1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * FP/SIMD context switching and fault handling 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * Author: Catalin Marinas <catalin.marinas@arm.com> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/bitops.h> 11 #include <linux/bottom_half.h> 12 #include <linux/bug.h> 13 #include <linux/cache.h> 14 #include <linux/compat.h> 15 #include <linux/compiler.h> 16 #include <linux/cpu.h> 17 #include <linux/cpu_pm.h> 18 #include <linux/kernel.h> 19 #include <linux/linkage.h> 20 #include <linux/irqflags.h> 21 #include <linux/init.h> 22 #include <linux/percpu.h> 23 #include <linux/prctl.h> 24 #include <linux/preempt.h> 25 #include <linux/ptrace.h> 26 #include <linux/sched/signal.h> 27 #include <linux/sched/task_stack.h> 28 #include <linux/signal.h> 29 #include <linux/slab.h> 30 #include <linux/stddef.h> 31 #include <linux/sysctl.h> 32 #include <linux/swab.h> 33 34 #include <asm/esr.h> 35 #include <asm/exception.h> 36 #include <asm/fpsimd.h> 37 #include <asm/cpufeature.h> 38 #include <asm/cputype.h> 39 #include <asm/neon.h> 40 #include <asm/processor.h> 41 #include <asm/simd.h> 42 #include <asm/sigcontext.h> 43 #include <asm/sysreg.h> 44 #include <asm/traps.h> 45 #include <asm/virt.h> 46 47 #define FPEXC_IOF (1 << 0) 48 #define FPEXC_DZF (1 << 1) 49 #define FPEXC_OFF (1 << 2) 50 #define FPEXC_UFF (1 << 3) 51 #define FPEXC_IXF (1 << 4) 52 #define FPEXC_IDF (1 << 7) 53 54 /* 55 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.) 56 * 57 * In order to reduce the number of times the FPSIMD state is needlessly saved 58 * and restored, we need to keep track of two things: 59 * (a) for each task, we need to remember which CPU was the last one to have 60 * the task's FPSIMD state loaded into its FPSIMD registers; 61 * (b) for each CPU, we need to remember which task's userland FPSIMD state has 62 * been loaded into its FPSIMD registers most recently, or whether it has 63 * been used to perform kernel mode NEON in the meantime. 64 * 65 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to 66 * the id of the current CPU every time the state is loaded onto a CPU. For (b), 67 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the 68 * address of the userland FPSIMD state of the task that was loaded onto the CPU 69 * the most recently, or NULL if kernel mode NEON has been performed after that. 70 * 71 * With this in place, we no longer have to restore the next FPSIMD state right 72 * when switching between tasks. Instead, we can defer this check to userland 73 * resume, at which time we verify whether the CPU's fpsimd_last_state and the 74 * task's fpsimd_cpu are still mutually in sync. If this is the case, we 75 * can omit the FPSIMD restore. 76 * 77 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to 78 * indicate whether or not the userland FPSIMD state of the current task is 79 * present in the registers. The flag is set unless the FPSIMD registers of this 80 * CPU currently contain the most recent userland FPSIMD state of the current 81 * task. 82 * 83 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may 84 * save the task's FPSIMD context back to task_struct from softirq context. 85 * To prevent this from racing with the manipulation of the task's FPSIMD state 86 * from task context and thereby corrupting the state, it is necessary to 87 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE 88 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to 89 * run but prevent them to use FPSIMD. 90 * 91 * For a certain task, the sequence may look something like this: 92 * - the task gets scheduled in; if both the task's fpsimd_cpu field 93 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu 94 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is 95 * cleared, otherwise it is set; 96 * 97 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's 98 * userland FPSIMD state is copied from memory to the registers, the task's 99 * fpsimd_cpu field is set to the id of the current CPU, the current 100 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the 101 * TIF_FOREIGN_FPSTATE flag is cleared; 102 * 103 * - the task executes an ordinary syscall; upon return to userland, the 104 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is 105 * restored; 106 * 107 * - the task executes a syscall which executes some NEON instructions; this is 108 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD 109 * register contents to memory, clears the fpsimd_last_state per-cpu variable 110 * and sets the TIF_FOREIGN_FPSTATE flag; 111 * 112 * - the task gets preempted after kernel_neon_end() is called; as we have not 113 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so 114 * whatever is in the FPSIMD registers is not saved to memory, but discarded. 115 */ 116 struct fpsimd_last_state_struct { 117 struct user_fpsimd_state *st; 118 void *sve_state; 119 unsigned int sve_vl; 120 }; 121 122 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state); 123 124 /* Default VL for tasks that don't set it explicitly: */ 125 static int __sve_default_vl = -1; 126 127 static int get_sve_default_vl(void) 128 { 129 return READ_ONCE(__sve_default_vl); 130 } 131 132 #ifdef CONFIG_ARM64_SVE 133 134 static void set_sve_default_vl(int val) 135 { 136 WRITE_ONCE(__sve_default_vl, val); 137 } 138 139 /* Maximum supported vector length across all CPUs (initially poisoned) */ 140 int __ro_after_init sve_max_vl = SVE_VL_MIN; 141 int __ro_after_init sve_max_virtualisable_vl = SVE_VL_MIN; 142 143 /* 144 * Set of available vector lengths, 145 * where length vq encoded as bit __vq_to_bit(vq): 146 */ 147 __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX); 148 /* Set of vector lengths present on at least one cpu: */ 149 static __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX); 150 151 static void __percpu *efi_sve_state; 152 153 #else /* ! CONFIG_ARM64_SVE */ 154 155 /* Dummy declaration for code that will be optimised out: */ 156 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX); 157 extern __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX); 158 extern void __percpu *efi_sve_state; 159 160 #endif /* ! CONFIG_ARM64_SVE */ 161 162 DEFINE_PER_CPU(bool, fpsimd_context_busy); 163 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy); 164 165 static void __get_cpu_fpsimd_context(void) 166 { 167 bool busy = __this_cpu_xchg(fpsimd_context_busy, true); 168 169 WARN_ON(busy); 170 } 171 172 /* 173 * Claim ownership of the CPU FPSIMD context for use by the calling context. 174 * 175 * The caller may freely manipulate the FPSIMD context metadata until 176 * put_cpu_fpsimd_context() is called. 177 * 178 * The double-underscore version must only be called if you know the task 179 * can't be preempted. 180 */ 181 static void get_cpu_fpsimd_context(void) 182 { 183 local_bh_disable(); 184 __get_cpu_fpsimd_context(); 185 } 186 187 static void __put_cpu_fpsimd_context(void) 188 { 189 bool busy = __this_cpu_xchg(fpsimd_context_busy, false); 190 191 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */ 192 } 193 194 /* 195 * Release the CPU FPSIMD context. 196 * 197 * Must be called from a context in which get_cpu_fpsimd_context() was 198 * previously called, with no call to put_cpu_fpsimd_context() in the 199 * meantime. 200 */ 201 static void put_cpu_fpsimd_context(void) 202 { 203 __put_cpu_fpsimd_context(); 204 local_bh_enable(); 205 } 206 207 static bool have_cpu_fpsimd_context(void) 208 { 209 return !preemptible() && __this_cpu_read(fpsimd_context_busy); 210 } 211 212 /* 213 * Call __sve_free() directly only if you know task can't be scheduled 214 * or preempted. 215 */ 216 static void __sve_free(struct task_struct *task) 217 { 218 kfree(task->thread.sve_state); 219 task->thread.sve_state = NULL; 220 } 221 222 static void sve_free(struct task_struct *task) 223 { 224 WARN_ON(test_tsk_thread_flag(task, TIF_SVE)); 225 226 __sve_free(task); 227 } 228 229 /* 230 * TIF_SVE controls whether a task can use SVE without trapping while 231 * in userspace, and also the way a task's FPSIMD/SVE state is stored 232 * in thread_struct. 233 * 234 * The kernel uses this flag to track whether a user task is actively 235 * using SVE, and therefore whether full SVE register state needs to 236 * be tracked. If not, the cheaper FPSIMD context handling code can 237 * be used instead of the more costly SVE equivalents. 238 * 239 * * TIF_SVE set: 240 * 241 * The task can execute SVE instructions while in userspace without 242 * trapping to the kernel. 243 * 244 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the 245 * corresponding Zn), P0-P15 and FFR are encoded in in 246 * task->thread.sve_state, formatted appropriately for vector 247 * length task->thread.sve_vl. 248 * 249 * task->thread.sve_state must point to a valid buffer at least 250 * sve_state_size(task) bytes in size. 251 * 252 * During any syscall, the kernel may optionally clear TIF_SVE and 253 * discard the vector state except for the FPSIMD subset. 254 * 255 * * TIF_SVE clear: 256 * 257 * An attempt by the user task to execute an SVE instruction causes 258 * do_sve_acc() to be called, which does some preparation and then 259 * sets TIF_SVE. 260 * 261 * When stored, FPSIMD registers V0-V31 are encoded in 262 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are 263 * logically zero but not stored anywhere; P0-P15 and FFR are not 264 * stored and have unspecified values from userspace's point of 265 * view. For hygiene purposes, the kernel zeroes them on next use, 266 * but userspace is discouraged from relying on this. 267 * 268 * task->thread.sve_state does not need to be non-NULL, valid or any 269 * particular size: it must not be dereferenced. 270 * 271 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state 272 * irrespective of whether TIF_SVE is clear or set, since these are 273 * not vector length dependent. 274 */ 275 276 /* 277 * Update current's FPSIMD/SVE registers from thread_struct. 278 * 279 * This function should be called only when the FPSIMD/SVE state in 280 * thread_struct is known to be up to date, when preparing to enter 281 * userspace. 282 */ 283 static void task_fpsimd_load(void) 284 { 285 WARN_ON(!system_supports_fpsimd()); 286 WARN_ON(!have_cpu_fpsimd_context()); 287 288 if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE)) 289 sve_load_state(sve_pffr(¤t->thread), 290 ¤t->thread.uw.fpsimd_state.fpsr, 291 sve_vq_from_vl(current->thread.sve_vl) - 1); 292 else 293 fpsimd_load_state(¤t->thread.uw.fpsimd_state); 294 } 295 296 /* 297 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to 298 * date with respect to the CPU registers. 299 */ 300 static void fpsimd_save(void) 301 { 302 struct fpsimd_last_state_struct const *last = 303 this_cpu_ptr(&fpsimd_last_state); 304 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */ 305 306 WARN_ON(!system_supports_fpsimd()); 307 WARN_ON(!have_cpu_fpsimd_context()); 308 309 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 310 if (IS_ENABLED(CONFIG_ARM64_SVE) && 311 test_thread_flag(TIF_SVE)) { 312 if (WARN_ON(sve_get_vl() != last->sve_vl)) { 313 /* 314 * Can't save the user regs, so current would 315 * re-enter user with corrupt state. 316 * There's no way to recover, so kill it: 317 */ 318 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0); 319 return; 320 } 321 322 sve_save_state((char *)last->sve_state + 323 sve_ffr_offset(last->sve_vl), 324 &last->st->fpsr); 325 } else 326 fpsimd_save_state(last->st); 327 } 328 } 329 330 /* 331 * All vector length selection from userspace comes through here. 332 * We're on a slow path, so some sanity-checks are included. 333 * If things go wrong there's a bug somewhere, but try to fall back to a 334 * safe choice. 335 */ 336 static unsigned int find_supported_vector_length(unsigned int vl) 337 { 338 int bit; 339 int max_vl = sve_max_vl; 340 341 if (WARN_ON(!sve_vl_valid(vl))) 342 vl = SVE_VL_MIN; 343 344 if (WARN_ON(!sve_vl_valid(max_vl))) 345 max_vl = SVE_VL_MIN; 346 347 if (vl > max_vl) 348 vl = max_vl; 349 350 bit = find_next_bit(sve_vq_map, SVE_VQ_MAX, 351 __vq_to_bit(sve_vq_from_vl(vl))); 352 return sve_vl_from_vq(__bit_to_vq(bit)); 353 } 354 355 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL) 356 357 static int sve_proc_do_default_vl(struct ctl_table *table, int write, 358 void *buffer, size_t *lenp, loff_t *ppos) 359 { 360 int ret; 361 int vl = get_sve_default_vl(); 362 struct ctl_table tmp_table = { 363 .data = &vl, 364 .maxlen = sizeof(vl), 365 }; 366 367 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); 368 if (ret || !write) 369 return ret; 370 371 /* Writing -1 has the special meaning "set to max": */ 372 if (vl == -1) 373 vl = sve_max_vl; 374 375 if (!sve_vl_valid(vl)) 376 return -EINVAL; 377 378 set_sve_default_vl(find_supported_vector_length(vl)); 379 return 0; 380 } 381 382 static struct ctl_table sve_default_vl_table[] = { 383 { 384 .procname = "sve_default_vector_length", 385 .mode = 0644, 386 .proc_handler = sve_proc_do_default_vl, 387 }, 388 { } 389 }; 390 391 static int __init sve_sysctl_init(void) 392 { 393 if (system_supports_sve()) 394 if (!register_sysctl("abi", sve_default_vl_table)) 395 return -EINVAL; 396 397 return 0; 398 } 399 400 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ 401 static int __init sve_sysctl_init(void) { return 0; } 402 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */ 403 404 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \ 405 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET)) 406 407 #ifdef CONFIG_CPU_BIG_ENDIAN 408 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 409 { 410 u64 a = swab64(x); 411 u64 b = swab64(x >> 64); 412 413 return ((__uint128_t)a << 64) | b; 414 } 415 #else 416 static __uint128_t arm64_cpu_to_le128(__uint128_t x) 417 { 418 return x; 419 } 420 #endif 421 422 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x) 423 424 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst, 425 unsigned int vq) 426 { 427 unsigned int i; 428 __uint128_t *p; 429 430 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 431 p = (__uint128_t *)ZREG(sst, vq, i); 432 *p = arm64_cpu_to_le128(fst->vregs[i]); 433 } 434 } 435 436 /* 437 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to 438 * task->thread.sve_state. 439 * 440 * Task can be a non-runnable task, or current. In the latter case, 441 * the caller must have ownership of the cpu FPSIMD context before calling 442 * this function. 443 * task->thread.sve_state must point to at least sve_state_size(task) 444 * bytes of allocated kernel memory. 445 * task->thread.uw.fpsimd_state must be up to date before calling this 446 * function. 447 */ 448 static void fpsimd_to_sve(struct task_struct *task) 449 { 450 unsigned int vq; 451 void *sst = task->thread.sve_state; 452 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 453 454 if (!system_supports_sve()) 455 return; 456 457 vq = sve_vq_from_vl(task->thread.sve_vl); 458 __fpsimd_to_sve(sst, fst, vq); 459 } 460 461 /* 462 * Transfer the SVE state in task->thread.sve_state to 463 * task->thread.uw.fpsimd_state. 464 * 465 * Task can be a non-runnable task, or current. In the latter case, 466 * the caller must have ownership of the cpu FPSIMD context before calling 467 * this function. 468 * task->thread.sve_state must point to at least sve_state_size(task) 469 * bytes of allocated kernel memory. 470 * task->thread.sve_state must be up to date before calling this function. 471 */ 472 static void sve_to_fpsimd(struct task_struct *task) 473 { 474 unsigned int vq; 475 void const *sst = task->thread.sve_state; 476 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state; 477 unsigned int i; 478 __uint128_t const *p; 479 480 if (!system_supports_sve()) 481 return; 482 483 vq = sve_vq_from_vl(task->thread.sve_vl); 484 for (i = 0; i < SVE_NUM_ZREGS; ++i) { 485 p = (__uint128_t const *)ZREG(sst, vq, i); 486 fst->vregs[i] = arm64_le128_to_cpu(*p); 487 } 488 } 489 490 #ifdef CONFIG_ARM64_SVE 491 492 /* 493 * Return how many bytes of memory are required to store the full SVE 494 * state for task, given task's currently configured vector length. 495 */ 496 size_t sve_state_size(struct task_struct const *task) 497 { 498 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl)); 499 } 500 501 /* 502 * Ensure that task->thread.sve_state is allocated and sufficiently large. 503 * 504 * This function should be used only in preparation for replacing 505 * task->thread.sve_state with new data. The memory is always zeroed 506 * here to prevent stale data from showing through: this is done in 507 * the interest of testability and predictability: except in the 508 * do_sve_acc() case, there is no ABI requirement to hide stale data 509 * written previously be task. 510 */ 511 void sve_alloc(struct task_struct *task) 512 { 513 if (task->thread.sve_state) { 514 memset(task->thread.sve_state, 0, sve_state_size(current)); 515 return; 516 } 517 518 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */ 519 task->thread.sve_state = 520 kzalloc(sve_state_size(task), GFP_KERNEL); 521 522 /* 523 * If future SVE revisions can have larger vectors though, 524 * this may cease to be true: 525 */ 526 BUG_ON(!task->thread.sve_state); 527 } 528 529 530 /* 531 * Ensure that task->thread.sve_state is up to date with respect to 532 * the user task, irrespective of when SVE is in use or not. 533 * 534 * This should only be called by ptrace. task must be non-runnable. 535 * task->thread.sve_state must point to at least sve_state_size(task) 536 * bytes of allocated kernel memory. 537 */ 538 void fpsimd_sync_to_sve(struct task_struct *task) 539 { 540 if (!test_tsk_thread_flag(task, TIF_SVE)) 541 fpsimd_to_sve(task); 542 } 543 544 /* 545 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to 546 * the user task, irrespective of whether SVE is in use or not. 547 * 548 * This should only be called by ptrace. task must be non-runnable. 549 * task->thread.sve_state must point to at least sve_state_size(task) 550 * bytes of allocated kernel memory. 551 */ 552 void sve_sync_to_fpsimd(struct task_struct *task) 553 { 554 if (test_tsk_thread_flag(task, TIF_SVE)) 555 sve_to_fpsimd(task); 556 } 557 558 /* 559 * Ensure that task->thread.sve_state is up to date with respect to 560 * the task->thread.uw.fpsimd_state. 561 * 562 * This should only be called by ptrace to merge new FPSIMD register 563 * values into a task for which SVE is currently active. 564 * task must be non-runnable. 565 * task->thread.sve_state must point to at least sve_state_size(task) 566 * bytes of allocated kernel memory. 567 * task->thread.uw.fpsimd_state must already have been initialised with 568 * the new FPSIMD register values to be merged in. 569 */ 570 void sve_sync_from_fpsimd_zeropad(struct task_struct *task) 571 { 572 unsigned int vq; 573 void *sst = task->thread.sve_state; 574 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state; 575 576 if (!test_tsk_thread_flag(task, TIF_SVE)) 577 return; 578 579 vq = sve_vq_from_vl(task->thread.sve_vl); 580 581 memset(sst, 0, SVE_SIG_REGS_SIZE(vq)); 582 __fpsimd_to_sve(sst, fst, vq); 583 } 584 585 int sve_set_vector_length(struct task_struct *task, 586 unsigned long vl, unsigned long flags) 587 { 588 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT | 589 PR_SVE_SET_VL_ONEXEC)) 590 return -EINVAL; 591 592 if (!sve_vl_valid(vl)) 593 return -EINVAL; 594 595 /* 596 * Clamp to the maximum vector length that VL-agnostic SVE code can 597 * work with. A flag may be assigned in the future to allow setting 598 * of larger vector lengths without confusing older software. 599 */ 600 if (vl > SVE_VL_ARCH_MAX) 601 vl = SVE_VL_ARCH_MAX; 602 603 vl = find_supported_vector_length(vl); 604 605 if (flags & (PR_SVE_VL_INHERIT | 606 PR_SVE_SET_VL_ONEXEC)) 607 task->thread.sve_vl_onexec = vl; 608 else 609 /* Reset VL to system default on next exec: */ 610 task->thread.sve_vl_onexec = 0; 611 612 /* Only actually set the VL if not deferred: */ 613 if (flags & PR_SVE_SET_VL_ONEXEC) 614 goto out; 615 616 if (vl == task->thread.sve_vl) 617 goto out; 618 619 /* 620 * To ensure the FPSIMD bits of the SVE vector registers are preserved, 621 * write any live register state back to task_struct, and convert to a 622 * non-SVE thread. 623 */ 624 if (task == current) { 625 get_cpu_fpsimd_context(); 626 627 fpsimd_save(); 628 } 629 630 fpsimd_flush_task_state(task); 631 if (test_and_clear_tsk_thread_flag(task, TIF_SVE)) 632 sve_to_fpsimd(task); 633 634 if (task == current) 635 put_cpu_fpsimd_context(); 636 637 /* 638 * Force reallocation of task SVE state to the correct size 639 * on next use: 640 */ 641 sve_free(task); 642 643 task->thread.sve_vl = vl; 644 645 out: 646 update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT, 647 flags & PR_SVE_VL_INHERIT); 648 649 return 0; 650 } 651 652 /* 653 * Encode the current vector length and flags for return. 654 * This is only required for prctl(): ptrace has separate fields 655 * 656 * flags are as for sve_set_vector_length(). 657 */ 658 static int sve_prctl_status(unsigned long flags) 659 { 660 int ret; 661 662 if (flags & PR_SVE_SET_VL_ONEXEC) 663 ret = current->thread.sve_vl_onexec; 664 else 665 ret = current->thread.sve_vl; 666 667 if (test_thread_flag(TIF_SVE_VL_INHERIT)) 668 ret |= PR_SVE_VL_INHERIT; 669 670 return ret; 671 } 672 673 /* PR_SVE_SET_VL */ 674 int sve_set_current_vl(unsigned long arg) 675 { 676 unsigned long vl, flags; 677 int ret; 678 679 vl = arg & PR_SVE_VL_LEN_MASK; 680 flags = arg & ~vl; 681 682 if (!system_supports_sve() || is_compat_task()) 683 return -EINVAL; 684 685 ret = sve_set_vector_length(current, vl, flags); 686 if (ret) 687 return ret; 688 689 return sve_prctl_status(flags); 690 } 691 692 /* PR_SVE_GET_VL */ 693 int sve_get_current_vl(void) 694 { 695 if (!system_supports_sve() || is_compat_task()) 696 return -EINVAL; 697 698 return sve_prctl_status(0); 699 } 700 701 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX)) 702 { 703 unsigned int vq, vl; 704 unsigned long zcr; 705 706 bitmap_zero(map, SVE_VQ_MAX); 707 708 zcr = ZCR_ELx_LEN_MASK; 709 zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr; 710 711 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) { 712 write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */ 713 vl = sve_get_vl(); 714 vq = sve_vq_from_vl(vl); /* skip intervening lengths */ 715 set_bit(__vq_to_bit(vq), map); 716 } 717 } 718 719 /* 720 * Initialise the set of known supported VQs for the boot CPU. 721 * This is called during kernel boot, before secondary CPUs are brought up. 722 */ 723 void __init sve_init_vq_map(void) 724 { 725 sve_probe_vqs(sve_vq_map); 726 bitmap_copy(sve_vq_partial_map, sve_vq_map, SVE_VQ_MAX); 727 } 728 729 /* 730 * If we haven't committed to the set of supported VQs yet, filter out 731 * those not supported by the current CPU. 732 * This function is called during the bring-up of early secondary CPUs only. 733 */ 734 void sve_update_vq_map(void) 735 { 736 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 737 738 sve_probe_vqs(tmp_map); 739 bitmap_and(sve_vq_map, sve_vq_map, tmp_map, SVE_VQ_MAX); 740 bitmap_or(sve_vq_partial_map, sve_vq_partial_map, tmp_map, SVE_VQ_MAX); 741 } 742 743 /* 744 * Check whether the current CPU supports all VQs in the committed set. 745 * This function is called during the bring-up of late secondary CPUs only. 746 */ 747 int sve_verify_vq_map(void) 748 { 749 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 750 unsigned long b; 751 752 sve_probe_vqs(tmp_map); 753 754 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 755 if (bitmap_intersects(tmp_map, sve_vq_map, SVE_VQ_MAX)) { 756 pr_warn("SVE: cpu%d: Required vector length(s) missing\n", 757 smp_processor_id()); 758 return -EINVAL; 759 } 760 761 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available()) 762 return 0; 763 764 /* 765 * For KVM, it is necessary to ensure that this CPU doesn't 766 * support any vector length that guests may have probed as 767 * unsupported. 768 */ 769 770 /* Recover the set of supported VQs: */ 771 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX); 772 /* Find VQs supported that are not globally supported: */ 773 bitmap_andnot(tmp_map, tmp_map, sve_vq_map, SVE_VQ_MAX); 774 775 /* Find the lowest such VQ, if any: */ 776 b = find_last_bit(tmp_map, SVE_VQ_MAX); 777 if (b >= SVE_VQ_MAX) 778 return 0; /* no mismatches */ 779 780 /* 781 * Mismatches above sve_max_virtualisable_vl are fine, since 782 * no guest is allowed to configure ZCR_EL2.LEN to exceed this: 783 */ 784 if (sve_vl_from_vq(__bit_to_vq(b)) <= sve_max_virtualisable_vl) { 785 pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n", 786 smp_processor_id()); 787 return -EINVAL; 788 } 789 790 return 0; 791 } 792 793 static void __init sve_efi_setup(void) 794 { 795 if (!IS_ENABLED(CONFIG_EFI)) 796 return; 797 798 /* 799 * alloc_percpu() warns and prints a backtrace if this goes wrong. 800 * This is evidence of a crippled system and we are returning void, 801 * so no attempt is made to handle this situation here. 802 */ 803 if (!sve_vl_valid(sve_max_vl)) 804 goto fail; 805 806 efi_sve_state = __alloc_percpu( 807 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES); 808 if (!efi_sve_state) 809 goto fail; 810 811 return; 812 813 fail: 814 panic("Cannot allocate percpu memory for EFI SVE save/restore"); 815 } 816 817 /* 818 * Enable SVE for EL1. 819 * Intended for use by the cpufeatures code during CPU boot. 820 */ 821 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p) 822 { 823 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1); 824 isb(); 825 } 826 827 /* 828 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE 829 * vector length. 830 * 831 * Use only if SVE is present. 832 * This function clobbers the SVE vector length. 833 */ 834 u64 read_zcr_features(void) 835 { 836 u64 zcr; 837 unsigned int vq_max; 838 839 /* 840 * Set the maximum possible VL, and write zeroes to all other 841 * bits to see if they stick. 842 */ 843 sve_kernel_enable(NULL); 844 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1); 845 846 zcr = read_sysreg_s(SYS_ZCR_EL1); 847 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */ 848 vq_max = sve_vq_from_vl(sve_get_vl()); 849 zcr |= vq_max - 1; /* set LEN field to maximum effective value */ 850 851 return zcr; 852 } 853 854 void __init sve_setup(void) 855 { 856 u64 zcr; 857 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX); 858 unsigned long b; 859 860 if (!system_supports_sve()) 861 return; 862 863 /* 864 * The SVE architecture mandates support for 128-bit vectors, 865 * so sve_vq_map must have at least SVE_VQ_MIN set. 866 * If something went wrong, at least try to patch it up: 867 */ 868 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map))) 869 set_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map); 870 871 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); 872 sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1); 873 874 /* 875 * Sanity-check that the max VL we determined through CPU features 876 * corresponds properly to sve_vq_map. If not, do our best: 877 */ 878 if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl))) 879 sve_max_vl = find_supported_vector_length(sve_max_vl); 880 881 /* 882 * For the default VL, pick the maximum supported value <= 64. 883 * VL == 64 is guaranteed not to grow the signal frame. 884 */ 885 set_sve_default_vl(find_supported_vector_length(64)); 886 887 bitmap_andnot(tmp_map, sve_vq_partial_map, sve_vq_map, 888 SVE_VQ_MAX); 889 890 b = find_last_bit(tmp_map, SVE_VQ_MAX); 891 if (b >= SVE_VQ_MAX) 892 /* No non-virtualisable VLs found */ 893 sve_max_virtualisable_vl = SVE_VQ_MAX; 894 else if (WARN_ON(b == SVE_VQ_MAX - 1)) 895 /* No virtualisable VLs? This is architecturally forbidden. */ 896 sve_max_virtualisable_vl = SVE_VQ_MIN; 897 else /* b + 1 < SVE_VQ_MAX */ 898 sve_max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1)); 899 900 if (sve_max_virtualisable_vl > sve_max_vl) 901 sve_max_virtualisable_vl = sve_max_vl; 902 903 pr_info("SVE: maximum available vector length %u bytes per vector\n", 904 sve_max_vl); 905 pr_info("SVE: default vector length %u bytes per vector\n", 906 get_sve_default_vl()); 907 908 /* KVM decides whether to support mismatched systems. Just warn here: */ 909 if (sve_max_virtualisable_vl < sve_max_vl) 910 pr_warn("SVE: unvirtualisable vector lengths present\n"); 911 912 sve_efi_setup(); 913 } 914 915 /* 916 * Called from the put_task_struct() path, which cannot get here 917 * unless dead_task is really dead and not schedulable. 918 */ 919 void fpsimd_release_task(struct task_struct *dead_task) 920 { 921 __sve_free(dead_task); 922 } 923 924 #endif /* CONFIG_ARM64_SVE */ 925 926 /* 927 * Trapped SVE access 928 * 929 * Storage is allocated for the full SVE state, the current FPSIMD 930 * register contents are migrated across, and the access trap is 931 * disabled. 932 * 933 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state() 934 * would have disabled the SVE access trap for userspace during 935 * ret_to_user, making an SVE access trap impossible in that case. 936 */ 937 void do_sve_acc(unsigned int esr, struct pt_regs *regs) 938 { 939 /* Even if we chose not to use SVE, the hardware could still trap: */ 940 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) { 941 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 942 return; 943 } 944 945 sve_alloc(current); 946 947 get_cpu_fpsimd_context(); 948 949 if (test_and_set_thread_flag(TIF_SVE)) 950 WARN_ON(1); /* SVE access shouldn't have trapped */ 951 952 /* 953 * Convert the FPSIMD state to SVE, zeroing all the state that 954 * is not shared with FPSIMD. If (as is likely) the current 955 * state is live in the registers then do this there and 956 * update our metadata for the current task including 957 * disabling the trap, otherwise update our in-memory copy. 958 */ 959 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { 960 sve_set_vq(sve_vq_from_vl(current->thread.sve_vl) - 1); 961 sve_flush_live(); 962 fpsimd_bind_task_to_cpu(); 963 } else { 964 fpsimd_to_sve(current); 965 } 966 967 put_cpu_fpsimd_context(); 968 } 969 970 /* 971 * Trapped FP/ASIMD access. 972 */ 973 void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs) 974 { 975 /* TODO: implement lazy context saving/restoring */ 976 WARN_ON(1); 977 } 978 979 /* 980 * Raise a SIGFPE for the current process. 981 */ 982 void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs) 983 { 984 unsigned int si_code = FPE_FLTUNK; 985 986 if (esr & ESR_ELx_FP_EXC_TFV) { 987 if (esr & FPEXC_IOF) 988 si_code = FPE_FLTINV; 989 else if (esr & FPEXC_DZF) 990 si_code = FPE_FLTDIV; 991 else if (esr & FPEXC_OFF) 992 si_code = FPE_FLTOVF; 993 else if (esr & FPEXC_UFF) 994 si_code = FPE_FLTUND; 995 else if (esr & FPEXC_IXF) 996 si_code = FPE_FLTRES; 997 } 998 999 send_sig_fault(SIGFPE, si_code, 1000 (void __user *)instruction_pointer(regs), 1001 current); 1002 } 1003 1004 void fpsimd_thread_switch(struct task_struct *next) 1005 { 1006 bool wrong_task, wrong_cpu; 1007 1008 if (!system_supports_fpsimd()) 1009 return; 1010 1011 __get_cpu_fpsimd_context(); 1012 1013 /* Save unsaved fpsimd state, if any: */ 1014 fpsimd_save(); 1015 1016 /* 1017 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's 1018 * state. For kernel threads, FPSIMD registers are never loaded 1019 * and wrong_task and wrong_cpu will always be true. 1020 */ 1021 wrong_task = __this_cpu_read(fpsimd_last_state.st) != 1022 &next->thread.uw.fpsimd_state; 1023 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id(); 1024 1025 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE, 1026 wrong_task || wrong_cpu); 1027 1028 __put_cpu_fpsimd_context(); 1029 } 1030 1031 void fpsimd_flush_thread(void) 1032 { 1033 int vl, supported_vl; 1034 1035 if (!system_supports_fpsimd()) 1036 return; 1037 1038 get_cpu_fpsimd_context(); 1039 1040 fpsimd_flush_task_state(current); 1041 memset(¤t->thread.uw.fpsimd_state, 0, 1042 sizeof(current->thread.uw.fpsimd_state)); 1043 1044 if (system_supports_sve()) { 1045 clear_thread_flag(TIF_SVE); 1046 sve_free(current); 1047 1048 /* 1049 * Reset the task vector length as required. 1050 * This is where we ensure that all user tasks have a valid 1051 * vector length configured: no kernel task can become a user 1052 * task without an exec and hence a call to this function. 1053 * By the time the first call to this function is made, all 1054 * early hardware probing is complete, so __sve_default_vl 1055 * should be valid. 1056 * If a bug causes this to go wrong, we make some noise and 1057 * try to fudge thread.sve_vl to a safe value here. 1058 */ 1059 vl = current->thread.sve_vl_onexec ? 1060 current->thread.sve_vl_onexec : get_sve_default_vl(); 1061 1062 if (WARN_ON(!sve_vl_valid(vl))) 1063 vl = SVE_VL_MIN; 1064 1065 supported_vl = find_supported_vector_length(vl); 1066 if (WARN_ON(supported_vl != vl)) 1067 vl = supported_vl; 1068 1069 current->thread.sve_vl = vl; 1070 1071 /* 1072 * If the task is not set to inherit, ensure that the vector 1073 * length will be reset by a subsequent exec: 1074 */ 1075 if (!test_thread_flag(TIF_SVE_VL_INHERIT)) 1076 current->thread.sve_vl_onexec = 0; 1077 } 1078 1079 put_cpu_fpsimd_context(); 1080 } 1081 1082 /* 1083 * Save the userland FPSIMD state of 'current' to memory, but only if the state 1084 * currently held in the registers does in fact belong to 'current' 1085 */ 1086 void fpsimd_preserve_current_state(void) 1087 { 1088 if (!system_supports_fpsimd()) 1089 return; 1090 1091 get_cpu_fpsimd_context(); 1092 fpsimd_save(); 1093 put_cpu_fpsimd_context(); 1094 } 1095 1096 /* 1097 * Like fpsimd_preserve_current_state(), but ensure that 1098 * current->thread.uw.fpsimd_state is updated so that it can be copied to 1099 * the signal frame. 1100 */ 1101 void fpsimd_signal_preserve_current_state(void) 1102 { 1103 fpsimd_preserve_current_state(); 1104 if (test_thread_flag(TIF_SVE)) 1105 sve_to_fpsimd(current); 1106 } 1107 1108 /* 1109 * Associate current's FPSIMD context with this cpu 1110 * The caller must have ownership of the cpu FPSIMD context before calling 1111 * this function. 1112 */ 1113 void fpsimd_bind_task_to_cpu(void) 1114 { 1115 struct fpsimd_last_state_struct *last = 1116 this_cpu_ptr(&fpsimd_last_state); 1117 1118 WARN_ON(!system_supports_fpsimd()); 1119 last->st = ¤t->thread.uw.fpsimd_state; 1120 last->sve_state = current->thread.sve_state; 1121 last->sve_vl = current->thread.sve_vl; 1122 current->thread.fpsimd_cpu = smp_processor_id(); 1123 1124 if (system_supports_sve()) { 1125 /* Toggle SVE trapping for userspace if needed */ 1126 if (test_thread_flag(TIF_SVE)) 1127 sve_user_enable(); 1128 else 1129 sve_user_disable(); 1130 1131 /* Serialised by exception return to user */ 1132 } 1133 } 1134 1135 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state, 1136 unsigned int sve_vl) 1137 { 1138 struct fpsimd_last_state_struct *last = 1139 this_cpu_ptr(&fpsimd_last_state); 1140 1141 WARN_ON(!system_supports_fpsimd()); 1142 WARN_ON(!in_softirq() && !irqs_disabled()); 1143 1144 last->st = st; 1145 last->sve_state = sve_state; 1146 last->sve_vl = sve_vl; 1147 } 1148 1149 /* 1150 * Load the userland FPSIMD state of 'current' from memory, but only if the 1151 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD 1152 * state of 'current' 1153 */ 1154 void fpsimd_restore_current_state(void) 1155 { 1156 /* 1157 * For the tasks that were created before we detected the absence of 1158 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(), 1159 * e.g, init. This could be then inherited by the children processes. 1160 * If we later detect that the system doesn't support FP/SIMD, 1161 * we must clear the flag for all the tasks to indicate that the 1162 * FPSTATE is clean (as we can't have one) to avoid looping for ever in 1163 * do_notify_resume(). 1164 */ 1165 if (!system_supports_fpsimd()) { 1166 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1167 return; 1168 } 1169 1170 get_cpu_fpsimd_context(); 1171 1172 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) { 1173 task_fpsimd_load(); 1174 fpsimd_bind_task_to_cpu(); 1175 } 1176 1177 put_cpu_fpsimd_context(); 1178 } 1179 1180 /* 1181 * Load an updated userland FPSIMD state for 'current' from memory and set the 1182 * flag that indicates that the FPSIMD register contents are the most recent 1183 * FPSIMD state of 'current' 1184 */ 1185 void fpsimd_update_current_state(struct user_fpsimd_state const *state) 1186 { 1187 if (WARN_ON(!system_supports_fpsimd())) 1188 return; 1189 1190 get_cpu_fpsimd_context(); 1191 1192 current->thread.uw.fpsimd_state = *state; 1193 if (test_thread_flag(TIF_SVE)) 1194 fpsimd_to_sve(current); 1195 1196 task_fpsimd_load(); 1197 fpsimd_bind_task_to_cpu(); 1198 1199 clear_thread_flag(TIF_FOREIGN_FPSTATE); 1200 1201 put_cpu_fpsimd_context(); 1202 } 1203 1204 /* 1205 * Invalidate live CPU copies of task t's FPSIMD state 1206 * 1207 * This function may be called with preemption enabled. The barrier() 1208 * ensures that the assignment to fpsimd_cpu is visible to any 1209 * preemption/softirq that could race with set_tsk_thread_flag(), so 1210 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared. 1211 * 1212 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any 1213 * subsequent code. 1214 */ 1215 void fpsimd_flush_task_state(struct task_struct *t) 1216 { 1217 t->thread.fpsimd_cpu = NR_CPUS; 1218 /* 1219 * If we don't support fpsimd, bail out after we have 1220 * reset the fpsimd_cpu for this task and clear the 1221 * FPSTATE. 1222 */ 1223 if (!system_supports_fpsimd()) 1224 return; 1225 barrier(); 1226 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE); 1227 1228 barrier(); 1229 } 1230 1231 /* 1232 * Invalidate any task's FPSIMD state that is present on this cpu. 1233 * The FPSIMD context should be acquired with get_cpu_fpsimd_context() 1234 * before calling this function. 1235 */ 1236 static void fpsimd_flush_cpu_state(void) 1237 { 1238 WARN_ON(!system_supports_fpsimd()); 1239 __this_cpu_write(fpsimd_last_state.st, NULL); 1240 set_thread_flag(TIF_FOREIGN_FPSTATE); 1241 } 1242 1243 /* 1244 * Save the FPSIMD state to memory and invalidate cpu view. 1245 * This function must be called with preemption disabled. 1246 */ 1247 void fpsimd_save_and_flush_cpu_state(void) 1248 { 1249 if (!system_supports_fpsimd()) 1250 return; 1251 WARN_ON(preemptible()); 1252 __get_cpu_fpsimd_context(); 1253 fpsimd_save(); 1254 fpsimd_flush_cpu_state(); 1255 __put_cpu_fpsimd_context(); 1256 } 1257 1258 #ifdef CONFIG_KERNEL_MODE_NEON 1259 1260 /* 1261 * Kernel-side NEON support functions 1262 */ 1263 1264 /* 1265 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling 1266 * context 1267 * 1268 * Must not be called unless may_use_simd() returns true. 1269 * Task context in the FPSIMD registers is saved back to memory as necessary. 1270 * 1271 * A matching call to kernel_neon_end() must be made before returning from the 1272 * calling context. 1273 * 1274 * The caller may freely use the FPSIMD registers until kernel_neon_end() is 1275 * called. 1276 */ 1277 void kernel_neon_begin(void) 1278 { 1279 if (WARN_ON(!system_supports_fpsimd())) 1280 return; 1281 1282 BUG_ON(!may_use_simd()); 1283 1284 get_cpu_fpsimd_context(); 1285 1286 /* Save unsaved fpsimd state, if any: */ 1287 fpsimd_save(); 1288 1289 /* Invalidate any task state remaining in the fpsimd regs: */ 1290 fpsimd_flush_cpu_state(); 1291 } 1292 EXPORT_SYMBOL(kernel_neon_begin); 1293 1294 /* 1295 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task 1296 * 1297 * Must be called from a context in which kernel_neon_begin() was previously 1298 * called, with no call to kernel_neon_end() in the meantime. 1299 * 1300 * The caller must not use the FPSIMD registers after this function is called, 1301 * unless kernel_neon_begin() is called again in the meantime. 1302 */ 1303 void kernel_neon_end(void) 1304 { 1305 if (!system_supports_fpsimd()) 1306 return; 1307 1308 put_cpu_fpsimd_context(); 1309 } 1310 EXPORT_SYMBOL(kernel_neon_end); 1311 1312 #ifdef CONFIG_EFI 1313 1314 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state); 1315 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used); 1316 static DEFINE_PER_CPU(bool, efi_sve_state_used); 1317 1318 /* 1319 * EFI runtime services support functions 1320 * 1321 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call. 1322 * This means that for EFI (and only for EFI), we have to assume that FPSIMD 1323 * is always used rather than being an optional accelerator. 1324 * 1325 * These functions provide the necessary support for ensuring FPSIMD 1326 * save/restore in the contexts from which EFI is used. 1327 * 1328 * Do not use them for any other purpose -- if tempted to do so, you are 1329 * either doing something wrong or you need to propose some refactoring. 1330 */ 1331 1332 /* 1333 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call 1334 */ 1335 void __efi_fpsimd_begin(void) 1336 { 1337 if (!system_supports_fpsimd()) 1338 return; 1339 1340 WARN_ON(preemptible()); 1341 1342 if (may_use_simd()) { 1343 kernel_neon_begin(); 1344 } else { 1345 /* 1346 * If !efi_sve_state, SVE can't be in use yet and doesn't need 1347 * preserving: 1348 */ 1349 if (system_supports_sve() && likely(efi_sve_state)) { 1350 char *sve_state = this_cpu_ptr(efi_sve_state); 1351 1352 __this_cpu_write(efi_sve_state_used, true); 1353 1354 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl), 1355 &this_cpu_ptr(&efi_fpsimd_state)->fpsr); 1356 } else { 1357 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state)); 1358 } 1359 1360 __this_cpu_write(efi_fpsimd_state_used, true); 1361 } 1362 } 1363 1364 /* 1365 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call 1366 */ 1367 void __efi_fpsimd_end(void) 1368 { 1369 if (!system_supports_fpsimd()) 1370 return; 1371 1372 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) { 1373 kernel_neon_end(); 1374 } else { 1375 if (system_supports_sve() && 1376 likely(__this_cpu_read(efi_sve_state_used))) { 1377 char const *sve_state = this_cpu_ptr(efi_sve_state); 1378 1379 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl), 1380 &this_cpu_ptr(&efi_fpsimd_state)->fpsr, 1381 sve_vq_from_vl(sve_get_vl()) - 1); 1382 1383 __this_cpu_write(efi_sve_state_used, false); 1384 } else { 1385 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state)); 1386 } 1387 } 1388 } 1389 1390 #endif /* CONFIG_EFI */ 1391 1392 #endif /* CONFIG_KERNEL_MODE_NEON */ 1393 1394 #ifdef CONFIG_CPU_PM 1395 static int fpsimd_cpu_pm_notifier(struct notifier_block *self, 1396 unsigned long cmd, void *v) 1397 { 1398 switch (cmd) { 1399 case CPU_PM_ENTER: 1400 fpsimd_save_and_flush_cpu_state(); 1401 break; 1402 case CPU_PM_EXIT: 1403 break; 1404 case CPU_PM_ENTER_FAILED: 1405 default: 1406 return NOTIFY_DONE; 1407 } 1408 return NOTIFY_OK; 1409 } 1410 1411 static struct notifier_block fpsimd_cpu_pm_notifier_block = { 1412 .notifier_call = fpsimd_cpu_pm_notifier, 1413 }; 1414 1415 static void __init fpsimd_pm_init(void) 1416 { 1417 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block); 1418 } 1419 1420 #else 1421 static inline void fpsimd_pm_init(void) { } 1422 #endif /* CONFIG_CPU_PM */ 1423 1424 #ifdef CONFIG_HOTPLUG_CPU 1425 static int fpsimd_cpu_dead(unsigned int cpu) 1426 { 1427 per_cpu(fpsimd_last_state.st, cpu) = NULL; 1428 return 0; 1429 } 1430 1431 static inline void fpsimd_hotplug_init(void) 1432 { 1433 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead", 1434 NULL, fpsimd_cpu_dead); 1435 } 1436 1437 #else 1438 static inline void fpsimd_hotplug_init(void) { } 1439 #endif 1440 1441 /* 1442 * FP/SIMD support code initialisation. 1443 */ 1444 static int __init fpsimd_init(void) 1445 { 1446 if (cpu_have_named_feature(FP)) { 1447 fpsimd_pm_init(); 1448 fpsimd_hotplug_init(); 1449 } else { 1450 pr_notice("Floating-point is not implemented\n"); 1451 } 1452 1453 if (!cpu_have_named_feature(ASIMD)) 1454 pr_notice("Advanced SIMD is not implemented\n"); 1455 1456 return sve_sysctl_init(); 1457 } 1458 core_initcall(fpsimd_init); 1459