1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FP/SIMD context switching and fault handling
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47
48 #define FPEXC_IOF (1 << 0)
49 #define FPEXC_DZF (1 << 1)
50 #define FPEXC_OFF (1 << 2)
51 #define FPEXC_UFF (1 << 3)
52 #define FPEXC_IXF (1 << 4)
53 #define FPEXC_IDF (1 << 7)
54
55 /*
56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57 *
58 * In order to reduce the number of times the FPSIMD state is needlessly saved
59 * and restored, we need to keep track of two things:
60 * (a) for each task, we need to remember which CPU was the last one to have
61 * the task's FPSIMD state loaded into its FPSIMD registers;
62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63 * been loaded into its FPSIMD registers most recently, or whether it has
64 * been used to perform kernel mode NEON in the meantime.
65 *
66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69 * address of the userland FPSIMD state of the task that was loaded onto the CPU
70 * the most recently, or NULL if kernel mode NEON has been performed after that.
71 *
72 * With this in place, we no longer have to restore the next FPSIMD state right
73 * when switching between tasks. Instead, we can defer this check to userland
74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76 * can omit the FPSIMD restore.
77 *
78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79 * indicate whether or not the userland FPSIMD state of the current task is
80 * present in the registers. The flag is set unless the FPSIMD registers of this
81 * CPU currently contain the most recent userland FPSIMD state of the current
82 * task. If the task is behaving as a VMM, then this is will be managed by
83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86 * flag the register state as invalid.
87 *
88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
89 * save the task's FPSIMD context back to task_struct from softirq context.
90 * To prevent this from racing with the manipulation of the task's FPSIMD state
91 * from task context and thereby corrupting the state, it is necessary to
92 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
93 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
94 * run but prevent them to use FPSIMD.
95 *
96 * For a certain task, the sequence may look something like this:
97 * - the task gets scheduled in; if both the task's fpsimd_cpu field
98 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100 * cleared, otherwise it is set;
101 *
102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103 * userland FPSIMD state is copied from memory to the registers, the task's
104 * fpsimd_cpu field is set to the id of the current CPU, the current
105 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106 * TIF_FOREIGN_FPSTATE flag is cleared;
107 *
108 * - the task executes an ordinary syscall; upon return to userland, the
109 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110 * restored;
111 *
112 * - the task executes a syscall which executes some NEON instructions; this is
113 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114 * register contents to memory, clears the fpsimd_last_state per-cpu variable
115 * and sets the TIF_FOREIGN_FPSTATE flag;
116 *
117 * - the task gets preempted after kernel_neon_end() is called; as we have not
118 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
120 */
121
122 static DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
123
124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
125 #ifdef CONFIG_ARM64_SVE
126 [ARM64_VEC_SVE] = {
127 .type = ARM64_VEC_SVE,
128 .name = "SVE",
129 .min_vl = SVE_VL_MIN,
130 .max_vl = SVE_VL_MIN,
131 .max_virtualisable_vl = SVE_VL_MIN,
132 },
133 #endif
134 #ifdef CONFIG_ARM64_SME
135 [ARM64_VEC_SME] = {
136 .type = ARM64_VEC_SME,
137 .name = "SME",
138 },
139 #endif
140 };
141
vec_vl_inherit_flag(enum vec_type type)142 static unsigned int vec_vl_inherit_flag(enum vec_type type)
143 {
144 switch (type) {
145 case ARM64_VEC_SVE:
146 return TIF_SVE_VL_INHERIT;
147 case ARM64_VEC_SME:
148 return TIF_SME_VL_INHERIT;
149 default:
150 WARN_ON_ONCE(1);
151 return 0;
152 }
153 }
154
155 struct vl_config {
156 int __default_vl; /* Default VL for tasks */
157 };
158
159 static struct vl_config vl_config[ARM64_VEC_MAX];
160
get_default_vl(enum vec_type type)161 static inline int get_default_vl(enum vec_type type)
162 {
163 return READ_ONCE(vl_config[type].__default_vl);
164 }
165
166 #ifdef CONFIG_ARM64_SVE
167
get_sve_default_vl(void)168 static inline int get_sve_default_vl(void)
169 {
170 return get_default_vl(ARM64_VEC_SVE);
171 }
172
set_default_vl(enum vec_type type,int val)173 static inline void set_default_vl(enum vec_type type, int val)
174 {
175 WRITE_ONCE(vl_config[type].__default_vl, val);
176 }
177
set_sve_default_vl(int val)178 static inline void set_sve_default_vl(int val)
179 {
180 set_default_vl(ARM64_VEC_SVE, val);
181 }
182
183 static void __percpu *efi_sve_state;
184
185 #else /* ! CONFIG_ARM64_SVE */
186
187 /* Dummy declaration for code that will be optimised out: */
188 extern void __percpu *efi_sve_state;
189
190 #endif /* ! CONFIG_ARM64_SVE */
191
192 #ifdef CONFIG_ARM64_SME
193
get_sme_default_vl(void)194 static int get_sme_default_vl(void)
195 {
196 return get_default_vl(ARM64_VEC_SME);
197 }
198
set_sme_default_vl(int val)199 static void set_sme_default_vl(int val)
200 {
201 set_default_vl(ARM64_VEC_SME, val);
202 }
203
204 static void sme_free(struct task_struct *);
205
206 #else
207
sme_free(struct task_struct * t)208 static inline void sme_free(struct task_struct *t) { }
209
210 #endif
211
212 DEFINE_PER_CPU(bool, fpsimd_context_busy);
213 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
214
215 static void fpsimd_bind_task_to_cpu(void);
216
__get_cpu_fpsimd_context(void)217 static void __get_cpu_fpsimd_context(void)
218 {
219 bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
220
221 WARN_ON(busy);
222 }
223
224 /*
225 * Claim ownership of the CPU FPSIMD context for use by the calling context.
226 *
227 * The caller may freely manipulate the FPSIMD context metadata until
228 * put_cpu_fpsimd_context() is called.
229 *
230 * The double-underscore version must only be called if you know the task
231 * can't be preempted.
232 *
233 * On RT kernels local_bh_disable() is not sufficient because it only
234 * serializes soft interrupt related sections via a local lock, but stays
235 * preemptible. Disabling preemption is the right choice here as bottom
236 * half processing is always in thread context on RT kernels so it
237 * implicitly prevents bottom half processing as well.
238 */
get_cpu_fpsimd_context(void)239 static void get_cpu_fpsimd_context(void)
240 {
241 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 local_bh_disable();
243 else
244 preempt_disable();
245 __get_cpu_fpsimd_context();
246 }
247
__put_cpu_fpsimd_context(void)248 static void __put_cpu_fpsimd_context(void)
249 {
250 bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
251
252 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
253 }
254
255 /*
256 * Release the CPU FPSIMD context.
257 *
258 * Must be called from a context in which get_cpu_fpsimd_context() was
259 * previously called, with no call to put_cpu_fpsimd_context() in the
260 * meantime.
261 */
put_cpu_fpsimd_context(void)262 static void put_cpu_fpsimd_context(void)
263 {
264 __put_cpu_fpsimd_context();
265 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
266 local_bh_enable();
267 else
268 preempt_enable();
269 }
270
have_cpu_fpsimd_context(void)271 static bool have_cpu_fpsimd_context(void)
272 {
273 return !preemptible() && __this_cpu_read(fpsimd_context_busy);
274 }
275
task_get_vl(const struct task_struct * task,enum vec_type type)276 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
277 {
278 return task->thread.vl[type];
279 }
280
task_set_vl(struct task_struct * task,enum vec_type type,unsigned long vl)281 void task_set_vl(struct task_struct *task, enum vec_type type,
282 unsigned long vl)
283 {
284 task->thread.vl[type] = vl;
285 }
286
task_get_vl_onexec(const struct task_struct * task,enum vec_type type)287 unsigned int task_get_vl_onexec(const struct task_struct *task,
288 enum vec_type type)
289 {
290 return task->thread.vl_onexec[type];
291 }
292
task_set_vl_onexec(struct task_struct * task,enum vec_type type,unsigned long vl)293 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
294 unsigned long vl)
295 {
296 task->thread.vl_onexec[type] = vl;
297 }
298
299 /*
300 * TIF_SME controls whether a task can use SME without trapping while
301 * in userspace, when TIF_SME is set then we must have storage
302 * allocated in sve_state and sme_state to store the contents of both ZA
303 * and the SVE registers for both streaming and non-streaming modes.
304 *
305 * If both SVCR.ZA and SVCR.SM are disabled then at any point we
306 * may disable TIF_SME and reenable traps.
307 */
308
309
310 /*
311 * TIF_SVE controls whether a task can use SVE without trapping while
312 * in userspace, and also (together with TIF_SME) the way a task's
313 * FPSIMD/SVE state is stored in thread_struct.
314 *
315 * The kernel uses this flag to track whether a user task is actively
316 * using SVE, and therefore whether full SVE register state needs to
317 * be tracked. If not, the cheaper FPSIMD context handling code can
318 * be used instead of the more costly SVE equivalents.
319 *
320 * * TIF_SVE or SVCR.SM set:
321 *
322 * The task can execute SVE instructions while in userspace without
323 * trapping to the kernel.
324 *
325 * During any syscall, the kernel may optionally clear TIF_SVE and
326 * discard the vector state except for the FPSIMD subset.
327 *
328 * * TIF_SVE clear:
329 *
330 * An attempt by the user task to execute an SVE instruction causes
331 * do_sve_acc() to be called, which does some preparation and then
332 * sets TIF_SVE.
333 *
334 * During any syscall, the kernel may optionally clear TIF_SVE and
335 * discard the vector state except for the FPSIMD subset.
336 *
337 * The data will be stored in one of two formats:
338 *
339 * * FPSIMD only - FP_STATE_FPSIMD:
340 *
341 * When the FPSIMD only state stored task->thread.fp_type is set to
342 * FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
343 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
344 * logically zero but not stored anywhere; P0-P15 and FFR are not
345 * stored and have unspecified values from userspace's point of
346 * view. For hygiene purposes, the kernel zeroes them on next use,
347 * but userspace is discouraged from relying on this.
348 *
349 * task->thread.sve_state does not need to be non-NULL, valid or any
350 * particular size: it must not be dereferenced and any data stored
351 * there should be considered stale and not referenced.
352 *
353 * * SVE state - FP_STATE_SVE:
354 *
355 * When the full SVE state is stored task->thread.fp_type is set to
356 * FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
357 * corresponding Zn), P0-P15 and FFR are encoded in in
358 * task->thread.sve_state, formatted appropriately for vector
359 * length task->thread.sve_vl or, if SVCR.SM is set,
360 * task->thread.sme_vl. The storage for the vector registers in
361 * task->thread.uw.fpsimd_state should be ignored.
362 *
363 * task->thread.sve_state must point to a valid buffer at least
364 * sve_state_size(task) bytes in size. The data stored in
365 * task->thread.uw.fpsimd_state.vregs should be considered stale
366 * and not referenced.
367 *
368 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
369 * irrespective of whether TIF_SVE is clear or set, since these are
370 * not vector length dependent.
371 */
372
373 /*
374 * Update current's FPSIMD/SVE registers from thread_struct.
375 *
376 * This function should be called only when the FPSIMD/SVE state in
377 * thread_struct is known to be up to date, when preparing to enter
378 * userspace.
379 */
task_fpsimd_load(void)380 static void task_fpsimd_load(void)
381 {
382 bool restore_sve_regs = false;
383 bool restore_ffr;
384
385 WARN_ON(!system_supports_fpsimd());
386 WARN_ON(!have_cpu_fpsimd_context());
387
388 if (system_supports_sve() || system_supports_sme()) {
389 switch (current->thread.fp_type) {
390 case FP_STATE_FPSIMD:
391 /* Stop tracking SVE for this task until next use. */
392 if (test_and_clear_thread_flag(TIF_SVE))
393 sve_user_disable();
394 break;
395 case FP_STATE_SVE:
396 if (!thread_sm_enabled(¤t->thread) &&
397 !WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE)))
398 sve_user_enable();
399
400 if (test_thread_flag(TIF_SVE))
401 sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
402
403 restore_sve_regs = true;
404 restore_ffr = true;
405 break;
406 default:
407 /*
408 * This indicates either a bug in
409 * fpsimd_save() or memory corruption, we
410 * should always record an explicit format
411 * when we save. We always at least have the
412 * memory allocated for FPSMID registers so
413 * try that and hope for the best.
414 */
415 WARN_ON_ONCE(1);
416 clear_thread_flag(TIF_SVE);
417 break;
418 }
419 }
420
421 /* Restore SME, override SVE register configuration if needed */
422 if (system_supports_sme()) {
423 unsigned long sme_vl = task_get_sme_vl(current);
424
425 /* Ensure VL is set up for restoring data */
426 if (test_thread_flag(TIF_SME))
427 sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
428
429 write_sysreg_s(current->thread.svcr, SYS_SVCR);
430
431 if (thread_za_enabled(¤t->thread))
432 sme_load_state(current->thread.sme_state,
433 system_supports_sme2());
434
435 if (thread_sm_enabled(¤t->thread))
436 restore_ffr = system_supports_fa64();
437 }
438
439 if (restore_sve_regs) {
440 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
441 sve_load_state(sve_pffr(¤t->thread),
442 ¤t->thread.uw.fpsimd_state.fpsr,
443 restore_ffr);
444 } else {
445 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
446 fpsimd_load_state(¤t->thread.uw.fpsimd_state);
447 }
448 }
449
450 /*
451 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
452 * date with respect to the CPU registers. Note carefully that the
453 * current context is the context last bound to the CPU stored in
454 * last, if KVM is involved this may be the guest VM context rather
455 * than the host thread for the VM pointed to by current. This means
456 * that we must always reference the state storage via last rather
457 * than via current, if we are saving KVM state then it will have
458 * ensured that the type of registers to save is set in last->to_save.
459 */
fpsimd_save(void)460 static void fpsimd_save(void)
461 {
462 struct cpu_fp_state const *last =
463 this_cpu_ptr(&fpsimd_last_state);
464 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
465 bool save_sve_regs = false;
466 bool save_ffr;
467 unsigned int vl;
468
469 WARN_ON(!system_supports_fpsimd());
470 WARN_ON(!have_cpu_fpsimd_context());
471
472 if (test_thread_flag(TIF_FOREIGN_FPSTATE))
473 return;
474
475 /*
476 * If a task is in a syscall the ABI allows us to only
477 * preserve the state shared with FPSIMD so don't bother
478 * saving the full SVE state in that case.
479 */
480 if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE) &&
481 !in_syscall(current_pt_regs())) ||
482 last->to_save == FP_STATE_SVE) {
483 save_sve_regs = true;
484 save_ffr = true;
485 vl = last->sve_vl;
486 }
487
488 if (system_supports_sme()) {
489 u64 *svcr = last->svcr;
490
491 *svcr = read_sysreg_s(SYS_SVCR);
492
493 if (*svcr & SVCR_ZA_MASK)
494 sme_save_state(last->sme_state,
495 system_supports_sme2());
496
497 /* If we are in streaming mode override regular SVE. */
498 if (*svcr & SVCR_SM_MASK) {
499 save_sve_regs = true;
500 save_ffr = system_supports_fa64();
501 vl = last->sme_vl;
502 }
503 }
504
505 if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
506 /* Get the configured VL from RDVL, will account for SM */
507 if (WARN_ON(sve_get_vl() != vl)) {
508 /*
509 * Can't save the user regs, so current would
510 * re-enter user with corrupt state.
511 * There's no way to recover, so kill it:
512 */
513 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
514 return;
515 }
516
517 sve_save_state((char *)last->sve_state +
518 sve_ffr_offset(vl),
519 &last->st->fpsr, save_ffr);
520 *last->fp_type = FP_STATE_SVE;
521 } else {
522 fpsimd_save_state(last->st);
523 *last->fp_type = FP_STATE_FPSIMD;
524 }
525 }
526
527 /*
528 * All vector length selection from userspace comes through here.
529 * We're on a slow path, so some sanity-checks are included.
530 * If things go wrong there's a bug somewhere, but try to fall back to a
531 * safe choice.
532 */
find_supported_vector_length(enum vec_type type,unsigned int vl)533 static unsigned int find_supported_vector_length(enum vec_type type,
534 unsigned int vl)
535 {
536 struct vl_info *info = &vl_info[type];
537 int bit;
538 int max_vl = info->max_vl;
539
540 if (WARN_ON(!sve_vl_valid(vl)))
541 vl = info->min_vl;
542
543 if (WARN_ON(!sve_vl_valid(max_vl)))
544 max_vl = info->min_vl;
545
546 if (vl > max_vl)
547 vl = max_vl;
548 if (vl < info->min_vl)
549 vl = info->min_vl;
550
551 bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
552 __vq_to_bit(sve_vq_from_vl(vl)));
553 return sve_vl_from_vq(__bit_to_vq(bit));
554 }
555
556 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
557
vec_proc_do_default_vl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)558 static int vec_proc_do_default_vl(struct ctl_table *table, int write,
559 void *buffer, size_t *lenp, loff_t *ppos)
560 {
561 struct vl_info *info = table->extra1;
562 enum vec_type type = info->type;
563 int ret;
564 int vl = get_default_vl(type);
565 struct ctl_table tmp_table = {
566 .data = &vl,
567 .maxlen = sizeof(vl),
568 };
569
570 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
571 if (ret || !write)
572 return ret;
573
574 /* Writing -1 has the special meaning "set to max": */
575 if (vl == -1)
576 vl = info->max_vl;
577
578 if (!sve_vl_valid(vl))
579 return -EINVAL;
580
581 set_default_vl(type, find_supported_vector_length(type, vl));
582 return 0;
583 }
584
585 static struct ctl_table sve_default_vl_table[] = {
586 {
587 .procname = "sve_default_vector_length",
588 .mode = 0644,
589 .proc_handler = vec_proc_do_default_vl,
590 .extra1 = &vl_info[ARM64_VEC_SVE],
591 },
592 { }
593 };
594
sve_sysctl_init(void)595 static int __init sve_sysctl_init(void)
596 {
597 if (system_supports_sve())
598 if (!register_sysctl("abi", sve_default_vl_table))
599 return -EINVAL;
600
601 return 0;
602 }
603
604 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
sve_sysctl_init(void)605 static int __init sve_sysctl_init(void) { return 0; }
606 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
607
608 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
609 static struct ctl_table sme_default_vl_table[] = {
610 {
611 .procname = "sme_default_vector_length",
612 .mode = 0644,
613 .proc_handler = vec_proc_do_default_vl,
614 .extra1 = &vl_info[ARM64_VEC_SME],
615 },
616 { }
617 };
618
sme_sysctl_init(void)619 static int __init sme_sysctl_init(void)
620 {
621 if (system_supports_sme())
622 if (!register_sysctl("abi", sme_default_vl_table))
623 return -EINVAL;
624
625 return 0;
626 }
627
628 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
sme_sysctl_init(void)629 static int __init sme_sysctl_init(void) { return 0; }
630 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
631
632 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
633 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
634
635 #ifdef CONFIG_CPU_BIG_ENDIAN
arm64_cpu_to_le128(__uint128_t x)636 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
637 {
638 u64 a = swab64(x);
639 u64 b = swab64(x >> 64);
640
641 return ((__uint128_t)a << 64) | b;
642 }
643 #else
arm64_cpu_to_le128(__uint128_t x)644 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
645 {
646 return x;
647 }
648 #endif
649
650 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
651
__fpsimd_to_sve(void * sst,struct user_fpsimd_state const * fst,unsigned int vq)652 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
653 unsigned int vq)
654 {
655 unsigned int i;
656 __uint128_t *p;
657
658 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
659 p = (__uint128_t *)ZREG(sst, vq, i);
660 *p = arm64_cpu_to_le128(fst->vregs[i]);
661 }
662 }
663
664 /*
665 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
666 * task->thread.sve_state.
667 *
668 * Task can be a non-runnable task, or current. In the latter case,
669 * the caller must have ownership of the cpu FPSIMD context before calling
670 * this function.
671 * task->thread.sve_state must point to at least sve_state_size(task)
672 * bytes of allocated kernel memory.
673 * task->thread.uw.fpsimd_state must be up to date before calling this
674 * function.
675 */
fpsimd_to_sve(struct task_struct * task)676 static void fpsimd_to_sve(struct task_struct *task)
677 {
678 unsigned int vq;
679 void *sst = task->thread.sve_state;
680 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
681
682 if (!system_supports_sve() && !system_supports_sme())
683 return;
684
685 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
686 __fpsimd_to_sve(sst, fst, vq);
687 }
688
689 /*
690 * Transfer the SVE state in task->thread.sve_state to
691 * task->thread.uw.fpsimd_state.
692 *
693 * Task can be a non-runnable task, or current. In the latter case,
694 * the caller must have ownership of the cpu FPSIMD context before calling
695 * this function.
696 * task->thread.sve_state must point to at least sve_state_size(task)
697 * bytes of allocated kernel memory.
698 * task->thread.sve_state must be up to date before calling this function.
699 */
sve_to_fpsimd(struct task_struct * task)700 static void sve_to_fpsimd(struct task_struct *task)
701 {
702 unsigned int vq, vl;
703 void const *sst = task->thread.sve_state;
704 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
705 unsigned int i;
706 __uint128_t const *p;
707
708 if (!system_supports_sve() && !system_supports_sme())
709 return;
710
711 vl = thread_get_cur_vl(&task->thread);
712 vq = sve_vq_from_vl(vl);
713 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
714 p = (__uint128_t const *)ZREG(sst, vq, i);
715 fst->vregs[i] = arm64_le128_to_cpu(*p);
716 }
717 }
718
719 #ifdef CONFIG_ARM64_SVE
720 /*
721 * Call __sve_free() directly only if you know task can't be scheduled
722 * or preempted.
723 */
__sve_free(struct task_struct * task)724 static void __sve_free(struct task_struct *task)
725 {
726 kfree(task->thread.sve_state);
727 task->thread.sve_state = NULL;
728 }
729
sve_free(struct task_struct * task)730 static void sve_free(struct task_struct *task)
731 {
732 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
733
734 __sve_free(task);
735 }
736
737 /*
738 * Return how many bytes of memory are required to store the full SVE
739 * state for task, given task's currently configured vector length.
740 */
sve_state_size(struct task_struct const * task)741 size_t sve_state_size(struct task_struct const *task)
742 {
743 unsigned int vl = 0;
744
745 if (system_supports_sve())
746 vl = task_get_sve_vl(task);
747 if (system_supports_sme())
748 vl = max(vl, task_get_sme_vl(task));
749
750 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
751 }
752
753 /*
754 * Ensure that task->thread.sve_state is allocated and sufficiently large.
755 *
756 * This function should be used only in preparation for replacing
757 * task->thread.sve_state with new data. The memory is always zeroed
758 * here to prevent stale data from showing through: this is done in
759 * the interest of testability and predictability: except in the
760 * do_sve_acc() case, there is no ABI requirement to hide stale data
761 * written previously be task.
762 */
sve_alloc(struct task_struct * task,bool flush)763 void sve_alloc(struct task_struct *task, bool flush)
764 {
765 if (task->thread.sve_state) {
766 if (flush)
767 memset(task->thread.sve_state, 0,
768 sve_state_size(task));
769 return;
770 }
771
772 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
773 task->thread.sve_state =
774 kzalloc(sve_state_size(task), GFP_KERNEL);
775 }
776
777
778 /*
779 * Force the FPSIMD state shared with SVE to be updated in the SVE state
780 * even if the SVE state is the current active state.
781 *
782 * This should only be called by ptrace. task must be non-runnable.
783 * task->thread.sve_state must point to at least sve_state_size(task)
784 * bytes of allocated kernel memory.
785 */
fpsimd_force_sync_to_sve(struct task_struct * task)786 void fpsimd_force_sync_to_sve(struct task_struct *task)
787 {
788 fpsimd_to_sve(task);
789 }
790
791 /*
792 * Ensure that task->thread.sve_state is up to date with respect to
793 * the user task, irrespective of when SVE is in use or not.
794 *
795 * This should only be called by ptrace. task must be non-runnable.
796 * task->thread.sve_state must point to at least sve_state_size(task)
797 * bytes of allocated kernel memory.
798 */
fpsimd_sync_to_sve(struct task_struct * task)799 void fpsimd_sync_to_sve(struct task_struct *task)
800 {
801 if (!test_tsk_thread_flag(task, TIF_SVE) &&
802 !thread_sm_enabled(&task->thread))
803 fpsimd_to_sve(task);
804 }
805
806 /*
807 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
808 * the user task, irrespective of whether SVE is in use or not.
809 *
810 * This should only be called by ptrace. task must be non-runnable.
811 * task->thread.sve_state must point to at least sve_state_size(task)
812 * bytes of allocated kernel memory.
813 */
sve_sync_to_fpsimd(struct task_struct * task)814 void sve_sync_to_fpsimd(struct task_struct *task)
815 {
816 if (task->thread.fp_type == FP_STATE_SVE)
817 sve_to_fpsimd(task);
818 }
819
820 /*
821 * Ensure that task->thread.sve_state is up to date with respect to
822 * the task->thread.uw.fpsimd_state.
823 *
824 * This should only be called by ptrace to merge new FPSIMD register
825 * values into a task for which SVE is currently active.
826 * task must be non-runnable.
827 * task->thread.sve_state must point to at least sve_state_size(task)
828 * bytes of allocated kernel memory.
829 * task->thread.uw.fpsimd_state must already have been initialised with
830 * the new FPSIMD register values to be merged in.
831 */
sve_sync_from_fpsimd_zeropad(struct task_struct * task)832 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
833 {
834 unsigned int vq;
835 void *sst = task->thread.sve_state;
836 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
837
838 if (!test_tsk_thread_flag(task, TIF_SVE) &&
839 !thread_sm_enabled(&task->thread))
840 return;
841
842 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
843
844 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
845 __fpsimd_to_sve(sst, fst, vq);
846 }
847
vec_set_vector_length(struct task_struct * task,enum vec_type type,unsigned long vl,unsigned long flags)848 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
849 unsigned long vl, unsigned long flags)
850 {
851 bool free_sme = false;
852
853 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
854 PR_SVE_SET_VL_ONEXEC))
855 return -EINVAL;
856
857 if (!sve_vl_valid(vl))
858 return -EINVAL;
859
860 /*
861 * Clamp to the maximum vector length that VL-agnostic code
862 * can work with. A flag may be assigned in the future to
863 * allow setting of larger vector lengths without confusing
864 * older software.
865 */
866 if (vl > VL_ARCH_MAX)
867 vl = VL_ARCH_MAX;
868
869 vl = find_supported_vector_length(type, vl);
870
871 if (flags & (PR_SVE_VL_INHERIT |
872 PR_SVE_SET_VL_ONEXEC))
873 task_set_vl_onexec(task, type, vl);
874 else
875 /* Reset VL to system default on next exec: */
876 task_set_vl_onexec(task, type, 0);
877
878 /* Only actually set the VL if not deferred: */
879 if (flags & PR_SVE_SET_VL_ONEXEC)
880 goto out;
881
882 if (vl == task_get_vl(task, type))
883 goto out;
884
885 /*
886 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
887 * write any live register state back to task_struct, and convert to a
888 * regular FPSIMD thread.
889 */
890 if (task == current) {
891 get_cpu_fpsimd_context();
892
893 fpsimd_save();
894 }
895
896 fpsimd_flush_task_state(task);
897 if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
898 thread_sm_enabled(&task->thread)) {
899 sve_to_fpsimd(task);
900 task->thread.fp_type = FP_STATE_FPSIMD;
901 }
902
903 if (system_supports_sme()) {
904 if (type == ARM64_VEC_SME ||
905 !(task->thread.svcr & (SVCR_SM_MASK | SVCR_ZA_MASK))) {
906 /*
907 * We are changing the SME VL or weren't using
908 * SME anyway, discard the state and force a
909 * reallocation.
910 */
911 task->thread.svcr &= ~(SVCR_SM_MASK |
912 SVCR_ZA_MASK);
913 clear_tsk_thread_flag(task, TIF_SME);
914 free_sme = true;
915 }
916 }
917
918 if (task == current)
919 put_cpu_fpsimd_context();
920
921 task_set_vl(task, type, vl);
922
923 /*
924 * Free the changed states if they are not in use, SME will be
925 * reallocated to the correct size on next use and we just
926 * allocate SVE now in case it is needed for use in streaming
927 * mode.
928 */
929 if (system_supports_sve()) {
930 sve_free(task);
931 sve_alloc(task, true);
932 }
933
934 if (free_sme)
935 sme_free(task);
936
937 out:
938 update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
939 flags & PR_SVE_VL_INHERIT);
940
941 return 0;
942 }
943
944 /*
945 * Encode the current vector length and flags for return.
946 * This is only required for prctl(): ptrace has separate fields.
947 * SVE and SME use the same bits for _ONEXEC and _INHERIT.
948 *
949 * flags are as for vec_set_vector_length().
950 */
vec_prctl_status(enum vec_type type,unsigned long flags)951 static int vec_prctl_status(enum vec_type type, unsigned long flags)
952 {
953 int ret;
954
955 if (flags & PR_SVE_SET_VL_ONEXEC)
956 ret = task_get_vl_onexec(current, type);
957 else
958 ret = task_get_vl(current, type);
959
960 if (test_thread_flag(vec_vl_inherit_flag(type)))
961 ret |= PR_SVE_VL_INHERIT;
962
963 return ret;
964 }
965
966 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)967 int sve_set_current_vl(unsigned long arg)
968 {
969 unsigned long vl, flags;
970 int ret;
971
972 vl = arg & PR_SVE_VL_LEN_MASK;
973 flags = arg & ~vl;
974
975 if (!system_supports_sve() || is_compat_task())
976 return -EINVAL;
977
978 ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
979 if (ret)
980 return ret;
981
982 return vec_prctl_status(ARM64_VEC_SVE, flags);
983 }
984
985 /* PR_SVE_GET_VL */
sve_get_current_vl(void)986 int sve_get_current_vl(void)
987 {
988 if (!system_supports_sve() || is_compat_task())
989 return -EINVAL;
990
991 return vec_prctl_status(ARM64_VEC_SVE, 0);
992 }
993
994 #ifdef CONFIG_ARM64_SME
995 /* PR_SME_SET_VL */
sme_set_current_vl(unsigned long arg)996 int sme_set_current_vl(unsigned long arg)
997 {
998 unsigned long vl, flags;
999 int ret;
1000
1001 vl = arg & PR_SME_VL_LEN_MASK;
1002 flags = arg & ~vl;
1003
1004 if (!system_supports_sme() || is_compat_task())
1005 return -EINVAL;
1006
1007 ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
1008 if (ret)
1009 return ret;
1010
1011 return vec_prctl_status(ARM64_VEC_SME, flags);
1012 }
1013
1014 /* PR_SME_GET_VL */
sme_get_current_vl(void)1015 int sme_get_current_vl(void)
1016 {
1017 if (!system_supports_sme() || is_compat_task())
1018 return -EINVAL;
1019
1020 return vec_prctl_status(ARM64_VEC_SME, 0);
1021 }
1022 #endif /* CONFIG_ARM64_SME */
1023
vec_probe_vqs(struct vl_info * info,DECLARE_BITMAP (map,SVE_VQ_MAX))1024 static void vec_probe_vqs(struct vl_info *info,
1025 DECLARE_BITMAP(map, SVE_VQ_MAX))
1026 {
1027 unsigned int vq, vl;
1028
1029 bitmap_zero(map, SVE_VQ_MAX);
1030
1031 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
1032 write_vl(info->type, vq - 1); /* self-syncing */
1033
1034 switch (info->type) {
1035 case ARM64_VEC_SVE:
1036 vl = sve_get_vl();
1037 break;
1038 case ARM64_VEC_SME:
1039 vl = sme_get_vl();
1040 break;
1041 default:
1042 vl = 0;
1043 break;
1044 }
1045
1046 /* Minimum VL identified? */
1047 if (sve_vq_from_vl(vl) > vq)
1048 break;
1049
1050 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
1051 set_bit(__vq_to_bit(vq), map);
1052 }
1053 }
1054
1055 /*
1056 * Initialise the set of known supported VQs for the boot CPU.
1057 * This is called during kernel boot, before secondary CPUs are brought up.
1058 */
vec_init_vq_map(enum vec_type type)1059 void __init vec_init_vq_map(enum vec_type type)
1060 {
1061 struct vl_info *info = &vl_info[type];
1062 vec_probe_vqs(info, info->vq_map);
1063 bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1064 }
1065
1066 /*
1067 * If we haven't committed to the set of supported VQs yet, filter out
1068 * those not supported by the current CPU.
1069 * This function is called during the bring-up of early secondary CPUs only.
1070 */
vec_update_vq_map(enum vec_type type)1071 void vec_update_vq_map(enum vec_type type)
1072 {
1073 struct vl_info *info = &vl_info[type];
1074 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1075
1076 vec_probe_vqs(info, tmp_map);
1077 bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1078 bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1079 SVE_VQ_MAX);
1080 }
1081
1082 /*
1083 * Check whether the current CPU supports all VQs in the committed set.
1084 * This function is called during the bring-up of late secondary CPUs only.
1085 */
vec_verify_vq_map(enum vec_type type)1086 int vec_verify_vq_map(enum vec_type type)
1087 {
1088 struct vl_info *info = &vl_info[type];
1089 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1090 unsigned long b;
1091
1092 vec_probe_vqs(info, tmp_map);
1093
1094 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1095 if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1096 pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1097 info->name, smp_processor_id());
1098 return -EINVAL;
1099 }
1100
1101 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1102 return 0;
1103
1104 /*
1105 * For KVM, it is necessary to ensure that this CPU doesn't
1106 * support any vector length that guests may have probed as
1107 * unsupported.
1108 */
1109
1110 /* Recover the set of supported VQs: */
1111 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1112 /* Find VQs supported that are not globally supported: */
1113 bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1114
1115 /* Find the lowest such VQ, if any: */
1116 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1117 if (b >= SVE_VQ_MAX)
1118 return 0; /* no mismatches */
1119
1120 /*
1121 * Mismatches above sve_max_virtualisable_vl are fine, since
1122 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1123 */
1124 if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1125 pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1126 info->name, smp_processor_id());
1127 return -EINVAL;
1128 }
1129
1130 return 0;
1131 }
1132
sve_efi_setup(void)1133 static void __init sve_efi_setup(void)
1134 {
1135 int max_vl = 0;
1136 int i;
1137
1138 if (!IS_ENABLED(CONFIG_EFI))
1139 return;
1140
1141 for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1142 max_vl = max(vl_info[i].max_vl, max_vl);
1143
1144 /*
1145 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1146 * This is evidence of a crippled system and we are returning void,
1147 * so no attempt is made to handle this situation here.
1148 */
1149 if (!sve_vl_valid(max_vl))
1150 goto fail;
1151
1152 efi_sve_state = __alloc_percpu(
1153 SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
1154 if (!efi_sve_state)
1155 goto fail;
1156
1157 return;
1158
1159 fail:
1160 panic("Cannot allocate percpu memory for EFI SVE save/restore");
1161 }
1162
1163 /*
1164 * Enable SVE for EL1.
1165 * Intended for use by the cpufeatures code during CPU boot.
1166 */
sve_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1167 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1168 {
1169 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1170 isb();
1171 }
1172
1173 /*
1174 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
1175 * vector length.
1176 *
1177 * Use only if SVE is present.
1178 * This function clobbers the SVE vector length.
1179 */
read_zcr_features(void)1180 u64 read_zcr_features(void)
1181 {
1182 /*
1183 * Set the maximum possible VL, and write zeroes to all other
1184 * bits to see if they stick.
1185 */
1186 sve_kernel_enable(NULL);
1187 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
1188
1189 /* Return LEN value that would be written to get the maximum VL */
1190 return sve_vq_from_vl(sve_get_vl()) - 1;
1191 }
1192
sve_setup(void)1193 void __init sve_setup(void)
1194 {
1195 struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1196 u64 zcr;
1197 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1198 unsigned long b;
1199
1200 if (!system_supports_sve())
1201 return;
1202
1203 /*
1204 * The SVE architecture mandates support for 128-bit vectors,
1205 * so sve_vq_map must have at least SVE_VQ_MIN set.
1206 * If something went wrong, at least try to patch it up:
1207 */
1208 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1209 set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1210
1211 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1212 info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
1213
1214 /*
1215 * Sanity-check that the max VL we determined through CPU features
1216 * corresponds properly to sve_vq_map. If not, do our best:
1217 */
1218 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
1219 info->max_vl)))
1220 info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
1221 info->max_vl);
1222
1223 /*
1224 * For the default VL, pick the maximum supported value <= 64.
1225 * VL == 64 is guaranteed not to grow the signal frame.
1226 */
1227 set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1228
1229 bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1230 SVE_VQ_MAX);
1231
1232 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1233 if (b >= SVE_VQ_MAX)
1234 /* No non-virtualisable VLs found */
1235 info->max_virtualisable_vl = SVE_VQ_MAX;
1236 else if (WARN_ON(b == SVE_VQ_MAX - 1))
1237 /* No virtualisable VLs? This is architecturally forbidden. */
1238 info->max_virtualisable_vl = SVE_VQ_MIN;
1239 else /* b + 1 < SVE_VQ_MAX */
1240 info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1241
1242 if (info->max_virtualisable_vl > info->max_vl)
1243 info->max_virtualisable_vl = info->max_vl;
1244
1245 pr_info("%s: maximum available vector length %u bytes per vector\n",
1246 info->name, info->max_vl);
1247 pr_info("%s: default vector length %u bytes per vector\n",
1248 info->name, get_sve_default_vl());
1249
1250 /* KVM decides whether to support mismatched systems. Just warn here: */
1251 if (sve_max_virtualisable_vl() < sve_max_vl())
1252 pr_warn("%s: unvirtualisable vector lengths present\n",
1253 info->name);
1254
1255 sve_efi_setup();
1256 }
1257
1258 /*
1259 * Called from the put_task_struct() path, which cannot get here
1260 * unless dead_task is really dead and not schedulable.
1261 */
fpsimd_release_task(struct task_struct * dead_task)1262 void fpsimd_release_task(struct task_struct *dead_task)
1263 {
1264 __sve_free(dead_task);
1265 sme_free(dead_task);
1266 }
1267
1268 #endif /* CONFIG_ARM64_SVE */
1269
1270 #ifdef CONFIG_ARM64_SME
1271
1272 /*
1273 * Ensure that task->thread.sme_state is allocated and sufficiently large.
1274 *
1275 * This function should be used only in preparation for replacing
1276 * task->thread.sme_state with new data. The memory is always zeroed
1277 * here to prevent stale data from showing through: this is done in
1278 * the interest of testability and predictability, the architecture
1279 * guarantees that when ZA is enabled it will be zeroed.
1280 */
sme_alloc(struct task_struct * task,bool flush)1281 void sme_alloc(struct task_struct *task, bool flush)
1282 {
1283 if (task->thread.sme_state) {
1284 if (flush)
1285 memset(task->thread.sme_state, 0,
1286 sme_state_size(task));
1287 return;
1288 }
1289
1290 /* This could potentially be up to 64K. */
1291 task->thread.sme_state =
1292 kzalloc(sme_state_size(task), GFP_KERNEL);
1293 }
1294
sme_free(struct task_struct * task)1295 static void sme_free(struct task_struct *task)
1296 {
1297 kfree(task->thread.sme_state);
1298 task->thread.sme_state = NULL;
1299 }
1300
sme_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1301 void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1302 {
1303 /* Set priority for all PEs to architecturally defined minimum */
1304 write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1305 SYS_SMPRI_EL1);
1306
1307 /* Allow SME in kernel */
1308 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1309 isb();
1310
1311 /* Allow EL0 to access TPIDR2 */
1312 write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1313 isb();
1314 }
1315
1316 /*
1317 * This must be called after sme_kernel_enable(), we rely on the
1318 * feature table being sorted to ensure this.
1319 */
sme2_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1320 void sme2_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1321 {
1322 /* Allow use of ZT0 */
1323 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK,
1324 SYS_SMCR_EL1);
1325 }
1326
1327 /*
1328 * This must be called after sme_kernel_enable(), we rely on the
1329 * feature table being sorted to ensure this.
1330 */
fa64_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1331 void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1332 {
1333 /* Allow use of FA64 */
1334 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1335 SYS_SMCR_EL1);
1336 }
1337
1338 /*
1339 * Read the pseudo-SMCR used by cpufeatures to identify the supported
1340 * vector length.
1341 *
1342 * Use only if SME is present.
1343 * This function clobbers the SME vector length.
1344 */
read_smcr_features(void)1345 u64 read_smcr_features(void)
1346 {
1347 sme_kernel_enable(NULL);
1348
1349 /*
1350 * Set the maximum possible VL.
1351 */
1352 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
1353 SYS_SMCR_EL1);
1354
1355 /* Return LEN value that would be written to get the maximum VL */
1356 return sve_vq_from_vl(sme_get_vl()) - 1;
1357 }
1358
sme_setup(void)1359 void __init sme_setup(void)
1360 {
1361 struct vl_info *info = &vl_info[ARM64_VEC_SME];
1362 u64 smcr;
1363 int min_bit;
1364
1365 if (!system_supports_sme())
1366 return;
1367
1368 /*
1369 * SME doesn't require any particular vector length be
1370 * supported but it does require at least one. We should have
1371 * disabled the feature entirely while bringing up CPUs but
1372 * let's double check here.
1373 */
1374 WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1375
1376 min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1377 info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1378
1379 smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
1380 info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
1381
1382 /*
1383 * Sanity-check that the max VL we determined through CPU features
1384 * corresponds properly to sme_vq_map. If not, do our best:
1385 */
1386 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
1387 info->max_vl)))
1388 info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
1389 info->max_vl);
1390
1391 WARN_ON(info->min_vl > info->max_vl);
1392
1393 /*
1394 * For the default VL, pick the maximum supported value <= 32
1395 * (256 bits) if there is one since this is guaranteed not to
1396 * grow the signal frame when in streaming mode, otherwise the
1397 * minimum available VL will be used.
1398 */
1399 set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1400
1401 pr_info("SME: minimum available vector length %u bytes per vector\n",
1402 info->min_vl);
1403 pr_info("SME: maximum available vector length %u bytes per vector\n",
1404 info->max_vl);
1405 pr_info("SME: default vector length %u bytes per vector\n",
1406 get_sme_default_vl());
1407 }
1408
sme_suspend_exit(void)1409 void sme_suspend_exit(void)
1410 {
1411 u64 smcr = 0;
1412
1413 if (!system_supports_sme())
1414 return;
1415
1416 if (system_supports_fa64())
1417 smcr |= SMCR_ELx_FA64;
1418 if (system_supports_sme2())
1419 smcr |= SMCR_ELx_EZT0;
1420
1421 write_sysreg_s(smcr, SYS_SMCR_EL1);
1422 write_sysreg_s(0, SYS_SMPRI_EL1);
1423 }
1424
1425 #endif /* CONFIG_ARM64_SME */
1426
sve_init_regs(void)1427 static void sve_init_regs(void)
1428 {
1429 /*
1430 * Convert the FPSIMD state to SVE, zeroing all the state that
1431 * is not shared with FPSIMD. If (as is likely) the current
1432 * state is live in the registers then do this there and
1433 * update our metadata for the current task including
1434 * disabling the trap, otherwise update our in-memory copy.
1435 * We are guaranteed to not be in streaming mode, we can only
1436 * take a SVE trap when not in streaming mode and we can't be
1437 * in streaming mode when taking a SME trap.
1438 */
1439 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1440 unsigned long vq_minus_one =
1441 sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1442 sve_set_vq(vq_minus_one);
1443 sve_flush_live(true, vq_minus_one);
1444 fpsimd_bind_task_to_cpu();
1445 } else {
1446 fpsimd_to_sve(current);
1447 current->thread.fp_type = FP_STATE_SVE;
1448 fpsimd_flush_task_state(current);
1449 }
1450 }
1451
1452 /*
1453 * Trapped SVE access
1454 *
1455 * Storage is allocated for the full SVE state, the current FPSIMD
1456 * register contents are migrated across, and the access trap is
1457 * disabled.
1458 *
1459 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1460 * would have disabled the SVE access trap for userspace during
1461 * ret_to_user, making an SVE access trap impossible in that case.
1462 */
do_sve_acc(unsigned long esr,struct pt_regs * regs)1463 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1464 {
1465 /* Even if we chose not to use SVE, the hardware could still trap: */
1466 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1467 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1468 return;
1469 }
1470
1471 sve_alloc(current, true);
1472 if (!current->thread.sve_state) {
1473 force_sig(SIGKILL);
1474 return;
1475 }
1476
1477 get_cpu_fpsimd_context();
1478
1479 if (test_and_set_thread_flag(TIF_SVE))
1480 WARN_ON(1); /* SVE access shouldn't have trapped */
1481
1482 /*
1483 * Even if the task can have used streaming mode we can only
1484 * generate SVE access traps in normal SVE mode and
1485 * transitioning out of streaming mode may discard any
1486 * streaming mode state. Always clear the high bits to avoid
1487 * any potential errors tracking what is properly initialised.
1488 */
1489 sve_init_regs();
1490
1491 put_cpu_fpsimd_context();
1492 }
1493
1494 /*
1495 * Trapped SME access
1496 *
1497 * Storage is allocated for the full SVE and SME state, the current
1498 * FPSIMD register contents are migrated to SVE if SVE is not already
1499 * active, and the access trap is disabled.
1500 *
1501 * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1502 * would have disabled the SME access trap for userspace during
1503 * ret_to_user, making an SME access trap impossible in that case.
1504 */
do_sme_acc(unsigned long esr,struct pt_regs * regs)1505 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1506 {
1507 /* Even if we chose not to use SME, the hardware could still trap: */
1508 if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1509 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1510 return;
1511 }
1512
1513 /*
1514 * If this not a trap due to SME being disabled then something
1515 * is being used in the wrong mode, report as SIGILL.
1516 */
1517 if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
1518 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1519 return;
1520 }
1521
1522 sve_alloc(current, false);
1523 sme_alloc(current, true);
1524 if (!current->thread.sve_state || !current->thread.sme_state) {
1525 force_sig(SIGKILL);
1526 return;
1527 }
1528
1529 get_cpu_fpsimd_context();
1530
1531 /* With TIF_SME userspace shouldn't generate any traps */
1532 if (test_and_set_thread_flag(TIF_SME))
1533 WARN_ON(1);
1534
1535 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1536 unsigned long vq_minus_one =
1537 sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1538 sme_set_vq(vq_minus_one);
1539
1540 fpsimd_bind_task_to_cpu();
1541 }
1542
1543 put_cpu_fpsimd_context();
1544 }
1545
1546 /*
1547 * Trapped FP/ASIMD access.
1548 */
do_fpsimd_acc(unsigned long esr,struct pt_regs * regs)1549 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1550 {
1551 /* TODO: implement lazy context saving/restoring */
1552 WARN_ON(1);
1553 }
1554
1555 /*
1556 * Raise a SIGFPE for the current process.
1557 */
do_fpsimd_exc(unsigned long esr,struct pt_regs * regs)1558 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1559 {
1560 unsigned int si_code = FPE_FLTUNK;
1561
1562 if (esr & ESR_ELx_FP_EXC_TFV) {
1563 if (esr & FPEXC_IOF)
1564 si_code = FPE_FLTINV;
1565 else if (esr & FPEXC_DZF)
1566 si_code = FPE_FLTDIV;
1567 else if (esr & FPEXC_OFF)
1568 si_code = FPE_FLTOVF;
1569 else if (esr & FPEXC_UFF)
1570 si_code = FPE_FLTUND;
1571 else if (esr & FPEXC_IXF)
1572 si_code = FPE_FLTRES;
1573 }
1574
1575 send_sig_fault(SIGFPE, si_code,
1576 (void __user *)instruction_pointer(regs),
1577 current);
1578 }
1579
fpsimd_thread_switch(struct task_struct * next)1580 void fpsimd_thread_switch(struct task_struct *next)
1581 {
1582 bool wrong_task, wrong_cpu;
1583
1584 if (!system_supports_fpsimd())
1585 return;
1586
1587 __get_cpu_fpsimd_context();
1588
1589 /* Save unsaved fpsimd state, if any: */
1590 fpsimd_save();
1591
1592 /*
1593 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1594 * state. For kernel threads, FPSIMD registers are never loaded
1595 * and wrong_task and wrong_cpu will always be true.
1596 */
1597 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1598 &next->thread.uw.fpsimd_state;
1599 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1600
1601 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1602 wrong_task || wrong_cpu);
1603
1604 __put_cpu_fpsimd_context();
1605 }
1606
fpsimd_flush_thread_vl(enum vec_type type)1607 static void fpsimd_flush_thread_vl(enum vec_type type)
1608 {
1609 int vl, supported_vl;
1610
1611 /*
1612 * Reset the task vector length as required. This is where we
1613 * ensure that all user tasks have a valid vector length
1614 * configured: no kernel task can become a user task without
1615 * an exec and hence a call to this function. By the time the
1616 * first call to this function is made, all early hardware
1617 * probing is complete, so __sve_default_vl should be valid.
1618 * If a bug causes this to go wrong, we make some noise and
1619 * try to fudge thread.sve_vl to a safe value here.
1620 */
1621 vl = task_get_vl_onexec(current, type);
1622 if (!vl)
1623 vl = get_default_vl(type);
1624
1625 if (WARN_ON(!sve_vl_valid(vl)))
1626 vl = vl_info[type].min_vl;
1627
1628 supported_vl = find_supported_vector_length(type, vl);
1629 if (WARN_ON(supported_vl != vl))
1630 vl = supported_vl;
1631
1632 task_set_vl(current, type, vl);
1633
1634 /*
1635 * If the task is not set to inherit, ensure that the vector
1636 * length will be reset by a subsequent exec:
1637 */
1638 if (!test_thread_flag(vec_vl_inherit_flag(type)))
1639 task_set_vl_onexec(current, type, 0);
1640 }
1641
fpsimd_flush_thread(void)1642 void fpsimd_flush_thread(void)
1643 {
1644 void *sve_state = NULL;
1645 void *sme_state = NULL;
1646
1647 if (!system_supports_fpsimd())
1648 return;
1649
1650 get_cpu_fpsimd_context();
1651
1652 fpsimd_flush_task_state(current);
1653 memset(¤t->thread.uw.fpsimd_state, 0,
1654 sizeof(current->thread.uw.fpsimd_state));
1655
1656 if (system_supports_sve()) {
1657 clear_thread_flag(TIF_SVE);
1658
1659 /* Defer kfree() while in atomic context */
1660 sve_state = current->thread.sve_state;
1661 current->thread.sve_state = NULL;
1662
1663 fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1664 }
1665
1666 if (system_supports_sme()) {
1667 clear_thread_flag(TIF_SME);
1668
1669 /* Defer kfree() while in atomic context */
1670 sme_state = current->thread.sme_state;
1671 current->thread.sme_state = NULL;
1672
1673 fpsimd_flush_thread_vl(ARM64_VEC_SME);
1674 current->thread.svcr = 0;
1675 }
1676
1677 current->thread.fp_type = FP_STATE_FPSIMD;
1678
1679 put_cpu_fpsimd_context();
1680 kfree(sve_state);
1681 kfree(sme_state);
1682 }
1683
1684 /*
1685 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1686 * currently held in the registers does in fact belong to 'current'
1687 */
fpsimd_preserve_current_state(void)1688 void fpsimd_preserve_current_state(void)
1689 {
1690 if (!system_supports_fpsimd())
1691 return;
1692
1693 get_cpu_fpsimd_context();
1694 fpsimd_save();
1695 put_cpu_fpsimd_context();
1696 }
1697
1698 /*
1699 * Like fpsimd_preserve_current_state(), but ensure that
1700 * current->thread.uw.fpsimd_state is updated so that it can be copied to
1701 * the signal frame.
1702 */
fpsimd_signal_preserve_current_state(void)1703 void fpsimd_signal_preserve_current_state(void)
1704 {
1705 fpsimd_preserve_current_state();
1706 if (current->thread.fp_type == FP_STATE_SVE)
1707 sve_to_fpsimd(current);
1708 }
1709
1710 /*
1711 * Called by KVM when entering the guest.
1712 */
fpsimd_kvm_prepare(void)1713 void fpsimd_kvm_prepare(void)
1714 {
1715 if (!system_supports_sve())
1716 return;
1717
1718 /*
1719 * KVM does not save host SVE state since we can only enter
1720 * the guest from a syscall so the ABI means that only the
1721 * non-saved SVE state needs to be saved. If we have left
1722 * SVE enabled for performance reasons then update the task
1723 * state to be FPSIMD only.
1724 */
1725 get_cpu_fpsimd_context();
1726
1727 if (test_and_clear_thread_flag(TIF_SVE)) {
1728 sve_to_fpsimd(current);
1729 current->thread.fp_type = FP_STATE_FPSIMD;
1730 }
1731
1732 put_cpu_fpsimd_context();
1733 }
1734
1735 /*
1736 * Associate current's FPSIMD context with this cpu
1737 * The caller must have ownership of the cpu FPSIMD context before calling
1738 * this function.
1739 */
fpsimd_bind_task_to_cpu(void)1740 static void fpsimd_bind_task_to_cpu(void)
1741 {
1742 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1743
1744 WARN_ON(!system_supports_fpsimd());
1745 last->st = ¤t->thread.uw.fpsimd_state;
1746 last->sve_state = current->thread.sve_state;
1747 last->sme_state = current->thread.sme_state;
1748 last->sve_vl = task_get_sve_vl(current);
1749 last->sme_vl = task_get_sme_vl(current);
1750 last->svcr = ¤t->thread.svcr;
1751 last->fp_type = ¤t->thread.fp_type;
1752 last->to_save = FP_STATE_CURRENT;
1753 current->thread.fpsimd_cpu = smp_processor_id();
1754
1755 /*
1756 * Toggle SVE and SME trapping for userspace if needed, these
1757 * are serialsied by ret_to_user().
1758 */
1759 if (system_supports_sme()) {
1760 if (test_thread_flag(TIF_SME))
1761 sme_user_enable();
1762 else
1763 sme_user_disable();
1764 }
1765
1766 if (system_supports_sve()) {
1767 if (test_thread_flag(TIF_SVE))
1768 sve_user_enable();
1769 else
1770 sve_user_disable();
1771 }
1772 }
1773
fpsimd_bind_state_to_cpu(struct cpu_fp_state * state)1774 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
1775 {
1776 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1777
1778 WARN_ON(!system_supports_fpsimd());
1779 WARN_ON(!in_softirq() && !irqs_disabled());
1780
1781 *last = *state;
1782 }
1783
1784 /*
1785 * Load the userland FPSIMD state of 'current' from memory, but only if the
1786 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1787 * state of 'current'. This is called when we are preparing to return to
1788 * userspace to ensure that userspace sees a good register state.
1789 */
fpsimd_restore_current_state(void)1790 void fpsimd_restore_current_state(void)
1791 {
1792 /*
1793 * For the tasks that were created before we detected the absence of
1794 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1795 * e.g, init. This could be then inherited by the children processes.
1796 * If we later detect that the system doesn't support FP/SIMD,
1797 * we must clear the flag for all the tasks to indicate that the
1798 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1799 * do_notify_resume().
1800 */
1801 if (!system_supports_fpsimd()) {
1802 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1803 return;
1804 }
1805
1806 get_cpu_fpsimd_context();
1807
1808 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1809 task_fpsimd_load();
1810 fpsimd_bind_task_to_cpu();
1811 }
1812
1813 put_cpu_fpsimd_context();
1814 }
1815
1816 /*
1817 * Load an updated userland FPSIMD state for 'current' from memory and set the
1818 * flag that indicates that the FPSIMD register contents are the most recent
1819 * FPSIMD state of 'current'. This is used by the signal code to restore the
1820 * register state when returning from a signal handler in FPSIMD only cases,
1821 * any SVE context will be discarded.
1822 */
fpsimd_update_current_state(struct user_fpsimd_state const * state)1823 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1824 {
1825 if (WARN_ON(!system_supports_fpsimd()))
1826 return;
1827
1828 get_cpu_fpsimd_context();
1829
1830 current->thread.uw.fpsimd_state = *state;
1831 if (test_thread_flag(TIF_SVE))
1832 fpsimd_to_sve(current);
1833
1834 task_fpsimd_load();
1835 fpsimd_bind_task_to_cpu();
1836
1837 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1838
1839 put_cpu_fpsimd_context();
1840 }
1841
1842 /*
1843 * Invalidate live CPU copies of task t's FPSIMD state
1844 *
1845 * This function may be called with preemption enabled. The barrier()
1846 * ensures that the assignment to fpsimd_cpu is visible to any
1847 * preemption/softirq that could race with set_tsk_thread_flag(), so
1848 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1849 *
1850 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1851 * subsequent code.
1852 */
fpsimd_flush_task_state(struct task_struct * t)1853 void fpsimd_flush_task_state(struct task_struct *t)
1854 {
1855 t->thread.fpsimd_cpu = NR_CPUS;
1856 /*
1857 * If we don't support fpsimd, bail out after we have
1858 * reset the fpsimd_cpu for this task and clear the
1859 * FPSTATE.
1860 */
1861 if (!system_supports_fpsimd())
1862 return;
1863 barrier();
1864 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1865
1866 barrier();
1867 }
1868
1869 /*
1870 * Invalidate any task's FPSIMD state that is present on this cpu.
1871 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1872 * before calling this function.
1873 */
fpsimd_flush_cpu_state(void)1874 static void fpsimd_flush_cpu_state(void)
1875 {
1876 WARN_ON(!system_supports_fpsimd());
1877 __this_cpu_write(fpsimd_last_state.st, NULL);
1878
1879 /*
1880 * Leaving streaming mode enabled will cause issues for any kernel
1881 * NEON and leaving streaming mode or ZA enabled may increase power
1882 * consumption.
1883 */
1884 if (system_supports_sme())
1885 sme_smstop();
1886
1887 set_thread_flag(TIF_FOREIGN_FPSTATE);
1888 }
1889
1890 /*
1891 * Save the FPSIMD state to memory and invalidate cpu view.
1892 * This function must be called with preemption disabled.
1893 */
fpsimd_save_and_flush_cpu_state(void)1894 void fpsimd_save_and_flush_cpu_state(void)
1895 {
1896 if (!system_supports_fpsimd())
1897 return;
1898 WARN_ON(preemptible());
1899 __get_cpu_fpsimd_context();
1900 fpsimd_save();
1901 fpsimd_flush_cpu_state();
1902 __put_cpu_fpsimd_context();
1903 }
1904
1905 #ifdef CONFIG_KERNEL_MODE_NEON
1906
1907 /*
1908 * Kernel-side NEON support functions
1909 */
1910
1911 /*
1912 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1913 * context
1914 *
1915 * Must not be called unless may_use_simd() returns true.
1916 * Task context in the FPSIMD registers is saved back to memory as necessary.
1917 *
1918 * A matching call to kernel_neon_end() must be made before returning from the
1919 * calling context.
1920 *
1921 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1922 * called.
1923 */
kernel_neon_begin(void)1924 void kernel_neon_begin(void)
1925 {
1926 if (WARN_ON(!system_supports_fpsimd()))
1927 return;
1928
1929 BUG_ON(!may_use_simd());
1930
1931 get_cpu_fpsimd_context();
1932
1933 /* Save unsaved fpsimd state, if any: */
1934 fpsimd_save();
1935
1936 /* Invalidate any task state remaining in the fpsimd regs: */
1937 fpsimd_flush_cpu_state();
1938 }
1939 EXPORT_SYMBOL_GPL(kernel_neon_begin);
1940
1941 /*
1942 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1943 *
1944 * Must be called from a context in which kernel_neon_begin() was previously
1945 * called, with no call to kernel_neon_end() in the meantime.
1946 *
1947 * The caller must not use the FPSIMD registers after this function is called,
1948 * unless kernel_neon_begin() is called again in the meantime.
1949 */
kernel_neon_end(void)1950 void kernel_neon_end(void)
1951 {
1952 if (!system_supports_fpsimd())
1953 return;
1954
1955 put_cpu_fpsimd_context();
1956 }
1957 EXPORT_SYMBOL_GPL(kernel_neon_end);
1958
1959 #ifdef CONFIG_EFI
1960
1961 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1962 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1963 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1964 static DEFINE_PER_CPU(bool, efi_sm_state);
1965
1966 /*
1967 * EFI runtime services support functions
1968 *
1969 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1970 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1971 * is always used rather than being an optional accelerator.
1972 *
1973 * These functions provide the necessary support for ensuring FPSIMD
1974 * save/restore in the contexts from which EFI is used.
1975 *
1976 * Do not use them for any other purpose -- if tempted to do so, you are
1977 * either doing something wrong or you need to propose some refactoring.
1978 */
1979
1980 /*
1981 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1982 */
__efi_fpsimd_begin(void)1983 void __efi_fpsimd_begin(void)
1984 {
1985 if (!system_supports_fpsimd())
1986 return;
1987
1988 WARN_ON(preemptible());
1989
1990 if (may_use_simd()) {
1991 kernel_neon_begin();
1992 } else {
1993 /*
1994 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1995 * preserving:
1996 */
1997 if (system_supports_sve() && likely(efi_sve_state)) {
1998 char *sve_state = this_cpu_ptr(efi_sve_state);
1999 bool ffr = true;
2000 u64 svcr;
2001
2002 __this_cpu_write(efi_sve_state_used, true);
2003
2004 if (system_supports_sme()) {
2005 svcr = read_sysreg_s(SYS_SVCR);
2006
2007 __this_cpu_write(efi_sm_state,
2008 svcr & SVCR_SM_MASK);
2009
2010 /*
2011 * Unless we have FA64 FFR does not
2012 * exist in streaming mode.
2013 */
2014 if (!system_supports_fa64())
2015 ffr = !(svcr & SVCR_SM_MASK);
2016 }
2017
2018 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
2019 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2020 ffr);
2021
2022 if (system_supports_sme())
2023 sysreg_clear_set_s(SYS_SVCR,
2024 SVCR_SM_MASK, 0);
2025
2026 } else {
2027 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
2028 }
2029
2030 __this_cpu_write(efi_fpsimd_state_used, true);
2031 }
2032 }
2033
2034 /*
2035 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
2036 */
__efi_fpsimd_end(void)2037 void __efi_fpsimd_end(void)
2038 {
2039 if (!system_supports_fpsimd())
2040 return;
2041
2042 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
2043 kernel_neon_end();
2044 } else {
2045 if (system_supports_sve() &&
2046 likely(__this_cpu_read(efi_sve_state_used))) {
2047 char const *sve_state = this_cpu_ptr(efi_sve_state);
2048 bool ffr = true;
2049
2050 /*
2051 * Restore streaming mode; EFI calls are
2052 * normal function calls so should not return in
2053 * streaming mode.
2054 */
2055 if (system_supports_sme()) {
2056 if (__this_cpu_read(efi_sm_state)) {
2057 sysreg_clear_set_s(SYS_SVCR,
2058 0,
2059 SVCR_SM_MASK);
2060
2061 /*
2062 * Unless we have FA64 FFR does not
2063 * exist in streaming mode.
2064 */
2065 if (!system_supports_fa64())
2066 ffr = false;
2067 }
2068 }
2069
2070 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
2071 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2072 ffr);
2073
2074 __this_cpu_write(efi_sve_state_used, false);
2075 } else {
2076 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
2077 }
2078 }
2079 }
2080
2081 #endif /* CONFIG_EFI */
2082
2083 #endif /* CONFIG_KERNEL_MODE_NEON */
2084
2085 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2086 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
2087 unsigned long cmd, void *v)
2088 {
2089 switch (cmd) {
2090 case CPU_PM_ENTER:
2091 fpsimd_save_and_flush_cpu_state();
2092 break;
2093 case CPU_PM_EXIT:
2094 break;
2095 case CPU_PM_ENTER_FAILED:
2096 default:
2097 return NOTIFY_DONE;
2098 }
2099 return NOTIFY_OK;
2100 }
2101
2102 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2103 .notifier_call = fpsimd_cpu_pm_notifier,
2104 };
2105
fpsimd_pm_init(void)2106 static void __init fpsimd_pm_init(void)
2107 {
2108 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2109 }
2110
2111 #else
fpsimd_pm_init(void)2112 static inline void fpsimd_pm_init(void) { }
2113 #endif /* CONFIG_CPU_PM */
2114
2115 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)2116 static int fpsimd_cpu_dead(unsigned int cpu)
2117 {
2118 per_cpu(fpsimd_last_state.st, cpu) = NULL;
2119 return 0;
2120 }
2121
fpsimd_hotplug_init(void)2122 static inline void fpsimd_hotplug_init(void)
2123 {
2124 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2125 NULL, fpsimd_cpu_dead);
2126 }
2127
2128 #else
fpsimd_hotplug_init(void)2129 static inline void fpsimd_hotplug_init(void) { }
2130 #endif
2131
2132 /*
2133 * FP/SIMD support code initialisation.
2134 */
fpsimd_init(void)2135 static int __init fpsimd_init(void)
2136 {
2137 if (cpu_have_named_feature(FP)) {
2138 fpsimd_pm_init();
2139 fpsimd_hotplug_init();
2140 } else {
2141 pr_notice("Floating-point is not implemented\n");
2142 }
2143
2144 if (!cpu_have_named_feature(ASIMD))
2145 pr_notice("Advanced SIMD is not implemented\n");
2146
2147
2148 sve_sysctl_init();
2149 sme_sysctl_init();
2150
2151 return 0;
2152 }
2153 core_initcall(fpsimd_init);
2154