1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Exception handling code 4 * 5 * Copyright (C) 2019 ARM Ltd. 6 */ 7 8 #include <linux/context_tracking.h> 9 #include <linux/kasan.h> 10 #include <linux/linkage.h> 11 #include <linux/lockdep.h> 12 #include <linux/ptrace.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/thread_info.h> 16 17 #include <asm/cpufeature.h> 18 #include <asm/daifflags.h> 19 #include <asm/esr.h> 20 #include <asm/exception.h> 21 #include <asm/irq_regs.h> 22 #include <asm/kprobes.h> 23 #include <asm/mmu.h> 24 #include <asm/processor.h> 25 #include <asm/sdei.h> 26 #include <asm/stacktrace.h> 27 #include <asm/sysreg.h> 28 #include <asm/system_misc.h> 29 30 /* 31 * Handle IRQ/context state management when entering from kernel mode. 32 * Before this function is called it is not safe to call regular kernel code, 33 * intrumentable code, or any code which may trigger an exception. 34 * 35 * This is intended to match the logic in irqentry_enter(), handling the kernel 36 * mode transitions only. 37 */ 38 static __always_inline void __enter_from_kernel_mode(struct pt_regs *regs) 39 { 40 regs->exit_rcu = false; 41 42 if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) { 43 lockdep_hardirqs_off(CALLER_ADDR0); 44 rcu_irq_enter(); 45 trace_hardirqs_off_finish(); 46 47 regs->exit_rcu = true; 48 return; 49 } 50 51 lockdep_hardirqs_off(CALLER_ADDR0); 52 rcu_irq_enter_check_tick(); 53 trace_hardirqs_off_finish(); 54 } 55 56 static void noinstr enter_from_kernel_mode(struct pt_regs *regs) 57 { 58 __enter_from_kernel_mode(regs); 59 mte_check_tfsr_entry(); 60 mte_disable_tco_entry(current); 61 } 62 63 /* 64 * Handle IRQ/context state management when exiting to kernel mode. 65 * After this function returns it is not safe to call regular kernel code, 66 * intrumentable code, or any code which may trigger an exception. 67 * 68 * This is intended to match the logic in irqentry_exit(), handling the kernel 69 * mode transitions only, and with preemption handled elsewhere. 70 */ 71 static __always_inline void __exit_to_kernel_mode(struct pt_regs *regs) 72 { 73 lockdep_assert_irqs_disabled(); 74 75 if (interrupts_enabled(regs)) { 76 if (regs->exit_rcu) { 77 trace_hardirqs_on_prepare(); 78 lockdep_hardirqs_on_prepare(CALLER_ADDR0); 79 rcu_irq_exit(); 80 lockdep_hardirqs_on(CALLER_ADDR0); 81 return; 82 } 83 84 trace_hardirqs_on(); 85 } else { 86 if (regs->exit_rcu) 87 rcu_irq_exit(); 88 } 89 } 90 91 static void noinstr exit_to_kernel_mode(struct pt_regs *regs) 92 { 93 mte_check_tfsr_exit(); 94 __exit_to_kernel_mode(regs); 95 } 96 97 /* 98 * Handle IRQ/context state management when entering from user mode. 99 * Before this function is called it is not safe to call regular kernel code, 100 * intrumentable code, or any code which may trigger an exception. 101 */ 102 static __always_inline void __enter_from_user_mode(void) 103 { 104 lockdep_hardirqs_off(CALLER_ADDR0); 105 CT_WARN_ON(ct_state() != CONTEXT_USER); 106 user_exit_irqoff(); 107 trace_hardirqs_off_finish(); 108 mte_disable_tco_entry(current); 109 } 110 111 static __always_inline void enter_from_user_mode(struct pt_regs *regs) 112 { 113 __enter_from_user_mode(); 114 } 115 116 /* 117 * Handle IRQ/context state management when exiting to user mode. 118 * After this function returns it is not safe to call regular kernel code, 119 * intrumentable code, or any code which may trigger an exception. 120 */ 121 static __always_inline void __exit_to_user_mode(void) 122 { 123 trace_hardirqs_on_prepare(); 124 lockdep_hardirqs_on_prepare(CALLER_ADDR0); 125 user_enter_irqoff(); 126 lockdep_hardirqs_on(CALLER_ADDR0); 127 } 128 129 static __always_inline void prepare_exit_to_user_mode(struct pt_regs *regs) 130 { 131 unsigned long flags; 132 133 local_daif_mask(); 134 135 flags = read_thread_flags(); 136 if (unlikely(flags & _TIF_WORK_MASK)) 137 do_notify_resume(regs, flags); 138 } 139 140 static __always_inline void exit_to_user_mode(struct pt_regs *regs) 141 { 142 prepare_exit_to_user_mode(regs); 143 mte_check_tfsr_exit(); 144 __exit_to_user_mode(); 145 } 146 147 asmlinkage void noinstr asm_exit_to_user_mode(struct pt_regs *regs) 148 { 149 exit_to_user_mode(regs); 150 } 151 152 /* 153 * Handle IRQ/context state management when entering an NMI from user/kernel 154 * mode. Before this function is called it is not safe to call regular kernel 155 * code, intrumentable code, or any code which may trigger an exception. 156 */ 157 static void noinstr arm64_enter_nmi(struct pt_regs *regs) 158 { 159 regs->lockdep_hardirqs = lockdep_hardirqs_enabled(); 160 161 __nmi_enter(); 162 lockdep_hardirqs_off(CALLER_ADDR0); 163 lockdep_hardirq_enter(); 164 rcu_nmi_enter(); 165 166 trace_hardirqs_off_finish(); 167 ftrace_nmi_enter(); 168 } 169 170 /* 171 * Handle IRQ/context state management when exiting an NMI from user/kernel 172 * mode. After this function returns it is not safe to call regular kernel 173 * code, intrumentable code, or any code which may trigger an exception. 174 */ 175 static void noinstr arm64_exit_nmi(struct pt_regs *regs) 176 { 177 bool restore = regs->lockdep_hardirqs; 178 179 ftrace_nmi_exit(); 180 if (restore) { 181 trace_hardirqs_on_prepare(); 182 lockdep_hardirqs_on_prepare(CALLER_ADDR0); 183 } 184 185 rcu_nmi_exit(); 186 lockdep_hardirq_exit(); 187 if (restore) 188 lockdep_hardirqs_on(CALLER_ADDR0); 189 __nmi_exit(); 190 } 191 192 /* 193 * Handle IRQ/context state management when entering a debug exception from 194 * kernel mode. Before this function is called it is not safe to call regular 195 * kernel code, intrumentable code, or any code which may trigger an exception. 196 */ 197 static void noinstr arm64_enter_el1_dbg(struct pt_regs *regs) 198 { 199 regs->lockdep_hardirqs = lockdep_hardirqs_enabled(); 200 201 lockdep_hardirqs_off(CALLER_ADDR0); 202 rcu_nmi_enter(); 203 204 trace_hardirqs_off_finish(); 205 } 206 207 /* 208 * Handle IRQ/context state management when exiting a debug exception from 209 * kernel mode. After this function returns it is not safe to call regular 210 * kernel code, intrumentable code, or any code which may trigger an exception. 211 */ 212 static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs) 213 { 214 bool restore = regs->lockdep_hardirqs; 215 216 if (restore) { 217 trace_hardirqs_on_prepare(); 218 lockdep_hardirqs_on_prepare(CALLER_ADDR0); 219 } 220 221 rcu_nmi_exit(); 222 if (restore) 223 lockdep_hardirqs_on(CALLER_ADDR0); 224 } 225 226 #ifdef CONFIG_PREEMPT_DYNAMIC 227 DEFINE_STATIC_KEY_TRUE(sk_dynamic_irqentry_exit_cond_resched); 228 #define need_irq_preemption() \ 229 (static_branch_unlikely(&sk_dynamic_irqentry_exit_cond_resched)) 230 #else 231 #define need_irq_preemption() (IS_ENABLED(CONFIG_PREEMPTION)) 232 #endif 233 234 static void __sched arm64_preempt_schedule_irq(void) 235 { 236 if (!need_irq_preemption()) 237 return; 238 239 /* 240 * Note: thread_info::preempt_count includes both thread_info::count 241 * and thread_info::need_resched, and is not equivalent to 242 * preempt_count(). 243 */ 244 if (READ_ONCE(current_thread_info()->preempt_count) != 0) 245 return; 246 247 /* 248 * DAIF.DA are cleared at the start of IRQ/FIQ handling, and when GIC 249 * priority masking is used the GIC irqchip driver will clear DAIF.IF 250 * using gic_arch_enable_irqs() for normal IRQs. If anything is set in 251 * DAIF we must have handled an NMI, so skip preemption. 252 */ 253 if (system_uses_irq_prio_masking() && read_sysreg(daif)) 254 return; 255 256 /* 257 * Preempting a task from an IRQ means we leave copies of PSTATE 258 * on the stack. cpufeature's enable calls may modify PSTATE, but 259 * resuming one of these preempted tasks would undo those changes. 260 * 261 * Only allow a task to be preempted once cpufeatures have been 262 * enabled. 263 */ 264 if (system_capabilities_finalized()) 265 preempt_schedule_irq(); 266 } 267 268 static void do_interrupt_handler(struct pt_regs *regs, 269 void (*handler)(struct pt_regs *)) 270 { 271 struct pt_regs *old_regs = set_irq_regs(regs); 272 273 if (on_thread_stack()) 274 call_on_irq_stack(regs, handler); 275 else 276 handler(regs); 277 278 set_irq_regs(old_regs); 279 } 280 281 extern void (*handle_arch_irq)(struct pt_regs *); 282 extern void (*handle_arch_fiq)(struct pt_regs *); 283 284 static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector, 285 unsigned int esr) 286 { 287 arm64_enter_nmi(regs); 288 289 console_verbose(); 290 291 pr_crit("Unhandled %s exception on CPU%d, ESR 0x%08x -- %s\n", 292 vector, smp_processor_id(), esr, 293 esr_get_class_string(esr)); 294 295 __show_regs(regs); 296 panic("Unhandled exception"); 297 } 298 299 #define UNHANDLED(el, regsize, vector) \ 300 asmlinkage void noinstr el##_##regsize##_##vector##_handler(struct pt_regs *regs) \ 301 { \ 302 const char *desc = #regsize "-bit " #el " " #vector; \ 303 __panic_unhandled(regs, desc, read_sysreg(esr_el1)); \ 304 } 305 306 #ifdef CONFIG_ARM64_ERRATUM_1463225 307 static DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa); 308 309 static void cortex_a76_erratum_1463225_svc_handler(void) 310 { 311 u32 reg, val; 312 313 if (!unlikely(test_thread_flag(TIF_SINGLESTEP))) 314 return; 315 316 if (!unlikely(this_cpu_has_cap(ARM64_WORKAROUND_1463225))) 317 return; 318 319 __this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 1); 320 reg = read_sysreg(mdscr_el1); 321 val = reg | DBG_MDSCR_SS | DBG_MDSCR_KDE; 322 write_sysreg(val, mdscr_el1); 323 asm volatile("msr daifclr, #8"); 324 isb(); 325 326 /* We will have taken a single-step exception by this point */ 327 328 write_sysreg(reg, mdscr_el1); 329 __this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 0); 330 } 331 332 static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) 333 { 334 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa)) 335 return false; 336 337 /* 338 * We've taken a dummy step exception from the kernel to ensure 339 * that interrupts are re-enabled on the syscall path. Return back 340 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions 341 * masked so that we can safely restore the mdscr and get on with 342 * handling the syscall. 343 */ 344 regs->pstate |= PSR_D_BIT; 345 return true; 346 } 347 #else /* CONFIG_ARM64_ERRATUM_1463225 */ 348 static void cortex_a76_erratum_1463225_svc_handler(void) { } 349 static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) 350 { 351 return false; 352 } 353 #endif /* CONFIG_ARM64_ERRATUM_1463225 */ 354 355 UNHANDLED(el1t, 64, sync) 356 UNHANDLED(el1t, 64, irq) 357 UNHANDLED(el1t, 64, fiq) 358 UNHANDLED(el1t, 64, error) 359 360 static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr) 361 { 362 unsigned long far = read_sysreg(far_el1); 363 364 enter_from_kernel_mode(regs); 365 local_daif_inherit(regs); 366 do_mem_abort(far, esr, regs); 367 local_daif_mask(); 368 exit_to_kernel_mode(regs); 369 } 370 371 static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr) 372 { 373 unsigned long far = read_sysreg(far_el1); 374 375 enter_from_kernel_mode(regs); 376 local_daif_inherit(regs); 377 do_sp_pc_abort(far, esr, regs); 378 local_daif_mask(); 379 exit_to_kernel_mode(regs); 380 } 381 382 static void noinstr el1_undef(struct pt_regs *regs) 383 { 384 enter_from_kernel_mode(regs); 385 local_daif_inherit(regs); 386 do_undefinstr(regs); 387 local_daif_mask(); 388 exit_to_kernel_mode(regs); 389 } 390 391 static void noinstr el1_dbg(struct pt_regs *regs, unsigned long esr) 392 { 393 unsigned long far = read_sysreg(far_el1); 394 395 arm64_enter_el1_dbg(regs); 396 if (!cortex_a76_erratum_1463225_debug_handler(regs)) 397 do_debug_exception(far, esr, regs); 398 arm64_exit_el1_dbg(regs); 399 } 400 401 static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr) 402 { 403 enter_from_kernel_mode(regs); 404 local_daif_inherit(regs); 405 do_ptrauth_fault(regs, esr); 406 local_daif_mask(); 407 exit_to_kernel_mode(regs); 408 } 409 410 asmlinkage void noinstr el1h_64_sync_handler(struct pt_regs *regs) 411 { 412 unsigned long esr = read_sysreg(esr_el1); 413 414 switch (ESR_ELx_EC(esr)) { 415 case ESR_ELx_EC_DABT_CUR: 416 case ESR_ELx_EC_IABT_CUR: 417 el1_abort(regs, esr); 418 break; 419 /* 420 * We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a 421 * recursive exception when trying to push the initial pt_regs. 422 */ 423 case ESR_ELx_EC_PC_ALIGN: 424 el1_pc(regs, esr); 425 break; 426 case ESR_ELx_EC_SYS64: 427 case ESR_ELx_EC_UNKNOWN: 428 el1_undef(regs); 429 break; 430 case ESR_ELx_EC_BREAKPT_CUR: 431 case ESR_ELx_EC_SOFTSTP_CUR: 432 case ESR_ELx_EC_WATCHPT_CUR: 433 case ESR_ELx_EC_BRK64: 434 el1_dbg(regs, esr); 435 break; 436 case ESR_ELx_EC_FPAC: 437 el1_fpac(regs, esr); 438 break; 439 default: 440 __panic_unhandled(regs, "64-bit el1h sync", esr); 441 } 442 } 443 444 static __always_inline void __el1_pnmi(struct pt_regs *regs, 445 void (*handler)(struct pt_regs *)) 446 { 447 arm64_enter_nmi(regs); 448 do_interrupt_handler(regs, handler); 449 arm64_exit_nmi(regs); 450 } 451 452 static __always_inline void __el1_irq(struct pt_regs *regs, 453 void (*handler)(struct pt_regs *)) 454 { 455 enter_from_kernel_mode(regs); 456 457 irq_enter_rcu(); 458 do_interrupt_handler(regs, handler); 459 irq_exit_rcu(); 460 461 arm64_preempt_schedule_irq(); 462 463 exit_to_kernel_mode(regs); 464 } 465 static void noinstr el1_interrupt(struct pt_regs *regs, 466 void (*handler)(struct pt_regs *)) 467 { 468 write_sysreg(DAIF_PROCCTX_NOIRQ, daif); 469 470 if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs)) 471 __el1_pnmi(regs, handler); 472 else 473 __el1_irq(regs, handler); 474 } 475 476 asmlinkage void noinstr el1h_64_irq_handler(struct pt_regs *regs) 477 { 478 el1_interrupt(regs, handle_arch_irq); 479 } 480 481 asmlinkage void noinstr el1h_64_fiq_handler(struct pt_regs *regs) 482 { 483 el1_interrupt(regs, handle_arch_fiq); 484 } 485 486 asmlinkage void noinstr el1h_64_error_handler(struct pt_regs *regs) 487 { 488 unsigned long esr = read_sysreg(esr_el1); 489 490 local_daif_restore(DAIF_ERRCTX); 491 arm64_enter_nmi(regs); 492 do_serror(regs, esr); 493 arm64_exit_nmi(regs); 494 } 495 496 static void noinstr el0_da(struct pt_regs *regs, unsigned long esr) 497 { 498 unsigned long far = read_sysreg(far_el1); 499 500 enter_from_user_mode(regs); 501 local_daif_restore(DAIF_PROCCTX); 502 do_mem_abort(far, esr, regs); 503 exit_to_user_mode(regs); 504 } 505 506 static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr) 507 { 508 unsigned long far = read_sysreg(far_el1); 509 510 /* 511 * We've taken an instruction abort from userspace and not yet 512 * re-enabled IRQs. If the address is a kernel address, apply 513 * BP hardening prior to enabling IRQs and pre-emption. 514 */ 515 if (!is_ttbr0_addr(far)) 516 arm64_apply_bp_hardening(); 517 518 enter_from_user_mode(regs); 519 local_daif_restore(DAIF_PROCCTX); 520 do_mem_abort(far, esr, regs); 521 exit_to_user_mode(regs); 522 } 523 524 static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr) 525 { 526 enter_from_user_mode(regs); 527 local_daif_restore(DAIF_PROCCTX); 528 do_fpsimd_acc(esr, regs); 529 exit_to_user_mode(regs); 530 } 531 532 static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr) 533 { 534 enter_from_user_mode(regs); 535 local_daif_restore(DAIF_PROCCTX); 536 do_sve_acc(esr, regs); 537 exit_to_user_mode(regs); 538 } 539 540 static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr) 541 { 542 enter_from_user_mode(regs); 543 local_daif_restore(DAIF_PROCCTX); 544 do_fpsimd_exc(esr, regs); 545 exit_to_user_mode(regs); 546 } 547 548 static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr) 549 { 550 enter_from_user_mode(regs); 551 local_daif_restore(DAIF_PROCCTX); 552 do_sysinstr(esr, regs); 553 exit_to_user_mode(regs); 554 } 555 556 static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr) 557 { 558 unsigned long far = read_sysreg(far_el1); 559 560 if (!is_ttbr0_addr(instruction_pointer(regs))) 561 arm64_apply_bp_hardening(); 562 563 enter_from_user_mode(regs); 564 local_daif_restore(DAIF_PROCCTX); 565 do_sp_pc_abort(far, esr, regs); 566 exit_to_user_mode(regs); 567 } 568 569 static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr) 570 { 571 enter_from_user_mode(regs); 572 local_daif_restore(DAIF_PROCCTX); 573 do_sp_pc_abort(regs->sp, esr, regs); 574 exit_to_user_mode(regs); 575 } 576 577 static void noinstr el0_undef(struct pt_regs *regs) 578 { 579 enter_from_user_mode(regs); 580 local_daif_restore(DAIF_PROCCTX); 581 do_undefinstr(regs); 582 exit_to_user_mode(regs); 583 } 584 585 static void noinstr el0_bti(struct pt_regs *regs) 586 { 587 enter_from_user_mode(regs); 588 local_daif_restore(DAIF_PROCCTX); 589 do_bti(regs); 590 exit_to_user_mode(regs); 591 } 592 593 static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr) 594 { 595 enter_from_user_mode(regs); 596 local_daif_restore(DAIF_PROCCTX); 597 bad_el0_sync(regs, 0, esr); 598 exit_to_user_mode(regs); 599 } 600 601 static void noinstr el0_dbg(struct pt_regs *regs, unsigned long esr) 602 { 603 /* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */ 604 unsigned long far = read_sysreg(far_el1); 605 606 enter_from_user_mode(regs); 607 do_debug_exception(far, esr, regs); 608 local_daif_restore(DAIF_PROCCTX); 609 exit_to_user_mode(regs); 610 } 611 612 static void noinstr el0_svc(struct pt_regs *regs) 613 { 614 enter_from_user_mode(regs); 615 cortex_a76_erratum_1463225_svc_handler(); 616 do_el0_svc(regs); 617 exit_to_user_mode(regs); 618 } 619 620 static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr) 621 { 622 enter_from_user_mode(regs); 623 local_daif_restore(DAIF_PROCCTX); 624 do_ptrauth_fault(regs, esr); 625 exit_to_user_mode(regs); 626 } 627 628 asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs) 629 { 630 unsigned long esr = read_sysreg(esr_el1); 631 632 switch (ESR_ELx_EC(esr)) { 633 case ESR_ELx_EC_SVC64: 634 el0_svc(regs); 635 break; 636 case ESR_ELx_EC_DABT_LOW: 637 el0_da(regs, esr); 638 break; 639 case ESR_ELx_EC_IABT_LOW: 640 el0_ia(regs, esr); 641 break; 642 case ESR_ELx_EC_FP_ASIMD: 643 el0_fpsimd_acc(regs, esr); 644 break; 645 case ESR_ELx_EC_SVE: 646 el0_sve_acc(regs, esr); 647 break; 648 case ESR_ELx_EC_FP_EXC64: 649 el0_fpsimd_exc(regs, esr); 650 break; 651 case ESR_ELx_EC_SYS64: 652 case ESR_ELx_EC_WFx: 653 el0_sys(regs, esr); 654 break; 655 case ESR_ELx_EC_SP_ALIGN: 656 el0_sp(regs, esr); 657 break; 658 case ESR_ELx_EC_PC_ALIGN: 659 el0_pc(regs, esr); 660 break; 661 case ESR_ELx_EC_UNKNOWN: 662 el0_undef(regs); 663 break; 664 case ESR_ELx_EC_BTI: 665 el0_bti(regs); 666 break; 667 case ESR_ELx_EC_BREAKPT_LOW: 668 case ESR_ELx_EC_SOFTSTP_LOW: 669 case ESR_ELx_EC_WATCHPT_LOW: 670 case ESR_ELx_EC_BRK64: 671 el0_dbg(regs, esr); 672 break; 673 case ESR_ELx_EC_FPAC: 674 el0_fpac(regs, esr); 675 break; 676 default: 677 el0_inv(regs, esr); 678 } 679 } 680 681 static void noinstr el0_interrupt(struct pt_regs *regs, 682 void (*handler)(struct pt_regs *)) 683 { 684 enter_from_user_mode(regs); 685 686 write_sysreg(DAIF_PROCCTX_NOIRQ, daif); 687 688 if (regs->pc & BIT(55)) 689 arm64_apply_bp_hardening(); 690 691 irq_enter_rcu(); 692 do_interrupt_handler(regs, handler); 693 irq_exit_rcu(); 694 695 exit_to_user_mode(regs); 696 } 697 698 static void noinstr __el0_irq_handler_common(struct pt_regs *regs) 699 { 700 el0_interrupt(regs, handle_arch_irq); 701 } 702 703 asmlinkage void noinstr el0t_64_irq_handler(struct pt_regs *regs) 704 { 705 __el0_irq_handler_common(regs); 706 } 707 708 static void noinstr __el0_fiq_handler_common(struct pt_regs *regs) 709 { 710 el0_interrupt(regs, handle_arch_fiq); 711 } 712 713 asmlinkage void noinstr el0t_64_fiq_handler(struct pt_regs *regs) 714 { 715 __el0_fiq_handler_common(regs); 716 } 717 718 static void noinstr __el0_error_handler_common(struct pt_regs *regs) 719 { 720 unsigned long esr = read_sysreg(esr_el1); 721 722 enter_from_user_mode(regs); 723 local_daif_restore(DAIF_ERRCTX); 724 arm64_enter_nmi(regs); 725 do_serror(regs, esr); 726 arm64_exit_nmi(regs); 727 local_daif_restore(DAIF_PROCCTX); 728 exit_to_user_mode(regs); 729 } 730 731 asmlinkage void noinstr el0t_64_error_handler(struct pt_regs *regs) 732 { 733 __el0_error_handler_common(regs); 734 } 735 736 #ifdef CONFIG_COMPAT 737 static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr) 738 { 739 enter_from_user_mode(regs); 740 local_daif_restore(DAIF_PROCCTX); 741 do_cp15instr(esr, regs); 742 exit_to_user_mode(regs); 743 } 744 745 static void noinstr el0_svc_compat(struct pt_regs *regs) 746 { 747 enter_from_user_mode(regs); 748 cortex_a76_erratum_1463225_svc_handler(); 749 do_el0_svc_compat(regs); 750 exit_to_user_mode(regs); 751 } 752 753 asmlinkage void noinstr el0t_32_sync_handler(struct pt_regs *regs) 754 { 755 unsigned long esr = read_sysreg(esr_el1); 756 757 switch (ESR_ELx_EC(esr)) { 758 case ESR_ELx_EC_SVC32: 759 el0_svc_compat(regs); 760 break; 761 case ESR_ELx_EC_DABT_LOW: 762 el0_da(regs, esr); 763 break; 764 case ESR_ELx_EC_IABT_LOW: 765 el0_ia(regs, esr); 766 break; 767 case ESR_ELx_EC_FP_ASIMD: 768 el0_fpsimd_acc(regs, esr); 769 break; 770 case ESR_ELx_EC_FP_EXC32: 771 el0_fpsimd_exc(regs, esr); 772 break; 773 case ESR_ELx_EC_PC_ALIGN: 774 el0_pc(regs, esr); 775 break; 776 case ESR_ELx_EC_UNKNOWN: 777 case ESR_ELx_EC_CP14_MR: 778 case ESR_ELx_EC_CP14_LS: 779 case ESR_ELx_EC_CP14_64: 780 el0_undef(regs); 781 break; 782 case ESR_ELx_EC_CP15_32: 783 case ESR_ELx_EC_CP15_64: 784 el0_cp15(regs, esr); 785 break; 786 case ESR_ELx_EC_BREAKPT_LOW: 787 case ESR_ELx_EC_SOFTSTP_LOW: 788 case ESR_ELx_EC_WATCHPT_LOW: 789 case ESR_ELx_EC_BKPT32: 790 el0_dbg(regs, esr); 791 break; 792 default: 793 el0_inv(regs, esr); 794 } 795 } 796 797 asmlinkage void noinstr el0t_32_irq_handler(struct pt_regs *regs) 798 { 799 __el0_irq_handler_common(regs); 800 } 801 802 asmlinkage void noinstr el0t_32_fiq_handler(struct pt_regs *regs) 803 { 804 __el0_fiq_handler_common(regs); 805 } 806 807 asmlinkage void noinstr el0t_32_error_handler(struct pt_regs *regs) 808 { 809 __el0_error_handler_common(regs); 810 } 811 #else /* CONFIG_COMPAT */ 812 UNHANDLED(el0t, 32, sync) 813 UNHANDLED(el0t, 32, irq) 814 UNHANDLED(el0t, 32, fiq) 815 UNHANDLED(el0t, 32, error) 816 #endif /* CONFIG_COMPAT */ 817 818 #ifdef CONFIG_VMAP_STACK 819 asmlinkage void noinstr handle_bad_stack(struct pt_regs *regs) 820 { 821 unsigned int esr = read_sysreg(esr_el1); 822 unsigned long far = read_sysreg(far_el1); 823 824 arm64_enter_nmi(regs); 825 panic_bad_stack(regs, esr, far); 826 } 827 #endif /* CONFIG_VMAP_STACK */ 828 829 #ifdef CONFIG_ARM_SDE_INTERFACE 830 asmlinkage noinstr unsigned long 831 __sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg) 832 { 833 unsigned long ret; 834 835 /* 836 * We didn't take an exception to get here, so the HW hasn't 837 * set/cleared bits in PSTATE that we may rely on. 838 * 839 * The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to 840 * whether PSTATE bits are inherited unchanged or generated from 841 * scratch, and the TF-A implementation always clears PAN and always 842 * clears UAO. There are no other known implementations. 843 * 844 * Subsequent revisions (ARM DEN 0054B) follow the usual rules for how 845 * PSTATE is modified upon architectural exceptions, and so PAN is 846 * either inherited or set per SCTLR_ELx.SPAN, and UAO is always 847 * cleared. 848 * 849 * We must explicitly reset PAN to the expected state, including 850 * clearing it when the host isn't using it, in case a VM had it set. 851 */ 852 if (system_uses_hw_pan()) 853 set_pstate_pan(1); 854 else if (cpu_has_pan()) 855 set_pstate_pan(0); 856 857 arm64_enter_nmi(regs); 858 ret = do_sdei_event(regs, arg); 859 arm64_exit_nmi(regs); 860 861 return ret; 862 } 863 #endif /* CONFIG_ARM_SDE_INTERFACE */ 864