xref: /openbmc/linux/arch/arm64/kernel/fpsimd.c (revision 2dec9e09)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FP/SIMD context switching and fault handling
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  * Author: Catalin Marinas <catalin.marinas@arm.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34 
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47 
48 #define FPEXC_IOF	(1 << 0)
49 #define FPEXC_DZF	(1 << 1)
50 #define FPEXC_OFF	(1 << 2)
51 #define FPEXC_UFF	(1 << 3)
52 #define FPEXC_IXF	(1 << 4)
53 #define FPEXC_IDF	(1 << 7)
54 
55 /*
56  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57  *
58  * In order to reduce the number of times the FPSIMD state is needlessly saved
59  * and restored, we need to keep track of two things:
60  * (a) for each task, we need to remember which CPU was the last one to have
61  *     the task's FPSIMD state loaded into its FPSIMD registers;
62  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63  *     been loaded into its FPSIMD registers most recently, or whether it has
64  *     been used to perform kernel mode NEON in the meantime.
65  *
66  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69  * address of the userland FPSIMD state of the task that was loaded onto the CPU
70  * the most recently, or NULL if kernel mode NEON has been performed after that.
71  *
72  * With this in place, we no longer have to restore the next FPSIMD state right
73  * when switching between tasks. Instead, we can defer this check to userland
74  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76  * can omit the FPSIMD restore.
77  *
78  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79  * indicate whether or not the userland FPSIMD state of the current task is
80  * present in the registers. The flag is set unless the FPSIMD registers of this
81  * CPU currently contain the most recent userland FPSIMD state of the current
82  * task. If the task is behaving as a VMM, then this is will be managed by
83  * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84  * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85  * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86  * flag the register state as invalid.
87  *
88  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
89  * save the task's FPSIMD context back to task_struct from softirq context.
90  * To prevent this from racing with the manipulation of the task's FPSIMD state
91  * from task context and thereby corrupting the state, it is necessary to
92  * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
93  * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
94  * run but prevent them to use FPSIMD.
95  *
96  * For a certain task, the sequence may look something like this:
97  * - the task gets scheduled in; if both the task's fpsimd_cpu field
98  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100  *   cleared, otherwise it is set;
101  *
102  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103  *   userland FPSIMD state is copied from memory to the registers, the task's
104  *   fpsimd_cpu field is set to the id of the current CPU, the current
105  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106  *   TIF_FOREIGN_FPSTATE flag is cleared;
107  *
108  * - the task executes an ordinary syscall; upon return to userland, the
109  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110  *   restored;
111  *
112  * - the task executes a syscall which executes some NEON instructions; this is
113  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
115  *   and sets the TIF_FOREIGN_FPSTATE flag;
116  *
117  * - the task gets preempted after kernel_neon_end() is called; as we have not
118  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
120  */
121 struct fpsimd_last_state_struct {
122 	struct user_fpsimd_state *st;
123 	void *sve_state;
124 	void *za_state;
125 	u64 *svcr;
126 	unsigned int sve_vl;
127 	unsigned int sme_vl;
128 };
129 
130 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
131 
132 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
133 #ifdef CONFIG_ARM64_SVE
134 	[ARM64_VEC_SVE] = {
135 		.type			= ARM64_VEC_SVE,
136 		.name			= "SVE",
137 		.min_vl			= SVE_VL_MIN,
138 		.max_vl			= SVE_VL_MIN,
139 		.max_virtualisable_vl	= SVE_VL_MIN,
140 	},
141 #endif
142 #ifdef CONFIG_ARM64_SME
143 	[ARM64_VEC_SME] = {
144 		.type			= ARM64_VEC_SME,
145 		.name			= "SME",
146 	},
147 #endif
148 };
149 
150 static unsigned int vec_vl_inherit_flag(enum vec_type type)
151 {
152 	switch (type) {
153 	case ARM64_VEC_SVE:
154 		return TIF_SVE_VL_INHERIT;
155 	case ARM64_VEC_SME:
156 		return TIF_SME_VL_INHERIT;
157 	default:
158 		WARN_ON_ONCE(1);
159 		return 0;
160 	}
161 }
162 
163 struct vl_config {
164 	int __default_vl;		/* Default VL for tasks */
165 };
166 
167 static struct vl_config vl_config[ARM64_VEC_MAX];
168 
169 static inline int get_default_vl(enum vec_type type)
170 {
171 	return READ_ONCE(vl_config[type].__default_vl);
172 }
173 
174 #ifdef CONFIG_ARM64_SVE
175 
176 static inline int get_sve_default_vl(void)
177 {
178 	return get_default_vl(ARM64_VEC_SVE);
179 }
180 
181 static inline void set_default_vl(enum vec_type type, int val)
182 {
183 	WRITE_ONCE(vl_config[type].__default_vl, val);
184 }
185 
186 static inline void set_sve_default_vl(int val)
187 {
188 	set_default_vl(ARM64_VEC_SVE, val);
189 }
190 
191 static void __percpu *efi_sve_state;
192 
193 #else /* ! CONFIG_ARM64_SVE */
194 
195 /* Dummy declaration for code that will be optimised out: */
196 extern void __percpu *efi_sve_state;
197 
198 #endif /* ! CONFIG_ARM64_SVE */
199 
200 #ifdef CONFIG_ARM64_SME
201 
202 static int get_sme_default_vl(void)
203 {
204 	return get_default_vl(ARM64_VEC_SME);
205 }
206 
207 static void set_sme_default_vl(int val)
208 {
209 	set_default_vl(ARM64_VEC_SME, val);
210 }
211 
212 static void sme_free(struct task_struct *);
213 
214 #else
215 
216 static inline void sme_free(struct task_struct *t) { }
217 
218 #endif
219 
220 DEFINE_PER_CPU(bool, fpsimd_context_busy);
221 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
222 
223 static void fpsimd_bind_task_to_cpu(void);
224 
225 static void __get_cpu_fpsimd_context(void)
226 {
227 	bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
228 
229 	WARN_ON(busy);
230 }
231 
232 /*
233  * Claim ownership of the CPU FPSIMD context for use by the calling context.
234  *
235  * The caller may freely manipulate the FPSIMD context metadata until
236  * put_cpu_fpsimd_context() is called.
237  *
238  * The double-underscore version must only be called if you know the task
239  * can't be preempted.
240  *
241  * On RT kernels local_bh_disable() is not sufficient because it only
242  * serializes soft interrupt related sections via a local lock, but stays
243  * preemptible. Disabling preemption is the right choice here as bottom
244  * half processing is always in thread context on RT kernels so it
245  * implicitly prevents bottom half processing as well.
246  */
247 static void get_cpu_fpsimd_context(void)
248 {
249 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250 		local_bh_disable();
251 	else
252 		preempt_disable();
253 	__get_cpu_fpsimd_context();
254 }
255 
256 static void __put_cpu_fpsimd_context(void)
257 {
258 	bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
259 
260 	WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
261 }
262 
263 /*
264  * Release the CPU FPSIMD context.
265  *
266  * Must be called from a context in which get_cpu_fpsimd_context() was
267  * previously called, with no call to put_cpu_fpsimd_context() in the
268  * meantime.
269  */
270 static void put_cpu_fpsimd_context(void)
271 {
272 	__put_cpu_fpsimd_context();
273 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
274 		local_bh_enable();
275 	else
276 		preempt_enable();
277 }
278 
279 static bool have_cpu_fpsimd_context(void)
280 {
281 	return !preemptible() && __this_cpu_read(fpsimd_context_busy);
282 }
283 
284 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
285 {
286 	return task->thread.vl[type];
287 }
288 
289 void task_set_vl(struct task_struct *task, enum vec_type type,
290 		 unsigned long vl)
291 {
292 	task->thread.vl[type] = vl;
293 }
294 
295 unsigned int task_get_vl_onexec(const struct task_struct *task,
296 				enum vec_type type)
297 {
298 	return task->thread.vl_onexec[type];
299 }
300 
301 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
302 			unsigned long vl)
303 {
304 	task->thread.vl_onexec[type] = vl;
305 }
306 
307 /*
308  * TIF_SME controls whether a task can use SME without trapping while
309  * in userspace, when TIF_SME is set then we must have storage
310  * alocated in sve_state and za_state to store the contents of both ZA
311  * and the SVE registers for both streaming and non-streaming modes.
312  *
313  * If both SVCR.ZA and SVCR.SM are disabled then at any point we
314  * may disable TIF_SME and reenable traps.
315  */
316 
317 
318 /*
319  * TIF_SVE controls whether a task can use SVE without trapping while
320  * in userspace, and also (together with TIF_SME) the way a task's
321  * FPSIMD/SVE state is stored in thread_struct.
322  *
323  * The kernel uses this flag to track whether a user task is actively
324  * using SVE, and therefore whether full SVE register state needs to
325  * be tracked.  If not, the cheaper FPSIMD context handling code can
326  * be used instead of the more costly SVE equivalents.
327  *
328  *  * TIF_SVE or SVCR.SM set:
329  *
330  *    The task can execute SVE instructions while in userspace without
331  *    trapping to the kernel.
332  *
333  *    When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
334  *    corresponding Zn), P0-P15 and FFR are encoded in
335  *    task->thread.sve_state, formatted appropriately for vector
336  *    length task->thread.sve_vl or, if SVCR.SM is set,
337  *    task->thread.sme_vl.
338  *
339  *    task->thread.sve_state must point to a valid buffer at least
340  *    sve_state_size(task) bytes in size.
341  *
342  *    During any syscall, the kernel may optionally clear TIF_SVE and
343  *    discard the vector state except for the FPSIMD subset.
344  *
345  *  * TIF_SVE clear:
346  *
347  *    An attempt by the user task to execute an SVE instruction causes
348  *    do_sve_acc() to be called, which does some preparation and then
349  *    sets TIF_SVE.
350  *
351  *    When stored, FPSIMD registers V0-V31 are encoded in
352  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
353  *    logically zero but not stored anywhere; P0-P15 and FFR are not
354  *    stored and have unspecified values from userspace's point of
355  *    view.  For hygiene purposes, the kernel zeroes them on next use,
356  *    but userspace is discouraged from relying on this.
357  *
358  *    task->thread.sve_state does not need to be non-NULL, valid or any
359  *    particular size: it must not be dereferenced.
360  *
361  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
362  *    irrespective of whether TIF_SVE is clear or set, since these are
363  *    not vector length dependent.
364  */
365 
366 /*
367  * Update current's FPSIMD/SVE registers from thread_struct.
368  *
369  * This function should be called only when the FPSIMD/SVE state in
370  * thread_struct is known to be up to date, when preparing to enter
371  * userspace.
372  */
373 static void task_fpsimd_load(void)
374 {
375 	bool restore_sve_regs = false;
376 	bool restore_ffr;
377 
378 	WARN_ON(!system_supports_fpsimd());
379 	WARN_ON(!have_cpu_fpsimd_context());
380 
381 	/* Check if we should restore SVE first */
382 	if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE)) {
383 		sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
384 		restore_sve_regs = true;
385 		restore_ffr = true;
386 	}
387 
388 	/* Restore SME, override SVE register configuration if needed */
389 	if (system_supports_sme()) {
390 		unsigned long sme_vl = task_get_sme_vl(current);
391 
392 		/* Ensure VL is set up for restoring data */
393 		if (test_thread_flag(TIF_SME))
394 			sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
395 
396 		write_sysreg_s(current->thread.svcr, SYS_SVCR);
397 
398 		if (thread_za_enabled(&current->thread))
399 			za_load_state(current->thread.za_state);
400 
401 		if (thread_sm_enabled(&current->thread)) {
402 			restore_sve_regs = true;
403 			restore_ffr = system_supports_fa64();
404 		}
405 	}
406 
407 	if (restore_sve_regs)
408 		sve_load_state(sve_pffr(&current->thread),
409 			       &current->thread.uw.fpsimd_state.fpsr,
410 			       restore_ffr);
411 	else
412 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
413 }
414 
415 /*
416  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
417  * date with respect to the CPU registers. Note carefully that the
418  * current context is the context last bound to the CPU stored in
419  * last, if KVM is involved this may be the guest VM context rather
420  * than the host thread for the VM pointed to by current. This means
421  * that we must always reference the state storage via last rather
422  * than via current, other than the TIF_ flags which KVM will
423  * carefully maintain for us.
424  */
425 static void fpsimd_save(void)
426 {
427 	struct fpsimd_last_state_struct const *last =
428 		this_cpu_ptr(&fpsimd_last_state);
429 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
430 	bool save_sve_regs = false;
431 	bool save_ffr;
432 	unsigned int vl;
433 
434 	WARN_ON(!system_supports_fpsimd());
435 	WARN_ON(!have_cpu_fpsimd_context());
436 
437 	if (test_thread_flag(TIF_FOREIGN_FPSTATE))
438 		return;
439 
440 	if (test_thread_flag(TIF_SVE)) {
441 		save_sve_regs = true;
442 		save_ffr = true;
443 		vl = last->sve_vl;
444 	}
445 
446 	if (system_supports_sme()) {
447 		u64 *svcr = last->svcr;
448 
449 		*svcr = read_sysreg_s(SYS_SVCR);
450 
451 		if (*svcr & SVCR_ZA_MASK)
452 			za_save_state(last->za_state);
453 
454 		/* If we are in streaming mode override regular SVE. */
455 		if (*svcr & SVCR_SM_MASK) {
456 			save_sve_regs = true;
457 			save_ffr = system_supports_fa64();
458 			vl = last->sme_vl;
459 		}
460 	}
461 
462 	if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
463 		/* Get the configured VL from RDVL, will account for SM */
464 		if (WARN_ON(sve_get_vl() != vl)) {
465 			/*
466 			 * Can't save the user regs, so current would
467 			 * re-enter user with corrupt state.
468 			 * There's no way to recover, so kill it:
469 			 */
470 			force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
471 			return;
472 		}
473 
474 		sve_save_state((char *)last->sve_state +
475 					sve_ffr_offset(vl),
476 			       &last->st->fpsr, save_ffr);
477 	} else {
478 		fpsimd_save_state(last->st);
479 	}
480 }
481 
482 /*
483  * All vector length selection from userspace comes through here.
484  * We're on a slow path, so some sanity-checks are included.
485  * If things go wrong there's a bug somewhere, but try to fall back to a
486  * safe choice.
487  */
488 static unsigned int find_supported_vector_length(enum vec_type type,
489 						 unsigned int vl)
490 {
491 	struct vl_info *info = &vl_info[type];
492 	int bit;
493 	int max_vl = info->max_vl;
494 
495 	if (WARN_ON(!sve_vl_valid(vl)))
496 		vl = info->min_vl;
497 
498 	if (WARN_ON(!sve_vl_valid(max_vl)))
499 		max_vl = info->min_vl;
500 
501 	if (vl > max_vl)
502 		vl = max_vl;
503 	if (vl < info->min_vl)
504 		vl = info->min_vl;
505 
506 	bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
507 			    __vq_to_bit(sve_vq_from_vl(vl)));
508 	return sve_vl_from_vq(__bit_to_vq(bit));
509 }
510 
511 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
512 
513 static int vec_proc_do_default_vl(struct ctl_table *table, int write,
514 				  void *buffer, size_t *lenp, loff_t *ppos)
515 {
516 	struct vl_info *info = table->extra1;
517 	enum vec_type type = info->type;
518 	int ret;
519 	int vl = get_default_vl(type);
520 	struct ctl_table tmp_table = {
521 		.data = &vl,
522 		.maxlen = sizeof(vl),
523 	};
524 
525 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
526 	if (ret || !write)
527 		return ret;
528 
529 	/* Writing -1 has the special meaning "set to max": */
530 	if (vl == -1)
531 		vl = info->max_vl;
532 
533 	if (!sve_vl_valid(vl))
534 		return -EINVAL;
535 
536 	set_default_vl(type, find_supported_vector_length(type, vl));
537 	return 0;
538 }
539 
540 static struct ctl_table sve_default_vl_table[] = {
541 	{
542 		.procname	= "sve_default_vector_length",
543 		.mode		= 0644,
544 		.proc_handler	= vec_proc_do_default_vl,
545 		.extra1		= &vl_info[ARM64_VEC_SVE],
546 	},
547 	{ }
548 };
549 
550 static int __init sve_sysctl_init(void)
551 {
552 	if (system_supports_sve())
553 		if (!register_sysctl("abi", sve_default_vl_table))
554 			return -EINVAL;
555 
556 	return 0;
557 }
558 
559 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
560 static int __init sve_sysctl_init(void) { return 0; }
561 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
562 
563 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
564 static struct ctl_table sme_default_vl_table[] = {
565 	{
566 		.procname	= "sme_default_vector_length",
567 		.mode		= 0644,
568 		.proc_handler	= vec_proc_do_default_vl,
569 		.extra1		= &vl_info[ARM64_VEC_SME],
570 	},
571 	{ }
572 };
573 
574 static int __init sme_sysctl_init(void)
575 {
576 	if (system_supports_sme())
577 		if (!register_sysctl("abi", sme_default_vl_table))
578 			return -EINVAL;
579 
580 	return 0;
581 }
582 
583 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
584 static int __init sme_sysctl_init(void) { return 0; }
585 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
586 
587 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
588 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
589 
590 #ifdef CONFIG_CPU_BIG_ENDIAN
591 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
592 {
593 	u64 a = swab64(x);
594 	u64 b = swab64(x >> 64);
595 
596 	return ((__uint128_t)a << 64) | b;
597 }
598 #else
599 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
600 {
601 	return x;
602 }
603 #endif
604 
605 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
606 
607 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
608 			    unsigned int vq)
609 {
610 	unsigned int i;
611 	__uint128_t *p;
612 
613 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
614 		p = (__uint128_t *)ZREG(sst, vq, i);
615 		*p = arm64_cpu_to_le128(fst->vregs[i]);
616 	}
617 }
618 
619 /*
620  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
621  * task->thread.sve_state.
622  *
623  * Task can be a non-runnable task, or current.  In the latter case,
624  * the caller must have ownership of the cpu FPSIMD context before calling
625  * this function.
626  * task->thread.sve_state must point to at least sve_state_size(task)
627  * bytes of allocated kernel memory.
628  * task->thread.uw.fpsimd_state must be up to date before calling this
629  * function.
630  */
631 static void fpsimd_to_sve(struct task_struct *task)
632 {
633 	unsigned int vq;
634 	void *sst = task->thread.sve_state;
635 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
636 
637 	if (!system_supports_sve())
638 		return;
639 
640 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
641 	__fpsimd_to_sve(sst, fst, vq);
642 }
643 
644 /*
645  * Transfer the SVE state in task->thread.sve_state to
646  * task->thread.uw.fpsimd_state.
647  *
648  * Task can be a non-runnable task, or current.  In the latter case,
649  * the caller must have ownership of the cpu FPSIMD context before calling
650  * this function.
651  * task->thread.sve_state must point to at least sve_state_size(task)
652  * bytes of allocated kernel memory.
653  * task->thread.sve_state must be up to date before calling this function.
654  */
655 static void sve_to_fpsimd(struct task_struct *task)
656 {
657 	unsigned int vq, vl;
658 	void const *sst = task->thread.sve_state;
659 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
660 	unsigned int i;
661 	__uint128_t const *p;
662 
663 	if (!system_supports_sve())
664 		return;
665 
666 	vl = thread_get_cur_vl(&task->thread);
667 	vq = sve_vq_from_vl(vl);
668 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
669 		p = (__uint128_t const *)ZREG(sst, vq, i);
670 		fst->vregs[i] = arm64_le128_to_cpu(*p);
671 	}
672 }
673 
674 #ifdef CONFIG_ARM64_SVE
675 /*
676  * Call __sve_free() directly only if you know task can't be scheduled
677  * or preempted.
678  */
679 static void __sve_free(struct task_struct *task)
680 {
681 	kfree(task->thread.sve_state);
682 	task->thread.sve_state = NULL;
683 }
684 
685 static void sve_free(struct task_struct *task)
686 {
687 	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
688 
689 	__sve_free(task);
690 }
691 
692 /*
693  * Return how many bytes of memory are required to store the full SVE
694  * state for task, given task's currently configured vector length.
695  */
696 size_t sve_state_size(struct task_struct const *task)
697 {
698 	unsigned int vl = 0;
699 
700 	if (system_supports_sve())
701 		vl = task_get_sve_vl(task);
702 	if (system_supports_sme())
703 		vl = max(vl, task_get_sme_vl(task));
704 
705 	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
706 }
707 
708 /*
709  * Ensure that task->thread.sve_state is allocated and sufficiently large.
710  *
711  * This function should be used only in preparation for replacing
712  * task->thread.sve_state with new data.  The memory is always zeroed
713  * here to prevent stale data from showing through: this is done in
714  * the interest of testability and predictability: except in the
715  * do_sve_acc() case, there is no ABI requirement to hide stale data
716  * written previously be task.
717  */
718 void sve_alloc(struct task_struct *task)
719 {
720 	if (task->thread.sve_state) {
721 		memset(task->thread.sve_state, 0, sve_state_size(task));
722 		return;
723 	}
724 
725 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
726 	task->thread.sve_state =
727 		kzalloc(sve_state_size(task), GFP_KERNEL);
728 }
729 
730 
731 /*
732  * Force the FPSIMD state shared with SVE to be updated in the SVE state
733  * even if the SVE state is the current active state.
734  *
735  * This should only be called by ptrace.  task must be non-runnable.
736  * task->thread.sve_state must point to at least sve_state_size(task)
737  * bytes of allocated kernel memory.
738  */
739 void fpsimd_force_sync_to_sve(struct task_struct *task)
740 {
741 	fpsimd_to_sve(task);
742 }
743 
744 /*
745  * Ensure that task->thread.sve_state is up to date with respect to
746  * the user task, irrespective of when SVE is in use or not.
747  *
748  * This should only be called by ptrace.  task must be non-runnable.
749  * task->thread.sve_state must point to at least sve_state_size(task)
750  * bytes of allocated kernel memory.
751  */
752 void fpsimd_sync_to_sve(struct task_struct *task)
753 {
754 	if (!test_tsk_thread_flag(task, TIF_SVE) &&
755 	    !thread_sm_enabled(&task->thread))
756 		fpsimd_to_sve(task);
757 }
758 
759 /*
760  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
761  * the user task, irrespective of whether SVE is in use or not.
762  *
763  * This should only be called by ptrace.  task must be non-runnable.
764  * task->thread.sve_state must point to at least sve_state_size(task)
765  * bytes of allocated kernel memory.
766  */
767 void sve_sync_to_fpsimd(struct task_struct *task)
768 {
769 	if (test_tsk_thread_flag(task, TIF_SVE) ||
770 	    thread_sm_enabled(&task->thread))
771 		sve_to_fpsimd(task);
772 }
773 
774 /*
775  * Ensure that task->thread.sve_state is up to date with respect to
776  * the task->thread.uw.fpsimd_state.
777  *
778  * This should only be called by ptrace to merge new FPSIMD register
779  * values into a task for which SVE is currently active.
780  * task must be non-runnable.
781  * task->thread.sve_state must point to at least sve_state_size(task)
782  * bytes of allocated kernel memory.
783  * task->thread.uw.fpsimd_state must already have been initialised with
784  * the new FPSIMD register values to be merged in.
785  */
786 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
787 {
788 	unsigned int vq;
789 	void *sst = task->thread.sve_state;
790 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
791 
792 	if (!test_tsk_thread_flag(task, TIF_SVE))
793 		return;
794 
795 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
796 
797 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
798 	__fpsimd_to_sve(sst, fst, vq);
799 }
800 
801 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
802 			  unsigned long vl, unsigned long flags)
803 {
804 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
805 				     PR_SVE_SET_VL_ONEXEC))
806 		return -EINVAL;
807 
808 	if (!sve_vl_valid(vl))
809 		return -EINVAL;
810 
811 	/*
812 	 * Clamp to the maximum vector length that VL-agnostic code
813 	 * can work with.  A flag may be assigned in the future to
814 	 * allow setting of larger vector lengths without confusing
815 	 * older software.
816 	 */
817 	if (vl > VL_ARCH_MAX)
818 		vl = VL_ARCH_MAX;
819 
820 	vl = find_supported_vector_length(type, vl);
821 
822 	if (flags & (PR_SVE_VL_INHERIT |
823 		     PR_SVE_SET_VL_ONEXEC))
824 		task_set_vl_onexec(task, type, vl);
825 	else
826 		/* Reset VL to system default on next exec: */
827 		task_set_vl_onexec(task, type, 0);
828 
829 	/* Only actually set the VL if not deferred: */
830 	if (flags & PR_SVE_SET_VL_ONEXEC)
831 		goto out;
832 
833 	if (vl == task_get_vl(task, type))
834 		goto out;
835 
836 	/*
837 	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
838 	 * write any live register state back to task_struct, and convert to a
839 	 * regular FPSIMD thread.
840 	 */
841 	if (task == current) {
842 		get_cpu_fpsimd_context();
843 
844 		fpsimd_save();
845 	}
846 
847 	fpsimd_flush_task_state(task);
848 	if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
849 	    thread_sm_enabled(&task->thread))
850 		sve_to_fpsimd(task);
851 
852 	if (system_supports_sme() && type == ARM64_VEC_SME) {
853 		task->thread.svcr &= ~(SVCR_SM_MASK |
854 				       SVCR_ZA_MASK);
855 		clear_thread_flag(TIF_SME);
856 	}
857 
858 	if (task == current)
859 		put_cpu_fpsimd_context();
860 
861 	/*
862 	 * Force reallocation of task SVE and SME state to the correct
863 	 * size on next use:
864 	 */
865 	sve_free(task);
866 	if (system_supports_sme() && type == ARM64_VEC_SME)
867 		sme_free(task);
868 
869 	task_set_vl(task, type, vl);
870 
871 out:
872 	update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
873 			       flags & PR_SVE_VL_INHERIT);
874 
875 	return 0;
876 }
877 
878 /*
879  * Encode the current vector length and flags for return.
880  * This is only required for prctl(): ptrace has separate fields.
881  * SVE and SME use the same bits for _ONEXEC and _INHERIT.
882  *
883  * flags are as for vec_set_vector_length().
884  */
885 static int vec_prctl_status(enum vec_type type, unsigned long flags)
886 {
887 	int ret;
888 
889 	if (flags & PR_SVE_SET_VL_ONEXEC)
890 		ret = task_get_vl_onexec(current, type);
891 	else
892 		ret = task_get_vl(current, type);
893 
894 	if (test_thread_flag(vec_vl_inherit_flag(type)))
895 		ret |= PR_SVE_VL_INHERIT;
896 
897 	return ret;
898 }
899 
900 /* PR_SVE_SET_VL */
901 int sve_set_current_vl(unsigned long arg)
902 {
903 	unsigned long vl, flags;
904 	int ret;
905 
906 	vl = arg & PR_SVE_VL_LEN_MASK;
907 	flags = arg & ~vl;
908 
909 	if (!system_supports_sve() || is_compat_task())
910 		return -EINVAL;
911 
912 	ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
913 	if (ret)
914 		return ret;
915 
916 	return vec_prctl_status(ARM64_VEC_SVE, flags);
917 }
918 
919 /* PR_SVE_GET_VL */
920 int sve_get_current_vl(void)
921 {
922 	if (!system_supports_sve() || is_compat_task())
923 		return -EINVAL;
924 
925 	return vec_prctl_status(ARM64_VEC_SVE, 0);
926 }
927 
928 #ifdef CONFIG_ARM64_SME
929 /* PR_SME_SET_VL */
930 int sme_set_current_vl(unsigned long arg)
931 {
932 	unsigned long vl, flags;
933 	int ret;
934 
935 	vl = arg & PR_SME_VL_LEN_MASK;
936 	flags = arg & ~vl;
937 
938 	if (!system_supports_sme() || is_compat_task())
939 		return -EINVAL;
940 
941 	ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
942 	if (ret)
943 		return ret;
944 
945 	return vec_prctl_status(ARM64_VEC_SME, flags);
946 }
947 
948 /* PR_SME_GET_VL */
949 int sme_get_current_vl(void)
950 {
951 	if (!system_supports_sme() || is_compat_task())
952 		return -EINVAL;
953 
954 	return vec_prctl_status(ARM64_VEC_SME, 0);
955 }
956 #endif /* CONFIG_ARM64_SME */
957 
958 static void vec_probe_vqs(struct vl_info *info,
959 			  DECLARE_BITMAP(map, SVE_VQ_MAX))
960 {
961 	unsigned int vq, vl;
962 
963 	bitmap_zero(map, SVE_VQ_MAX);
964 
965 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
966 		write_vl(info->type, vq - 1); /* self-syncing */
967 
968 		switch (info->type) {
969 		case ARM64_VEC_SVE:
970 			vl = sve_get_vl();
971 			break;
972 		case ARM64_VEC_SME:
973 			vl = sme_get_vl();
974 			break;
975 		default:
976 			vl = 0;
977 			break;
978 		}
979 
980 		/* Minimum VL identified? */
981 		if (sve_vq_from_vl(vl) > vq)
982 			break;
983 
984 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
985 		set_bit(__vq_to_bit(vq), map);
986 	}
987 }
988 
989 /*
990  * Initialise the set of known supported VQs for the boot CPU.
991  * This is called during kernel boot, before secondary CPUs are brought up.
992  */
993 void __init vec_init_vq_map(enum vec_type type)
994 {
995 	struct vl_info *info = &vl_info[type];
996 	vec_probe_vqs(info, info->vq_map);
997 	bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
998 }
999 
1000 /*
1001  * If we haven't committed to the set of supported VQs yet, filter out
1002  * those not supported by the current CPU.
1003  * This function is called during the bring-up of early secondary CPUs only.
1004  */
1005 void vec_update_vq_map(enum vec_type type)
1006 {
1007 	struct vl_info *info = &vl_info[type];
1008 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1009 
1010 	vec_probe_vqs(info, tmp_map);
1011 	bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1012 	bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1013 		  SVE_VQ_MAX);
1014 }
1015 
1016 /*
1017  * Check whether the current CPU supports all VQs in the committed set.
1018  * This function is called during the bring-up of late secondary CPUs only.
1019  */
1020 int vec_verify_vq_map(enum vec_type type)
1021 {
1022 	struct vl_info *info = &vl_info[type];
1023 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1024 	unsigned long b;
1025 
1026 	vec_probe_vqs(info, tmp_map);
1027 
1028 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1029 	if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1030 		pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1031 			info->name, smp_processor_id());
1032 		return -EINVAL;
1033 	}
1034 
1035 	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1036 		return 0;
1037 
1038 	/*
1039 	 * For KVM, it is necessary to ensure that this CPU doesn't
1040 	 * support any vector length that guests may have probed as
1041 	 * unsupported.
1042 	 */
1043 
1044 	/* Recover the set of supported VQs: */
1045 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1046 	/* Find VQs supported that are not globally supported: */
1047 	bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1048 
1049 	/* Find the lowest such VQ, if any: */
1050 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1051 	if (b >= SVE_VQ_MAX)
1052 		return 0; /* no mismatches */
1053 
1054 	/*
1055 	 * Mismatches above sve_max_virtualisable_vl are fine, since
1056 	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1057 	 */
1058 	if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1059 		pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1060 			info->name, smp_processor_id());
1061 		return -EINVAL;
1062 	}
1063 
1064 	return 0;
1065 }
1066 
1067 static void __init sve_efi_setup(void)
1068 {
1069 	int max_vl = 0;
1070 	int i;
1071 
1072 	if (!IS_ENABLED(CONFIG_EFI))
1073 		return;
1074 
1075 	for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1076 		max_vl = max(vl_info[i].max_vl, max_vl);
1077 
1078 	/*
1079 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1080 	 * This is evidence of a crippled system and we are returning void,
1081 	 * so no attempt is made to handle this situation here.
1082 	 */
1083 	if (!sve_vl_valid(max_vl))
1084 		goto fail;
1085 
1086 	efi_sve_state = __alloc_percpu(
1087 		SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
1088 	if (!efi_sve_state)
1089 		goto fail;
1090 
1091 	return;
1092 
1093 fail:
1094 	panic("Cannot allocate percpu memory for EFI SVE save/restore");
1095 }
1096 
1097 /*
1098  * Enable SVE for EL1.
1099  * Intended for use by the cpufeatures code during CPU boot.
1100  */
1101 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1102 {
1103 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1104 	isb();
1105 }
1106 
1107 /*
1108  * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
1109  * vector length.
1110  *
1111  * Use only if SVE is present.
1112  * This function clobbers the SVE vector length.
1113  */
1114 u64 read_zcr_features(void)
1115 {
1116 	u64 zcr;
1117 	unsigned int vq_max;
1118 
1119 	/*
1120 	 * Set the maximum possible VL, and write zeroes to all other
1121 	 * bits to see if they stick.
1122 	 */
1123 	sve_kernel_enable(NULL);
1124 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
1125 
1126 	zcr = read_sysreg_s(SYS_ZCR_EL1);
1127 	zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
1128 	vq_max = sve_vq_from_vl(sve_get_vl());
1129 	zcr |= vq_max - 1; /* set LEN field to maximum effective value */
1130 
1131 	return zcr;
1132 }
1133 
1134 void __init sve_setup(void)
1135 {
1136 	struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1137 	u64 zcr;
1138 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1139 	unsigned long b;
1140 
1141 	if (!system_supports_sve())
1142 		return;
1143 
1144 	/*
1145 	 * The SVE architecture mandates support for 128-bit vectors,
1146 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
1147 	 * If something went wrong, at least try to patch it up:
1148 	 */
1149 	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1150 		set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1151 
1152 	zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1153 	info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
1154 
1155 	/*
1156 	 * Sanity-check that the max VL we determined through CPU features
1157 	 * corresponds properly to sve_vq_map.  If not, do our best:
1158 	 */
1159 	if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
1160 								 info->max_vl)))
1161 		info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
1162 							    info->max_vl);
1163 
1164 	/*
1165 	 * For the default VL, pick the maximum supported value <= 64.
1166 	 * VL == 64 is guaranteed not to grow the signal frame.
1167 	 */
1168 	set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1169 
1170 	bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1171 		      SVE_VQ_MAX);
1172 
1173 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1174 	if (b >= SVE_VQ_MAX)
1175 		/* No non-virtualisable VLs found */
1176 		info->max_virtualisable_vl = SVE_VQ_MAX;
1177 	else if (WARN_ON(b == SVE_VQ_MAX - 1))
1178 		/* No virtualisable VLs?  This is architecturally forbidden. */
1179 		info->max_virtualisable_vl = SVE_VQ_MIN;
1180 	else /* b + 1 < SVE_VQ_MAX */
1181 		info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1182 
1183 	if (info->max_virtualisable_vl > info->max_vl)
1184 		info->max_virtualisable_vl = info->max_vl;
1185 
1186 	pr_info("%s: maximum available vector length %u bytes per vector\n",
1187 		info->name, info->max_vl);
1188 	pr_info("%s: default vector length %u bytes per vector\n",
1189 		info->name, get_sve_default_vl());
1190 
1191 	/* KVM decides whether to support mismatched systems. Just warn here: */
1192 	if (sve_max_virtualisable_vl() < sve_max_vl())
1193 		pr_warn("%s: unvirtualisable vector lengths present\n",
1194 			info->name);
1195 
1196 	sve_efi_setup();
1197 }
1198 
1199 /*
1200  * Called from the put_task_struct() path, which cannot get here
1201  * unless dead_task is really dead and not schedulable.
1202  */
1203 void fpsimd_release_task(struct task_struct *dead_task)
1204 {
1205 	__sve_free(dead_task);
1206 	sme_free(dead_task);
1207 }
1208 
1209 #endif /* CONFIG_ARM64_SVE */
1210 
1211 #ifdef CONFIG_ARM64_SME
1212 
1213 /*
1214  * Ensure that task->thread.za_state is allocated and sufficiently large.
1215  *
1216  * This function should be used only in preparation for replacing
1217  * task->thread.za_state with new data.  The memory is always zeroed
1218  * here to prevent stale data from showing through: this is done in
1219  * the interest of testability and predictability, the architecture
1220  * guarantees that when ZA is enabled it will be zeroed.
1221  */
1222 void sme_alloc(struct task_struct *task)
1223 {
1224 	if (task->thread.za_state) {
1225 		memset(task->thread.za_state, 0, za_state_size(task));
1226 		return;
1227 	}
1228 
1229 	/* This could potentially be up to 64K. */
1230 	task->thread.za_state =
1231 		kzalloc(za_state_size(task), GFP_KERNEL);
1232 }
1233 
1234 static void sme_free(struct task_struct *task)
1235 {
1236 	kfree(task->thread.za_state);
1237 	task->thread.za_state = NULL;
1238 }
1239 
1240 void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1241 {
1242 	/* Set priority for all PEs to architecturally defined minimum */
1243 	write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1244 		       SYS_SMPRI_EL1);
1245 
1246 	/* Allow SME in kernel */
1247 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1248 	isb();
1249 
1250 	/* Allow EL0 to access TPIDR2 */
1251 	write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1252 	isb();
1253 }
1254 
1255 /*
1256  * This must be called after sme_kernel_enable(), we rely on the
1257  * feature table being sorted to ensure this.
1258  */
1259 void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1260 {
1261 	/* Allow use of FA64 */
1262 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1263 		       SYS_SMCR_EL1);
1264 }
1265 
1266 /*
1267  * Read the pseudo-SMCR used by cpufeatures to identify the supported
1268  * vector length.
1269  *
1270  * Use only if SME is present.
1271  * This function clobbers the SME vector length.
1272  */
1273 u64 read_smcr_features(void)
1274 {
1275 	u64 smcr;
1276 	unsigned int vq_max;
1277 
1278 	sme_kernel_enable(NULL);
1279 	sme_smstart_sm();
1280 
1281 	/*
1282 	 * Set the maximum possible VL.
1283 	 */
1284 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
1285 		       SYS_SMCR_EL1);
1286 
1287 	smcr = read_sysreg_s(SYS_SMCR_EL1);
1288 	smcr &= ~(u64)SMCR_ELx_LEN_MASK; /* Only the LEN field */
1289 	vq_max = sve_vq_from_vl(sve_get_vl());
1290 	smcr |= vq_max - 1; /* set LEN field to maximum effective value */
1291 
1292 	sme_smstop_sm();
1293 
1294 	return smcr;
1295 }
1296 
1297 void __init sme_setup(void)
1298 {
1299 	struct vl_info *info = &vl_info[ARM64_VEC_SME];
1300 	u64 smcr;
1301 	int min_bit;
1302 
1303 	if (!system_supports_sme())
1304 		return;
1305 
1306 	/*
1307 	 * SME doesn't require any particular vector length be
1308 	 * supported but it does require at least one.  We should have
1309 	 * disabled the feature entirely while bringing up CPUs but
1310 	 * let's double check here.
1311 	 */
1312 	WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1313 
1314 	min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1315 	info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1316 
1317 	smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
1318 	info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
1319 
1320 	/*
1321 	 * Sanity-check that the max VL we determined through CPU features
1322 	 * corresponds properly to sme_vq_map.  If not, do our best:
1323 	 */
1324 	if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
1325 								 info->max_vl)))
1326 		info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
1327 							    info->max_vl);
1328 
1329 	WARN_ON(info->min_vl > info->max_vl);
1330 
1331 	/*
1332 	 * For the default VL, pick the maximum supported value <= 32
1333 	 * (256 bits) if there is one since this is guaranteed not to
1334 	 * grow the signal frame when in streaming mode, otherwise the
1335 	 * minimum available VL will be used.
1336 	 */
1337 	set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1338 
1339 	pr_info("SME: minimum available vector length %u bytes per vector\n",
1340 		info->min_vl);
1341 	pr_info("SME: maximum available vector length %u bytes per vector\n",
1342 		info->max_vl);
1343 	pr_info("SME: default vector length %u bytes per vector\n",
1344 		get_sme_default_vl());
1345 }
1346 
1347 #endif /* CONFIG_ARM64_SME */
1348 
1349 static void sve_init_regs(void)
1350 {
1351 	/*
1352 	 * Convert the FPSIMD state to SVE, zeroing all the state that
1353 	 * is not shared with FPSIMD. If (as is likely) the current
1354 	 * state is live in the registers then do this there and
1355 	 * update our metadata for the current task including
1356 	 * disabling the trap, otherwise update our in-memory copy.
1357 	 * We are guaranteed to not be in streaming mode, we can only
1358 	 * take a SVE trap when not in streaming mode and we can't be
1359 	 * in streaming mode when taking a SME trap.
1360 	 */
1361 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1362 		unsigned long vq_minus_one =
1363 			sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1364 		sve_set_vq(vq_minus_one);
1365 		sve_flush_live(true, vq_minus_one);
1366 		fpsimd_bind_task_to_cpu();
1367 	} else {
1368 		fpsimd_to_sve(current);
1369 	}
1370 }
1371 
1372 /*
1373  * Trapped SVE access
1374  *
1375  * Storage is allocated for the full SVE state, the current FPSIMD
1376  * register contents are migrated across, and the access trap is
1377  * disabled.
1378  *
1379  * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1380  * would have disabled the SVE access trap for userspace during
1381  * ret_to_user, making an SVE access trap impossible in that case.
1382  */
1383 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1384 {
1385 	/* Even if we chose not to use SVE, the hardware could still trap: */
1386 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1387 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1388 		return;
1389 	}
1390 
1391 	sve_alloc(current);
1392 	if (!current->thread.sve_state) {
1393 		force_sig(SIGKILL);
1394 		return;
1395 	}
1396 
1397 	get_cpu_fpsimd_context();
1398 
1399 	if (test_and_set_thread_flag(TIF_SVE))
1400 		WARN_ON(1); /* SVE access shouldn't have trapped */
1401 
1402 	/*
1403 	 * Even if the task can have used streaming mode we can only
1404 	 * generate SVE access traps in normal SVE mode and
1405 	 * transitioning out of streaming mode may discard any
1406 	 * streaming mode state.  Always clear the high bits to avoid
1407 	 * any potential errors tracking what is properly initialised.
1408 	 */
1409 	sve_init_regs();
1410 
1411 	put_cpu_fpsimd_context();
1412 }
1413 
1414 /*
1415  * Trapped SME access
1416  *
1417  * Storage is allocated for the full SVE and SME state, the current
1418  * FPSIMD register contents are migrated to SVE if SVE is not already
1419  * active, and the access trap is disabled.
1420  *
1421  * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1422  * would have disabled the SME access trap for userspace during
1423  * ret_to_user, making an SVE access trap impossible in that case.
1424  */
1425 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1426 {
1427 	/* Even if we chose not to use SME, the hardware could still trap: */
1428 	if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1429 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1430 		return;
1431 	}
1432 
1433 	/*
1434 	 * If this not a trap due to SME being disabled then something
1435 	 * is being used in the wrong mode, report as SIGILL.
1436 	 */
1437 	if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
1438 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1439 		return;
1440 	}
1441 
1442 	sve_alloc(current);
1443 	sme_alloc(current);
1444 	if (!current->thread.sve_state || !current->thread.za_state) {
1445 		force_sig(SIGKILL);
1446 		return;
1447 	}
1448 
1449 	get_cpu_fpsimd_context();
1450 
1451 	/* With TIF_SME userspace shouldn't generate any traps */
1452 	if (test_and_set_thread_flag(TIF_SME))
1453 		WARN_ON(1);
1454 
1455 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1456 		unsigned long vq_minus_one =
1457 			sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1458 		sme_set_vq(vq_minus_one);
1459 
1460 		fpsimd_bind_task_to_cpu();
1461 	}
1462 
1463 	/*
1464 	 * If SVE was not already active initialise the SVE registers,
1465 	 * any non-shared state between the streaming and regular SVE
1466 	 * registers is architecturally guaranteed to be zeroed when
1467 	 * we enter streaming mode.  We do not need to initialize ZA
1468 	 * since ZA must be disabled at this point and enabling ZA is
1469 	 * architecturally defined to zero ZA.
1470 	 */
1471 	if (system_supports_sve() && !test_thread_flag(TIF_SVE))
1472 		sve_init_regs();
1473 
1474 	put_cpu_fpsimd_context();
1475 }
1476 
1477 /*
1478  * Trapped FP/ASIMD access.
1479  */
1480 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1481 {
1482 	/* TODO: implement lazy context saving/restoring */
1483 	WARN_ON(1);
1484 }
1485 
1486 /*
1487  * Raise a SIGFPE for the current process.
1488  */
1489 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1490 {
1491 	unsigned int si_code = FPE_FLTUNK;
1492 
1493 	if (esr & ESR_ELx_FP_EXC_TFV) {
1494 		if (esr & FPEXC_IOF)
1495 			si_code = FPE_FLTINV;
1496 		else if (esr & FPEXC_DZF)
1497 			si_code = FPE_FLTDIV;
1498 		else if (esr & FPEXC_OFF)
1499 			si_code = FPE_FLTOVF;
1500 		else if (esr & FPEXC_UFF)
1501 			si_code = FPE_FLTUND;
1502 		else if (esr & FPEXC_IXF)
1503 			si_code = FPE_FLTRES;
1504 	}
1505 
1506 	send_sig_fault(SIGFPE, si_code,
1507 		       (void __user *)instruction_pointer(regs),
1508 		       current);
1509 }
1510 
1511 void fpsimd_thread_switch(struct task_struct *next)
1512 {
1513 	bool wrong_task, wrong_cpu;
1514 
1515 	if (!system_supports_fpsimd())
1516 		return;
1517 
1518 	__get_cpu_fpsimd_context();
1519 
1520 	/* Save unsaved fpsimd state, if any: */
1521 	fpsimd_save();
1522 
1523 	/*
1524 	 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1525 	 * state.  For kernel threads, FPSIMD registers are never loaded
1526 	 * and wrong_task and wrong_cpu will always be true.
1527 	 */
1528 	wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1529 					&next->thread.uw.fpsimd_state;
1530 	wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1531 
1532 	update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1533 			       wrong_task || wrong_cpu);
1534 
1535 	__put_cpu_fpsimd_context();
1536 }
1537 
1538 static void fpsimd_flush_thread_vl(enum vec_type type)
1539 {
1540 	int vl, supported_vl;
1541 
1542 	/*
1543 	 * Reset the task vector length as required.  This is where we
1544 	 * ensure that all user tasks have a valid vector length
1545 	 * configured: no kernel task can become a user task without
1546 	 * an exec and hence a call to this function.  By the time the
1547 	 * first call to this function is made, all early hardware
1548 	 * probing is complete, so __sve_default_vl should be valid.
1549 	 * If a bug causes this to go wrong, we make some noise and
1550 	 * try to fudge thread.sve_vl to a safe value here.
1551 	 */
1552 	vl = task_get_vl_onexec(current, type);
1553 	if (!vl)
1554 		vl = get_default_vl(type);
1555 
1556 	if (WARN_ON(!sve_vl_valid(vl)))
1557 		vl = vl_info[type].min_vl;
1558 
1559 	supported_vl = find_supported_vector_length(type, vl);
1560 	if (WARN_ON(supported_vl != vl))
1561 		vl = supported_vl;
1562 
1563 	task_set_vl(current, type, vl);
1564 
1565 	/*
1566 	 * If the task is not set to inherit, ensure that the vector
1567 	 * length will be reset by a subsequent exec:
1568 	 */
1569 	if (!test_thread_flag(vec_vl_inherit_flag(type)))
1570 		task_set_vl_onexec(current, type, 0);
1571 }
1572 
1573 void fpsimd_flush_thread(void)
1574 {
1575 	void *sve_state = NULL;
1576 	void *za_state = NULL;
1577 
1578 	if (!system_supports_fpsimd())
1579 		return;
1580 
1581 	get_cpu_fpsimd_context();
1582 
1583 	fpsimd_flush_task_state(current);
1584 	memset(&current->thread.uw.fpsimd_state, 0,
1585 	       sizeof(current->thread.uw.fpsimd_state));
1586 
1587 	if (system_supports_sve()) {
1588 		clear_thread_flag(TIF_SVE);
1589 
1590 		/* Defer kfree() while in atomic context */
1591 		sve_state = current->thread.sve_state;
1592 		current->thread.sve_state = NULL;
1593 
1594 		fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1595 	}
1596 
1597 	if (system_supports_sme()) {
1598 		clear_thread_flag(TIF_SME);
1599 
1600 		/* Defer kfree() while in atomic context */
1601 		za_state = current->thread.za_state;
1602 		current->thread.za_state = NULL;
1603 
1604 		fpsimd_flush_thread_vl(ARM64_VEC_SME);
1605 		current->thread.svcr = 0;
1606 	}
1607 
1608 	put_cpu_fpsimd_context();
1609 	kfree(sve_state);
1610 	kfree(za_state);
1611 }
1612 
1613 /*
1614  * Save the userland FPSIMD state of 'current' to memory, but only if the state
1615  * currently held in the registers does in fact belong to 'current'
1616  */
1617 void fpsimd_preserve_current_state(void)
1618 {
1619 	if (!system_supports_fpsimd())
1620 		return;
1621 
1622 	get_cpu_fpsimd_context();
1623 	fpsimd_save();
1624 	put_cpu_fpsimd_context();
1625 }
1626 
1627 /*
1628  * Like fpsimd_preserve_current_state(), but ensure that
1629  * current->thread.uw.fpsimd_state is updated so that it can be copied to
1630  * the signal frame.
1631  */
1632 void fpsimd_signal_preserve_current_state(void)
1633 {
1634 	fpsimd_preserve_current_state();
1635 	if (test_thread_flag(TIF_SVE))
1636 		sve_to_fpsimd(current);
1637 }
1638 
1639 /*
1640  * Associate current's FPSIMD context with this cpu
1641  * The caller must have ownership of the cpu FPSIMD context before calling
1642  * this function.
1643  */
1644 static void fpsimd_bind_task_to_cpu(void)
1645 {
1646 	struct fpsimd_last_state_struct *last =
1647 		this_cpu_ptr(&fpsimd_last_state);
1648 
1649 	WARN_ON(!system_supports_fpsimd());
1650 	last->st = &current->thread.uw.fpsimd_state;
1651 	last->sve_state = current->thread.sve_state;
1652 	last->za_state = current->thread.za_state;
1653 	last->sve_vl = task_get_sve_vl(current);
1654 	last->sme_vl = task_get_sme_vl(current);
1655 	last->svcr = &current->thread.svcr;
1656 	current->thread.fpsimd_cpu = smp_processor_id();
1657 
1658 	/*
1659 	 * Toggle SVE and SME trapping for userspace if needed, these
1660 	 * are serialsied by ret_to_user().
1661 	 */
1662 	if (system_supports_sme()) {
1663 		if (test_thread_flag(TIF_SME))
1664 			sme_user_enable();
1665 		else
1666 			sme_user_disable();
1667 	}
1668 
1669 	if (system_supports_sve()) {
1670 		if (test_thread_flag(TIF_SVE))
1671 			sve_user_enable();
1672 		else
1673 			sve_user_disable();
1674 	}
1675 }
1676 
1677 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1678 			      unsigned int sve_vl, void *za_state,
1679 			      unsigned int sme_vl, u64 *svcr)
1680 {
1681 	struct fpsimd_last_state_struct *last =
1682 		this_cpu_ptr(&fpsimd_last_state);
1683 
1684 	WARN_ON(!system_supports_fpsimd());
1685 	WARN_ON(!in_softirq() && !irqs_disabled());
1686 
1687 	last->st = st;
1688 	last->svcr = svcr;
1689 	last->sve_state = sve_state;
1690 	last->za_state = za_state;
1691 	last->sve_vl = sve_vl;
1692 	last->sme_vl = sme_vl;
1693 }
1694 
1695 /*
1696  * Load the userland FPSIMD state of 'current' from memory, but only if the
1697  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1698  * state of 'current'.  This is called when we are preparing to return to
1699  * userspace to ensure that userspace sees a good register state.
1700  */
1701 void fpsimd_restore_current_state(void)
1702 {
1703 	/*
1704 	 * For the tasks that were created before we detected the absence of
1705 	 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1706 	 * e.g, init. This could be then inherited by the children processes.
1707 	 * If we later detect that the system doesn't support FP/SIMD,
1708 	 * we must clear the flag for  all the tasks to indicate that the
1709 	 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1710 	 * do_notify_resume().
1711 	 */
1712 	if (!system_supports_fpsimd()) {
1713 		clear_thread_flag(TIF_FOREIGN_FPSTATE);
1714 		return;
1715 	}
1716 
1717 	get_cpu_fpsimd_context();
1718 
1719 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1720 		task_fpsimd_load();
1721 		fpsimd_bind_task_to_cpu();
1722 	}
1723 
1724 	put_cpu_fpsimd_context();
1725 }
1726 
1727 /*
1728  * Load an updated userland FPSIMD state for 'current' from memory and set the
1729  * flag that indicates that the FPSIMD register contents are the most recent
1730  * FPSIMD state of 'current'. This is used by the signal code to restore the
1731  * register state when returning from a signal handler in FPSIMD only cases,
1732  * any SVE context will be discarded.
1733  */
1734 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1735 {
1736 	if (WARN_ON(!system_supports_fpsimd()))
1737 		return;
1738 
1739 	get_cpu_fpsimd_context();
1740 
1741 	current->thread.uw.fpsimd_state = *state;
1742 	if (test_thread_flag(TIF_SVE))
1743 		fpsimd_to_sve(current);
1744 
1745 	task_fpsimd_load();
1746 	fpsimd_bind_task_to_cpu();
1747 
1748 	clear_thread_flag(TIF_FOREIGN_FPSTATE);
1749 
1750 	put_cpu_fpsimd_context();
1751 }
1752 
1753 /*
1754  * Invalidate live CPU copies of task t's FPSIMD state
1755  *
1756  * This function may be called with preemption enabled.  The barrier()
1757  * ensures that the assignment to fpsimd_cpu is visible to any
1758  * preemption/softirq that could race with set_tsk_thread_flag(), so
1759  * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1760  *
1761  * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1762  * subsequent code.
1763  */
1764 void fpsimd_flush_task_state(struct task_struct *t)
1765 {
1766 	t->thread.fpsimd_cpu = NR_CPUS;
1767 	/*
1768 	 * If we don't support fpsimd, bail out after we have
1769 	 * reset the fpsimd_cpu for this task and clear the
1770 	 * FPSTATE.
1771 	 */
1772 	if (!system_supports_fpsimd())
1773 		return;
1774 	barrier();
1775 	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1776 
1777 	barrier();
1778 }
1779 
1780 /*
1781  * Invalidate any task's FPSIMD state that is present on this cpu.
1782  * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1783  * before calling this function.
1784  */
1785 static void fpsimd_flush_cpu_state(void)
1786 {
1787 	WARN_ON(!system_supports_fpsimd());
1788 	__this_cpu_write(fpsimd_last_state.st, NULL);
1789 
1790 	/*
1791 	 * Leaving streaming mode enabled will cause issues for any kernel
1792 	 * NEON and leaving streaming mode or ZA enabled may increase power
1793 	 * consumption.
1794 	 */
1795 	if (system_supports_sme())
1796 		sme_smstop();
1797 
1798 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1799 }
1800 
1801 /*
1802  * Save the FPSIMD state to memory and invalidate cpu view.
1803  * This function must be called with preemption disabled.
1804  */
1805 void fpsimd_save_and_flush_cpu_state(void)
1806 {
1807 	if (!system_supports_fpsimd())
1808 		return;
1809 	WARN_ON(preemptible());
1810 	__get_cpu_fpsimd_context();
1811 	fpsimd_save();
1812 	fpsimd_flush_cpu_state();
1813 	__put_cpu_fpsimd_context();
1814 }
1815 
1816 #ifdef CONFIG_KERNEL_MODE_NEON
1817 
1818 /*
1819  * Kernel-side NEON support functions
1820  */
1821 
1822 /*
1823  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1824  * context
1825  *
1826  * Must not be called unless may_use_simd() returns true.
1827  * Task context in the FPSIMD registers is saved back to memory as necessary.
1828  *
1829  * A matching call to kernel_neon_end() must be made before returning from the
1830  * calling context.
1831  *
1832  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1833  * called.
1834  */
1835 void kernel_neon_begin(void)
1836 {
1837 	if (WARN_ON(!system_supports_fpsimd()))
1838 		return;
1839 
1840 	BUG_ON(!may_use_simd());
1841 
1842 	get_cpu_fpsimd_context();
1843 
1844 	/* Save unsaved fpsimd state, if any: */
1845 	fpsimd_save();
1846 
1847 	/* Invalidate any task state remaining in the fpsimd regs: */
1848 	fpsimd_flush_cpu_state();
1849 }
1850 EXPORT_SYMBOL(kernel_neon_begin);
1851 
1852 /*
1853  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1854  *
1855  * Must be called from a context in which kernel_neon_begin() was previously
1856  * called, with no call to kernel_neon_end() in the meantime.
1857  *
1858  * The caller must not use the FPSIMD registers after this function is called,
1859  * unless kernel_neon_begin() is called again in the meantime.
1860  */
1861 void kernel_neon_end(void)
1862 {
1863 	if (!system_supports_fpsimd())
1864 		return;
1865 
1866 	put_cpu_fpsimd_context();
1867 }
1868 EXPORT_SYMBOL(kernel_neon_end);
1869 
1870 #ifdef CONFIG_EFI
1871 
1872 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1873 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1874 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1875 static DEFINE_PER_CPU(bool, efi_sm_state);
1876 
1877 /*
1878  * EFI runtime services support functions
1879  *
1880  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1881  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1882  * is always used rather than being an optional accelerator.
1883  *
1884  * These functions provide the necessary support for ensuring FPSIMD
1885  * save/restore in the contexts from which EFI is used.
1886  *
1887  * Do not use them for any other purpose -- if tempted to do so, you are
1888  * either doing something wrong or you need to propose some refactoring.
1889  */
1890 
1891 /*
1892  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1893  */
1894 void __efi_fpsimd_begin(void)
1895 {
1896 	if (!system_supports_fpsimd())
1897 		return;
1898 
1899 	WARN_ON(preemptible());
1900 
1901 	if (may_use_simd()) {
1902 		kernel_neon_begin();
1903 	} else {
1904 		/*
1905 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1906 		 * preserving:
1907 		 */
1908 		if (system_supports_sve() && likely(efi_sve_state)) {
1909 			char *sve_state = this_cpu_ptr(efi_sve_state);
1910 			bool ffr = true;
1911 			u64 svcr;
1912 
1913 			__this_cpu_write(efi_sve_state_used, true);
1914 
1915 			if (system_supports_sme()) {
1916 				svcr = read_sysreg_s(SYS_SVCR);
1917 
1918 				__this_cpu_write(efi_sm_state,
1919 						 svcr & SVCR_SM_MASK);
1920 
1921 				/*
1922 				 * Unless we have FA64 FFR does not
1923 				 * exist in streaming mode.
1924 				 */
1925 				if (!system_supports_fa64())
1926 					ffr = !(svcr & SVCR_SM_MASK);
1927 			}
1928 
1929 			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
1930 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1931 				       ffr);
1932 
1933 			if (system_supports_sme())
1934 				sysreg_clear_set_s(SYS_SVCR,
1935 						   SVCR_SM_MASK, 0);
1936 
1937 		} else {
1938 			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1939 		}
1940 
1941 		__this_cpu_write(efi_fpsimd_state_used, true);
1942 	}
1943 }
1944 
1945 /*
1946  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1947  */
1948 void __efi_fpsimd_end(void)
1949 {
1950 	if (!system_supports_fpsimd())
1951 		return;
1952 
1953 	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1954 		kernel_neon_end();
1955 	} else {
1956 		if (system_supports_sve() &&
1957 		    likely(__this_cpu_read(efi_sve_state_used))) {
1958 			char const *sve_state = this_cpu_ptr(efi_sve_state);
1959 			bool ffr = true;
1960 
1961 			/*
1962 			 * Restore streaming mode; EFI calls are
1963 			 * normal function calls so should not return in
1964 			 * streaming mode.
1965 			 */
1966 			if (system_supports_sme()) {
1967 				if (__this_cpu_read(efi_sm_state)) {
1968 					sysreg_clear_set_s(SYS_SVCR,
1969 							   0,
1970 							   SVCR_SM_MASK);
1971 
1972 					/*
1973 					 * Unless we have FA64 FFR does not
1974 					 * exist in streaming mode.
1975 					 */
1976 					if (!system_supports_fa64())
1977 						ffr = false;
1978 				}
1979 			}
1980 
1981 			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
1982 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1983 				       ffr);
1984 
1985 			__this_cpu_write(efi_sve_state_used, false);
1986 		} else {
1987 			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1988 		}
1989 	}
1990 }
1991 
1992 #endif /* CONFIG_EFI */
1993 
1994 #endif /* CONFIG_KERNEL_MODE_NEON */
1995 
1996 #ifdef CONFIG_CPU_PM
1997 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1998 				  unsigned long cmd, void *v)
1999 {
2000 	switch (cmd) {
2001 	case CPU_PM_ENTER:
2002 		fpsimd_save_and_flush_cpu_state();
2003 		break;
2004 	case CPU_PM_EXIT:
2005 		break;
2006 	case CPU_PM_ENTER_FAILED:
2007 	default:
2008 		return NOTIFY_DONE;
2009 	}
2010 	return NOTIFY_OK;
2011 }
2012 
2013 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2014 	.notifier_call = fpsimd_cpu_pm_notifier,
2015 };
2016 
2017 static void __init fpsimd_pm_init(void)
2018 {
2019 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2020 }
2021 
2022 #else
2023 static inline void fpsimd_pm_init(void) { }
2024 #endif /* CONFIG_CPU_PM */
2025 
2026 #ifdef CONFIG_HOTPLUG_CPU
2027 static int fpsimd_cpu_dead(unsigned int cpu)
2028 {
2029 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
2030 	return 0;
2031 }
2032 
2033 static inline void fpsimd_hotplug_init(void)
2034 {
2035 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2036 				  NULL, fpsimd_cpu_dead);
2037 }
2038 
2039 #else
2040 static inline void fpsimd_hotplug_init(void) { }
2041 #endif
2042 
2043 /*
2044  * FP/SIMD support code initialisation.
2045  */
2046 static int __init fpsimd_init(void)
2047 {
2048 	if (cpu_have_named_feature(FP)) {
2049 		fpsimd_pm_init();
2050 		fpsimd_hotplug_init();
2051 	} else {
2052 		pr_notice("Floating-point is not implemented\n");
2053 	}
2054 
2055 	if (!cpu_have_named_feature(ASIMD))
2056 		pr_notice("Advanced SIMD is not implemented\n");
2057 
2058 
2059 	if (cpu_have_named_feature(SME) && !cpu_have_named_feature(SVE))
2060 		pr_notice("SME is implemented but not SVE\n");
2061 
2062 	sve_sysctl_init();
2063 	sme_sysctl_init();
2064 
2065 	return 0;
2066 }
2067 core_initcall(fpsimd_init);
2068