)))
289 		vl = SVE_VL_MIN;
290 
291 	if (WARN_ON(!sve_vl_valid(max_vl)))
292 		max_vl = SVE_VL_MIN;
293 
294 	if (vl > max_vl)
295 		vl = max_vl;
296 
297 	bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
298 			    __vq_to_bit(sve_vq_from_vl(vl)));
299 	return sve_vl_from_vq(__bit_to_vq(bit));
300 }
301 
302 #ifdef CONFIG_SYSCTL
303 
304 static int sve_proc_do_default_vl(struct ctl_table *table, int write,
305 				  void __user *buffer, size_t *lenp,
306 				  loff_t *ppos)
307 {
308 	int ret;
309 	int vl = sve_default_vl;
310 	struct ctl_table tmp_table = {
311 		.data = &vl,
312 		.maxlen = sizeof(vl),
313 	};
314 
315 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
316 	if (ret || !write)
317 		return ret;
318 
319 	/* Writing -1 has the special meaning "set to max": */
320 	if (vl == -1)
321 		vl = sve_max_vl;
322 
323 	if (!sve_vl_valid(vl))
324 		return -EINVAL;
325 
326 	sve_default_vl = find_supported_vector_length(vl);
327 	return 0;
328 }
329 
330 static struct ctl_table sve_default_vl_table[] = {
331 	{
332 		.procname	= "sve_default_vector_length",
333 		.mode		= 0644,
334 		.proc_handler	= sve_proc_do_default_vl,
335 	},
336 	{ }
337 };
338 
339 static int __init sve_sysctl_init(void)
340 {
341 	if (system_supports_sve())
342 		if (!register_sysctl("abi", sve_default_vl_table))
343 			return -EINVAL;
344 
345 	return 0;
346 }
347 
348 #else /* ! CONFIG_SYSCTL */
349 static int __init sve_sysctl_init(void) { return 0; }
350 #endif /* ! CONFIG_SYSCTL */
351 
352 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
353 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
354 
355 /*
356  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
357  * task->thread.sve_state.
358  *
359  * Task can be a non-runnable task, or current.  In the latter case,
360  * softirqs (and preemption) must be disabled.
361  * task->thread.sve_state must point to at least sve_state_size(task)
362  * bytes of allocated kernel memory.
363  * task->thread.uw.fpsimd_state must be up to date before calling this
364  * function.
365  */
366 static void fpsimd_to_sve(struct task_struct *task)
367 {
368 	unsigned int vq;
369 	void *sst = task->thread.sve_state;
370 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
371 	unsigned int i;
372 
373 	if (!system_supports_sve())
374 		return;
375 
376 	vq = sve_vq_from_vl(task->thread.sve_vl);
377 	for (i = 0; i < 32; ++i)
378 		memcpy(ZREG(sst, vq, i), &fst->vregs[i],
379 		       sizeof(fst->vregs[i]));
380 }
381 
382 /*
383  * Transfer the SVE state in task->thread.sve_state to
384  * task->thread.uw.fpsimd_state.
385  *
386  * Task can be a non-runnable task, or current.  In the latter case,
387  * softirqs (and preemption) must be disabled.
388  * task->thread.sve_state must point to at least sve_state_size(task)
389  * bytes of allocated kernel memory.
390  * task->thread.sve_state must be up to date before calling this function.
391  */
392 static void sve_to_fpsimd(struct task_struct *task)
393 {
394 	unsigned int vq;
395 	void const *sst = task->thread.sve_state;
396 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
397 	unsigned int i;
398 
399 	if (!system_supports_sve())
400 		return;
401 
402 	vq = sve_vq_from_vl(task->thread.sve_vl);
403 	for (i = 0; i < 32; ++i)
404 		memcpy(&fst->vregs[i], ZREG(sst, vq, i),
405 		       sizeof(fst->vregs[i]));
406 }
407 
408 #ifdef CONFIG_ARM64_SVE
409 
410 /*
411  * Return how many bytes of memory are required to store the full SVE
412  * state for task, given task's currently configured vector length.
413  */
414 size_t sve_state_size(struct task_struct const *task)
415 {
416 	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
417 }
418 
419 /*
420  * Ensure that task->thread.sve_state is allocated and sufficiently large.
421  *
422  * This function should be used only in preparation for replacing
423  * task->thread.sve_state with new data.  The memory is always zeroed
424  * here to prevent stale data from showing through: this is done in
425  * the interest of testability and predictability: except in the
426  * do_sve_acc() case, there is no ABI requirement to hide stale data
427  * written previously be task.
428  */
429 void sve_alloc(struct task_struct *task)
430 {
431 	if (task->thread.sve_state) {
432 		memset(task->thread.sve_state, 0, sve_state_size(current));
433 		return;
434 	}
435 
436 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
437 	task->thread.sve_state =
438 		kzalloc(sve_state_size(task), GFP_KERNEL);
439 
440 	/*
441 	 * If future SVE revisions can have larger vectors though,
442 	 * this may cease to be true:
443 	 */
444 	BUG_ON(!task->thread.sve_state);
445 }
446 
447 
448 /*
449  * Ensure that task->thread.sve_state is up to date with respect to
450  * the user task, irrespective of when SVE is in use or not.
451  *
452  * This should only be called by ptrace.  task must be non-runnable.
453  * task->thread.sve_state must point to at least sve_state_size(task)
454  * bytes of allocated kernel memory.
455  */
456 void fpsimd_sync_to_sve(struct task_struct *task)
457 {
458 	if (!test_tsk_thread_flag(task, TIF_SVE))
459 		fpsimd_to_sve(task);
460 }
461 
462 /*
463  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
464  * the user task, irrespective of whether SVE is in use or not.
465  *
466  * This should only be called by ptrace.  task must be non-runnable.
467  * task->thread.sve_state must point to at least sve_state_size(task)
468  * bytes of allocated kernel memory.
469  */
470 void sve_sync_to_fpsimd(struct task_struct *task)
471 {
472 	if (test_tsk_thread_flag(task, TIF_SVE))
473 		sve_to_fpsimd(task);
474 }
475 
476 /*
477  * Ensure that task->thread.sve_state is up to date with respect to
478  * the task->thread.uw.fpsimd_state.
479  *
480  * This should only be called by ptrace to merge new FPSIMD register
481  * values into a task for which SVE is currently active.
482  * task must be non-runnable.
483  * task->thread.sve_state must point to at least sve_state_size(task)
484  * bytes of allocated kernel memory.
485  * task->thread.uw.fpsimd_state must already have been initialised with
486  * the new FPSIMD register values to be merged in.
487  */
488 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
489 {
490 	unsigned int vq;
491 	void *sst = task->thread.sve_state;
492 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
493 	unsigned int i;
494 
495 	if (!test_tsk_thread_flag(task, TIF_SVE))
496 		return;
497 
498 	vq = sve_vq_from_vl(task->thread.sve_vl);
499 
500 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
501 
502 	for (i = 0; i < 32; ++i)
503 		memcpy(ZREG(sst, vq, i), &fst->vregs[i],
504 		       sizeof(fst->vregs[i]));
505 }
506 
507 int sve_set_vector_length(struct task_struct *task,
508 			  unsigned long vl, unsigned long flags)
509 {
510 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
511 				     PR_SVE_SET_VL_ONEXEC))
512 		return -EINVAL;
513 
514 	if (!sve_vl_valid(vl))
515 		return -EINVAL;
516 
517 	/*
518 	 * Clamp to the maximum vector length that VL-agnostic SVE code can
519 	 * work with.  A flag may be assigned in the future to allow setting
520 	 * of larger vector lengths without confusing older software.
521 	 */
522 	if (vl > SVE_VL_ARCH_MAX)
523 		vl = SVE_VL_ARCH_MAX;
524 
525 	vl = find_supported_vector_length(vl);
526 
527 	if (flags & (PR_SVE_VL_INHERIT |
528 		     PR_SVE_SET_VL_ONEXEC))
529 		task->thread.sve_vl_onexec = vl;
530 	else
531 		/* Reset VL to system default on next exec: */
532 		task->thread.sve_vl_onexec = 0;
533 
534 	/* Only actually set the VL if not deferred: */
535 	if (flags & PR_SVE_SET_VL_ONEXEC)
536 		goto out;
537 
538 	if (vl == task->thread.sve_vl)
539 		goto out;
540 
541 	/*
542 	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
543 	 * write any live register state back to task_struct, and convert to a
544 	 * non-SVE thread.
545 	 */
546 	if (task == current) {
547 		local_bh_disable();
548 
549 		fpsimd_save();
550 	}
551 
552 	fpsimd_flush_task_state(task);
553 	if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
554 		sve_to_fpsimd(task);
555 
556 	if (task == current)
557 		local_bh_enable();
558 
559 	/*
560 	 * Force reallocation of task SVE state to the correct size
561 	 * on next use:
562 	 */
563 	sve_free(task);
564 
565 	task->thread.sve_vl = vl;
566 
567 out:
568 	update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
569 			       flags & PR_SVE_VL_INHERIT);
570 
571 	return 0;
572 }
573 
574 /*
575  * Encode the current vector length and flags for return.
576  * This is only required for prctl(): ptrace has separate fields
577  *
578  * flags are as for sve_set_vector_length().
579  */
580 static int sve_prctl_status(unsigned long flags)
581 {
582 	int ret;
583 
584 	if (flags & PR_SVE_SET_VL_ONEXEC)
585 		ret = current->thread.sve_vl_onexec;
586 	else
587 		ret = current->thread.sve_vl;
588 
589 	if (test_thread_flag(TIF_SVE_VL_INHERIT))
590 		ret |= PR_SVE_VL_INHERIT;
591 
592 	return ret;
593 }
594 
595 /* PR_SVE_SET_VL */
596 int sve_set_current_vl(unsigned long arg)
597 {
598 	unsigned long vl, flags;
599 	int ret;
600 
601 	vl = arg & PR_SVE_VL_LEN_MASK;
602 	flags = arg & ~vl;
603 
604 	if (!system_supports_sve())
605 		return -EINVAL;
606 
607 	ret = sve_set_vector_length(current, vl, flags);
608 	if (ret)
609 		return ret;
610 
611 	return sve_prctl_status(flags);
612 }
613 
614 /* PR_SVE_GET_VL */
615 int sve_get_current_vl(void)
616 {
617 	if (!system_supports_sve())
618 		return -EINVAL;
619 
620 	return sve_prctl_status(0);
621 }
622 
623 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
624 {
625 	unsigned int vq, vl;
626 	unsigned long zcr;
627 
628 	bitmap_zero(map, SVE_VQ_MAX);
629 
630 	zcr = ZCR_ELx_LEN_MASK;
631 	zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
632 
633 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
634 		write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
635 		vl = sve_get_vl();
636 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
637 		set_bit(__vq_to_bit(vq), map);
638 	}
639 }
640 
641 /*
642  * Initialise the set of known supported VQs for the boot CPU.
643  * This is called during kernel boot, before secondary CPUs are brought up.
644  */
645 void __init sve_init_vq_map(void)
646 {
647 	sve_probe_vqs(sve_vq_map);
648 	bitmap_copy(sve_vq_partial_map, sve_vq_map, SVE_VQ_MAX);
649 }
650 
651 /*
652  * If we haven't committed to the set of supported VQs yet, filter out
653  * those not supported by the current CPU.
654  * This function is called during the bring-up of early secondary CPUs only.
655  */
656 void sve_update_vq_map(void)
657 {
658 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
659 
660 	sve_probe_vqs(tmp_map);
661 	bitmap_and(sve_vq_map, sve_vq_map, tmp_map, SVE_VQ_MAX);
662 	bitmap_or(sve_vq_partial_map, sve_vq_partial_map, tmp_map, SVE_VQ_MAX);
663 }
664 
665 /*
666  * Check whether the current CPU supports all VQs in the committed set.
667  * This function is called during the bring-up of late secondary CPUs only.
668  */
669 int sve_verify_vq_map(void)
670 {
671 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
672 	unsigned long b;
673 
674 	sve_probe_vqs(tmp_map);
675 
676 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
677 	if (bitmap_intersects(tmp_map, sve_vq_map, SVE_VQ_MAX)) {
678 		pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
679 			smp_processor_id());
680 		return -EINVAL;
681 	}
682 
683 	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
684 		return 0;
685 
686 	/*
687 	 * For KVM, it is necessary to ensure that this CPU doesn't
688 	 * support any vector length that guests may have probed as
689 	 * unsupported.
690 	 */
691 
692 	/* Recover the set of supported VQs: */
693 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
694 	/* Find VQs supported that are not globally supported: */
695 	bitmap_andnot(tmp_map, tmp_map, sve_vq_map, SVE_VQ_MAX);
696 
697 	/* Find the lowest such VQ, if any: */
698 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
699 	if (b >= SVE_VQ_MAX)
700 		return 0; /* no mismatches */
701 
702 	/*
703 	 * Mismatches above sve_max_virtualisable_vl are fine, since
704 	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
705 	 */
706 	if (sve_vl_from_vq(__bit_to_vq(b)) <= sve_max_virtualisable_vl) {
707 		pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n",
708 			smp_processor_id());
709 		return -EINVAL;
710 	}
711 
712 	return 0;
713 }
714 
715 static void __init sve_efi_setup(void)
716 {
717 	if (!IS_ENABLED(CONFIG_EFI))
718 		return;
719 
720 	/*
721 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
722 	 * This is evidence of a crippled system and we are returning void,
723 	 * so no attempt is made to handle this situation here.
724 	 */
725 	if (!sve_vl_valid(sve_max_vl))
726 		goto fail;
727 
728 	efi_sve_state = __alloc_percpu(
729 		SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
730 	if (!efi_sve_state)
731 		goto fail;
732 
733 	return;
734 
735 fail:
736 	panic("Cannot allocate percpu memory for EFI SVE save/restore");
737 }
738 
739 /*
740  * Enable SVE for EL1.
741  * Intended for use by the cpufeatures code during CPU boot.
742  */
743 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
744 {
745 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
746 	isb();
747 }
748 
749 /*
750  * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
751  * vector length.
752  *
753  * Use only if SVE is present.
754  * This function clobbers the SVE vector length.
755  */
756 u64 read_zcr_features(void)
757 {
758 	u64 zcr;
759 	unsigned int vq_max;
760 
761 	/*
762 	 * Set the maximum possible VL, and write zeroes to all other
763 	 * bits to see if they stick.
764 	 */
765 	sve_kernel_enable(NULL);
766 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
767 
768 	zcr = read_sysreg_s(SYS_ZCR_EL1);
769 	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
770 	vq_max = sve_vq_from_vl(sve_get_vl());
771 	zcr |= vq_max - 1; /* set LEN field to maximum effective value */
772 
773 	return zcr;
774 }
775 
776 void __init sve_setup(void)
777 {
778 	u64 zcr;
779 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
780 	unsigned long b;
781 
782 	if (!system_supports_sve())
783 		return;
784 
785 	/*
786 	 * The SVE architecture mandates support for 128-bit vectors,
787 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
788 	 * If something went wrong, at least try to patch it up:
789 	 */
790 	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
791 		set_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map);
792 
793 	zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
794 	sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
795 
796 	/*
797 	 * Sanity-check that the max VL we determined through CPU features
798 	 * corresponds properly to sve_vq_map.  If not, do our best:
799 	 */
800 	if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
801 		sve_max_vl = find_supported_vector_length(sve_max_vl);
802 
803 	/*
804 	 * For the default VL, pick the maximum supported value <= 64.
805 	 * VL == 64 is guaranteed not to grow the signal frame.
806 	 */
807 	sve_default_vl = find_supported_vector_length(64);
808 
809 	bitmap_andnot(tmp_map, sve_vq_partial_map, sve_vq_map,
810 		      SVE_VQ_MAX);
811 
812 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
813 	if (b >= SVE_VQ_MAX)
814 		/* No non-virtualisable VLs found */
815 		sve_max_virtualisable_vl = SVE_VQ_MAX;
816 	else if (WARN_ON(b == SVE_VQ_MAX - 1))
817 		/* No virtualisable VLs?  This is architecturally forbidden. */
818 		sve_max_virtualisable_vl = SVE_VQ_MIN;
819 	else /* b + 1 < SVE_VQ_MAX */
820 		sve_max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
821 
822 	if (sve_max_virtualisable_vl > sve_max_vl)
823 		sve_max_virtualisable_vl = sve_max_vl;
824 
825 	pr_info("SVE: maximum available vector length %u bytes per vector\n",
826 		sve_max_vl);
827 	pr_info("SVE: default vector length %u bytes per vector\n",
828 		sve_default_vl);
829 
830 	/* KVM decides whether to support mismatched systems. Just warn here: */
831 	if (sve_max_virtualisable_vl < sve_max_vl)
832 		pr_warn("SVE: unvirtualisable vector lengths present\n");
833 
834 	sve_efi_setup();
835 }
836 
837 /*
838  * Called from the put_task_struct() path, which cannot get here
839  * unless dead_task is really dead and not schedulable.
840  */
841 void fpsimd_release_task(struct task_struct *dead_task)
842 {
843 	__sve_free(dead_task);
844 }
845 
846 #endif /* CONFIG_ARM64_SVE */
847 
848 /*
849  * Trapped SVE access
850  *
851  * Storage is allocated for the full SVE state, the current FPSIMD
852  * register contents are migrated across, and TIF_SVE is set so that
853  * the SVE access trap will be disabled the next time this task
854  * reaches ret_to_user.
855  *
856  * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
857  * would have disabled the SVE access trap for userspace during
858  * ret_to_user, making an SVE access trap impossible in that case.
859  */
860 asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
861 {
862 	/* Even if we chose not to use SVE, the hardware could still trap: */
863 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
864 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
865 		return;
866 	}
867 
868 	sve_alloc(current);
869 
870 	local_bh_disable();
871 
872 	fpsimd_save();
873 
874 	/* Force ret_to_user to reload the registers: */
875 	fpsimd_flush_task_state(current);
876 
877 	fpsimd_to_sve(current);
878 	if (test_and_set_thread_flag(TIF_SVE))
879 		WARN_ON(1); /* SVE access shouldn't have trapped */
880 
881 	local_bh_enable();
882 }
883 
884 /*
885  * Trapped FP/ASIMD access.
886  */
887 asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
888 {
889 	/* TODO: implement lazy context saving/restoring */
890 	WARN_ON(1);
891 }
892 
893 /*
894  * Raise a SIGFPE for the current process.
895  */
896 asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
897 {
898 	unsigned int si_code = FPE_FLTUNK;
899 
900 	if (esr & ESR_ELx_FP_EXC_TFV) {
901 		if (esr & FPEXC_IOF)
902 			si_code = FPE_FLTINV;
903 		else if (esr & FPEXC_DZF)
904 			si_code = FPE_FLTDIV;
905 		else if (esr & FPEXC_OFF)
906 			si_code = FPE_FLTOVF;
907 		else if (esr & FPEXC_UFF)
908 			si_code = FPE_FLTUND;
909 		else if (esr & FPEXC_IXF)
910 			si_code = FPE_FLTRES;
911 	}
912 
913 	send_sig_fault(SIGFPE, si_code,
914 		       (void __user *)instruction_pointer(regs),
915 		       current);
916 }
917 
918 void fpsimd_thread_switch(struct task_struct *next)
919 {
920 	bool wrong_task, wrong_cpu;
921 
922 	if (!system_supports_fpsimd())
923 		return;
924 
925 	/* Save unsaved fpsimd state, if any: */
926 	fpsimd_save();
927 
928 	/*
929 	 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
930 	 * state.  For kernel threads, FPSIMD registers are never loaded
931 	 * and wrong_task and wrong_cpu will always be true.
932 	 */
933 	wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
934 					&next->thread.uw.fpsimd_state;
935 	wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
936 
937 	update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
938 			       wrong_task || wrong_cpu);
939 }
940 
941 void fpsimd_flush_thread(void)
942 {
943 	int vl, supported_vl;
944 
945 	if (!system_supports_fpsimd())
946 		return;
947 
948 	local_bh_disable();
949 
950 	fpsimd_flush_task_state(current);
951 	memset(&current->thread.uw.fpsimd_state, 0,
952 	       sizeof(current->thread.uw.fpsimd_state));
953 
954 	if (system_supports_sve()) {
955 		clear_thread_flag(TIF_SVE);
956 		sve_free(current);
957 
958 		/*
959 		 * Reset the task vector length as required.
960 		 * This is where we ensure that all user tasks have a valid
961 		 * vector length configured: no kernel task can become a user
962 		 * task without an exec and hence a call to this function.
963 		 * By the time the first call to this function is made, all
964 		 * early hardware probing is complete, so sve_default_vl
965 		 * should be valid.
966 		 * If a bug causes this to go wrong, we make some noise and
967 		 * try to fudge thread.sve_vl to a safe value here.
968 		 */
969 		vl = current->thread.sve_vl_onexec ?
970 			current->thread.sve_vl_onexec : sve_default_vl;
971 
972 		if (WARN_ON(!sve_vl_valid(vl)))
973 			vl = SVE_VL_MIN;
974 
975 		supported_vl = find_supported_vector_length(vl);
976 		if (WARN_ON(supported_vl != vl))
977 			vl = supported_vl;
978 
979 		current->thread.sve_vl = vl;
980 
981 		/*
982 		 * If the task is not set to inherit, ensure that the vector
983 		 * length will be reset by a subsequent exec:
984 		 */
985 		if (!test_thread_flag(TIF_SVE_VL_INHERIT))
986 			current->thread.sve_vl_onexec = 0;
987 	}
988 
989 	local_bh_enable();
990 }
991 
992 /*
993  * Save the userland FPSIMD state of 'current' to memory, but only if the state
994  * currently held in the registers does in fact belong to 'current'
995  */
996 void fpsimd_preserve_current_state(void)
997 {
998 	if (!system_supports_fpsimd())
999 		return;
1000 
1001 	local_bh_disable();
1002 	fpsimd_save();
1003 	local_bh_enable();
1004 }
1005 
1006 /*
1007  * Like fpsimd_preserve_current_state(), but ensure that
1008  * current->thread.uw.fpsimd_state is updated so that it can be copied to
1009  * the signal frame.
1010  */
1011 void fpsimd_signal_preserve_current_state(void)
1012 {
1013 	fpsimd_preserve_current_state();
1014 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
1015 		sve_to_fpsimd(current);
1016 }
1017 
1018 /*
1019  * Associate current's FPSIMD context with this cpu
1020  * Preemption must be disabled when calling this function.
1021  */
1022 void fpsimd_bind_task_to_cpu(void)
1023 {
1024 	struct fpsimd_last_state_struct *last =
1025 		this_cpu_ptr(&fpsimd_last_state);
1026 
1027 	last->st = &current->thread.uw.fpsimd_state;
1028 	last->sve_state = current->thread.sve_state;
1029 	last->sve_vl = current->thread.sve_vl;
1030 	current->thread.fpsimd_cpu = smp_processor_id();
1031 
1032 	if (system_supports_sve()) {
1033 		/* Toggle SVE trapping for userspace if needed */
1034 		if (test_thread_flag(TIF_SVE))
1035 			sve_user_enable();
1036 		else
1037 			sve_user_disable();
1038 
1039 		/* Serialised by exception return to user */
1040 	}
1041 }
1042 
1043 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1044 			      unsigned int sve_vl)
1045 {
1046 	struct fpsimd_last_state_struct *last =
1047 		this_cpu_ptr(&fpsimd_last_state);
1048 
1049 	WARN_ON(!in_softirq() && !irqs_disabled());
1050 
1051 	last->st = st;
1052 	last->sve_state = sve_state;
1053 	last->sve_vl = sve_vl;
1054 }
1055 
1056 /*
1057  * Load the userland FPSIMD state of 'current' from memory, but only if the
1058  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1059  * state of 'current'
1060  */
1061 void fpsimd_restore_current_state(void)
1062 {
1063 	if (!system_supports_fpsimd())
1064 		return;
1065 
1066 	local_bh_disable();
1067 
1068 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1069 		task_fpsimd_load();
1070 		fpsimd_bind_task_to_cpu();
1071 	}
1072 
1073 	local_bh_enable();
1074 }
1075 
1076 /*
1077  * Load an updated userland FPSIMD state for 'current' from memory and set the
1078  * flag that indicates that the FPSIMD register contents are the most recent
1079  * FPSIMD state of 'current'
1080  */
1081 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1082 {
1083 	if (!system_supports_fpsimd())
1084 		return;
1085 
1086 	local_bh_disable();
1087 
1088 	current->thread.uw.fpsimd_state = *state;
1089 	if (system_supports_sve() && test_thread_flag(TIF_SVE))
1090 		fpsimd_to_sve(current);
1091 
1092 	task_fpsimd_load();
1093 	fpsimd_bind_task_to_cpu();
1094 
1095 	clear_thread_flag(TIF_FOREIGN_FPSTATE);
1096 
1097 	local_bh_enable();
1098 }
1099 
1100 /*
1101  * Invalidate live CPU copies of task t's FPSIMD state
1102  *
1103  * This function may be called with preemption enabled.  The barrier()
1104  * ensures that the assignment to fpsimd_cpu is visible to any
1105  * preemption/softirq that could race with set_tsk_thread_flag(), so
1106  * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1107  *
1108  * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1109  * subsequent code.
1110  */
1111 void fpsimd_flush_task_state(struct task_struct *t)
1112 {
1113 	t->thread.fpsimd_cpu = NR_CPUS;
1114 
1115 	barrier();
1116 	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1117 
1118 	barrier();
1119 }
1120 
1121 /*
1122  * Invalidate any task's FPSIMD state that is present on this cpu.
1123  * This function must be called with softirqs disabled.
1124  */
1125 void fpsimd_flush_cpu_state(void)
1126 {
1127 	__this_cpu_write(fpsimd_last_state.st, NULL);
1128 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1129 }
1130 
1131 #ifdef CONFIG_KERNEL_MODE_NEON
1132 
1133 DEFINE_PER_CPU(bool, kernel_neon_busy);
1134 EXPORT_PER_CPU_SYMBOL(kernel_neon_busy);
1135 
1136 /*
1137  * Kernel-side NEON support functions
1138  */
1139 
1140 /*
1141  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1142  * context
1143  *
1144  * Must not be called unless may_use_simd() returns true.
1145  * Task context in the FPSIMD registers is saved back to memory as necessary.
1146  *
1147  * A matching call to kernel_neon_end() must be made before returning from the
1148  * calling context.
1149  *
1150  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1151  * called.
1152  */
1153 void kernel_neon_begin(void)
1154 {
1155 	if (WARN_ON(!system_supports_fpsimd()))
1156 		return;
1157 
1158 	BUG_ON(!may_use_simd());
1159 
1160 	local_bh_disable();
1161 
1162 	__this_cpu_write(kernel_neon_busy, true);
1163 
1164 	/* Save unsaved fpsimd state, if any: */
1165 	fpsimd_save();
1166 
1167 	/* Invalidate any task state remaining in the fpsimd regs: */
1168 	fpsimd_flush_cpu_state();
1169 
1170 	preempt_disable();
1171 
1172 	local_bh_enable();
1173 }
1174 EXPORT_SYMBOL(kernel_neon_begin);
1175 
1176 /*
1177  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1178  *
1179  * Must be called from a context in which kernel_neon_begin() was previously
1180  * called, with no call to kernel_neon_end() in the meantime.
1181  *
1182  * The caller must not use the FPSIMD registers after this function is called,
1183  * unless kernel_neon_begin() is called again in the meantime.
1184  */
1185 void kernel_neon_end(void)
1186 {
1187 	bool busy;
1188 
1189 	if (!system_supports_fpsimd())
1190 		return;
1191 
1192 	busy = __this_cpu_xchg(kernel_neon_busy, false);
1193 	WARN_ON(!busy);	/* No matching kernel_neon_begin()? */
1194 
1195 	preempt_enable();
1196 }
1197 EXPORT_SYMBOL(kernel_neon_end);
1198 
1199 #ifdef CONFIG_EFI
1200 
1201 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1202 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1203 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1204 
1205 /*
1206  * EFI runtime services support functions
1207  *
1208  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1209  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1210  * is always used rather than being an optional accelerator.
1211  *
1212  * These functions provide the necessary support for ensuring FPSIMD
1213  * save/restore in the contexts from which EFI is used.
1214  *
1215  * Do not use them for any other purpose -- if tempted to do so, you are
1216  * either doing something wrong or you need to propose some refactoring.
1217  */
1218 
1219 /*
1220  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1221  */
1222 void __efi_fpsimd_begin(void)
1223 {
1224 	if (!system_supports_fpsimd())
1225 		return;
1226 
1227 	WARN_ON(preemptible());
1228 
1229 	if (may_use_simd()) {
1230 		kernel_neon_begin();
1231 	} else {
1232 		/*
1233 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1234 		 * preserving:
1235 		 */
1236 		if (system_supports_sve() && likely(efi_sve_state)) {
1237 			char *sve_state = this_cpu_ptr(efi_sve_state);
1238 
1239 			__this_cpu_write(efi_sve_state_used, true);
1240 
1241 			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
1242 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
1243 		} else {
1244 			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1245 		}
1246 
1247 		__this_cpu_write(efi_fpsimd_state_used, true);
1248 	}
1249 }
1250 
1251 /*
1252  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1253  */
1254 void __efi_fpsimd_end(void)
1255 {
1256 	if (!system_supports_fpsimd())
1257 		return;
1258 
1259 	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1260 		kernel_neon_end();
1261 	} else {
1262 		if (system_supports_sve() &&
1263 		    likely(__this_cpu_read(efi_sve_state_used))) {
1264 			char const *sve_state = this_cpu_ptr(efi_sve_state);
1265 
1266 			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
1267 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1268 				       sve_vq_from_vl(sve_get_vl()) - 1);
1269 
1270 			__this_cpu_write(efi_sve_state_used, false);
1271 		} else {
1272 			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1273 		}
1274 	}
1275 }
1276 
1277 #endif /* CONFIG_EFI */
1278 
1279 #endif /* CONFIG_KERNEL_MODE_NEON */
1280 
1281 #ifdef CONFIG_CPU_PM
1282 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1283 				  unsigned long cmd, void *v)
1284 {
1285 	switch (cmd) {
1286 	case CPU_PM_ENTER:
1287 		fpsimd_save();
1288 		fpsimd_flush_cpu_state();
1289 		break;
1290 	case CPU_PM_EXIT:
1291 		break;
1292 	case CPU_PM_ENTER_FAILED:
1293 	default:
1294 		return NOTIFY_DONE;
1295 	}
1296 	return NOTIFY_OK;
1297 }
1298 
1299 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1300 	.notifier_call = fpsimd_cpu_pm_notifier,
1301 };
1302 
1303 static void __init fpsimd_pm_init(void)
1304 {
1305 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1306 }
1307 
1308 #else
1309 static inline void fpsimd_pm_init(void) { }
1310 #endif /* CONFIG_CPU_PM */
1311 
1312 #ifdef CONFIG_HOTPLUG_CPU
1313 static int fpsimd_cpu_dead(unsigned int cpu)
1314 {
1315 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
1316 	return 0;
1317 }
1318 
1319 static inline void fpsimd_hotplug_init(void)
1320 {
1321 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1322 				  NULL, fpsimd_cpu_dead);
1323 }
1324 
1325 #else
1326 static inline void fpsimd_hotplug_init(void) { }
1327 #endif
1328 
1329 /*
1330  * FP/SIMD support code initialisation.
1331  */
1332 static int __init fpsimd_init(void)
1333 {
1334 	if (cpu_have_named_feature(FP)) {
1335 		fpsimd_pm_init();
1336 		fpsimd_hotplug_init();
1337 	} else {
1338 		pr_notice("Floating-point is not implemented\n");
1339 	}
1340 
1341 	if (!cpu_have_named_feature(ASIMD))
1342 		pr_notice("Advanced SIMD is not implemented\n");
1343 
1344 	return sve_sysctl_init();
1345 }
1346 core_initcall(fpsimd_init);
1347