1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Exception handling code 4 * 5 * Copyright (C) 2019 ARM Ltd. 6 */ 7 8 #include <linux/context_tracking.h> 9 #include <linux/kasan.h> 10 #include <linux/linkage.h> 11 #include <linux/lockdep.h> 12 #include <linux/ptrace.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/thread_info.h> 16 17 #include <asm/cpufeature.h> 18 #include <asm/daifflags.h> 19 #include <asm/esr.h> 20 #include <asm/exception.h> 21 #include <asm/irq_regs.h> 22 #include <asm/kprobes.h> 23 #include <asm/mmu.h> 24 #include <asm/processor.h> 25 #include <asm/sdei.h> 26 #include <asm/stacktrace.h> 27 #include <asm/sysreg.h> 28 #include <asm/system_misc.h> 29 30 /* 31 * Handle IRQ/context state management when entering from kernel mode. 32 * Before this function is called it is not safe to call regular kernel code, 33 * intrumentable code, or any code which may trigger an exception. 34 * 35 * This is intended to match the logic in irqentry_enter(), handling the kernel 36 * mode transitions only. 37 */ 38 static __always_inline void __enter_from_kernel_mode(struct pt_regs *regs) 39 { 40 regs->exit_rcu = false; 41 42 if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) { 43 lockdep_hardirqs_off(CALLER_ADDR0); 44 ct_irq_enter(); 45 trace_hardirqs_off_finish(); 46 47 regs->exit_rcu = true; 48 return; 49 } 50 51 lockdep_hardirqs_off(CALLER_ADDR0); 52 rcu_irq_enter_check_tick(); 53 trace_hardirqs_off_finish(); 54 } 55 56 static void noinstr enter_from_kernel_mode(struct pt_regs *regs) 57 { 58 __enter_from_kernel_mode(regs); 59 mte_check_tfsr_entry(); 60 mte_disable_tco_entry(current); 61 } 62 63 /* 64 * Handle IRQ/context state management when exiting to kernel mode. 65 * After this function returns it is not safe to call regular kernel code, 66 * intrumentable code, or any code which may trigger an exception. 67 * 68 * This is intended to match the logic in irqentry_exit(), handling the kernel 69 * mode transitions only, and with preemption handled elsewhere. 70 */ 71 static __always_inline void __exit_to_kernel_mode(struct pt_regs *regs) 72 { 73 lockdep_assert_irqs_disabled(); 74 75 if (interrupts_enabled(regs)) { 76 if (regs->exit_rcu) { 77 trace_hardirqs_on_prepare(); 78 lockdep_hardirqs_on_prepare(); 79 ct_irq_exit(); 80 lockdep_hardirqs_on(CALLER_ADDR0); 81 return; 82 } 83 84 trace_hardirqs_on(); 85 } else { 86 if (regs->exit_rcu) 87 ct_irq_exit(); 88 } 89 } 90 91 static void noinstr exit_to_kernel_mode(struct pt_regs *regs) 92 { 93 mte_check_tfsr_exit(); 94 __exit_to_kernel_mode(regs); 95 } 96 97 /* 98 * Handle IRQ/context state management when entering from user mode. 99 * Before this function is called it is not safe to call regular kernel code, 100 * intrumentable code, or any code which may trigger an exception. 101 */ 102 static __always_inline void __enter_from_user_mode(void) 103 { 104 lockdep_hardirqs_off(CALLER_ADDR0); 105 CT_WARN_ON(ct_state() != CONTEXT_USER); 106 user_exit_irqoff(); 107 trace_hardirqs_off_finish(); 108 mte_disable_tco_entry(current); 109 } 110 111 static __always_inline void enter_from_user_mode(struct pt_regs *regs) 112 { 113 __enter_from_user_mode(); 114 } 115 116 /* 117 * Handle IRQ/context state management when exiting to user mode. 118 * After this function returns it is not safe to call regular kernel code, 119 * intrumentable code, or any code which may trigger an exception. 120 */ 121 static __always_inline void __exit_to_user_mode(void) 122 { 123 trace_hardirqs_on_prepare(); 124 lockdep_hardirqs_on_prepare(); 125 user_enter_irqoff(); 126 lockdep_hardirqs_on(CALLER_ADDR0); 127 } 128 129 static __always_inline void prepare_exit_to_user_mode(struct pt_regs *regs) 130 { 131 unsigned long flags; 132 133 local_daif_mask(); 134 135 flags = read_thread_flags(); 136 if (unlikely(flags & _TIF_WORK_MASK)) 137 do_notify_resume(regs, flags); 138 } 139 140 static __always_inline void exit_to_user_mode(struct pt_regs *regs) 141 { 142 prepare_exit_to_user_mode(regs); 143 mte_check_tfsr_exit(); 144 __exit_to_user_mode(); 145 } 146 147 asmlinkage void noinstr asm_exit_to_user_mode(struct pt_regs *regs) 148 { 149 exit_to_user_mode(regs); 150 } 151 152 /* 153 * Handle IRQ/context state management when entering an NMI from user/kernel 154 * mode. Before this function is called it is not safe to call regular kernel 155 * code, intrumentable code, or any code which may trigger an exception. 156 */ 157 static void noinstr arm64_enter_nmi(struct pt_regs *regs) 158 { 159 regs->lockdep_hardirqs = lockdep_hardirqs_enabled(); 160 161 __nmi_enter(); 162 lockdep_hardirqs_off(CALLER_ADDR0); 163 lockdep_hardirq_enter(); 164 ct_nmi_enter(); 165 166 trace_hardirqs_off_finish(); 167 ftrace_nmi_enter(); 168 } 169 170 /* 171 * Handle IRQ/context state management when exiting an NMI from user/kernel 172 * mode. After this function returns it is not safe to call regular kernel 173 * code, intrumentable code, or any code which may trigger an exception. 174 */ 175 static void noinstr arm64_exit_nmi(struct pt_regs *regs) 176 { 177 bool restore = regs->lockdep_hardirqs; 178 179 ftrace_nmi_exit(); 180 if (restore) { 181 trace_hardirqs_on_prepare(); 182 lockdep_hardirqs_on_prepare(); 183 } 184 185 ct_nmi_exit(); 186 lockdep_hardirq_exit(); 187 if (restore) 188 lockdep_hardirqs_on(CALLER_ADDR0); 189 __nmi_exit(); 190 } 191 192 /* 193 * Handle IRQ/context state management when entering a debug exception from 194 * kernel mode. Before this function is called it is not safe to call regular 195 * kernel code, intrumentable code, or any code which may trigger an exception. 196 */ 197 static void noinstr arm64_enter_el1_dbg(struct pt_regs *regs) 198 { 199 regs->lockdep_hardirqs = lockdep_hardirqs_enabled(); 200 201 lockdep_hardirqs_off(CALLER_ADDR0); 202 ct_nmi_enter(); 203 204 trace_hardirqs_off_finish(); 205 } 206 207 /* 208 * Handle IRQ/context state management when exiting a debug exception from 209 * kernel mode. After this function returns it is not safe to call regular 210 * kernel code, intrumentable code, or any code which may trigger an exception. 211 */ 212 static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs) 213 { 214 bool restore = regs->lockdep_hardirqs; 215 216 if (restore) { 217 trace_hardirqs_on_prepare(); 218 lockdep_hardirqs_on_prepare(); 219 } 220 221 ct_nmi_exit(); 222 if (restore) 223 lockdep_hardirqs_on(CALLER_ADDR0); 224 } 225 226 #ifdef CONFIG_PREEMPT_DYNAMIC 227 DEFINE_STATIC_KEY_TRUE(sk_dynamic_irqentry_exit_cond_resched); 228 #define need_irq_preemption() \ 229 (static_branch_unlikely(&sk_dynamic_irqentry_exit_cond_resched)) 230 #else 231 #define need_irq_preemption() (IS_ENABLED(CONFIG_PREEMPTION)) 232 #endif 233 234 static void __sched arm64_preempt_schedule_irq(void) 235 { 236 if (!need_irq_preemption()) 237 return; 238 239 /* 240 * Note: thread_info::preempt_count includes both thread_info::count 241 * and thread_info::need_resched, and is not equivalent to 242 * preempt_count(). 243 */ 244 if (READ_ONCE(current_thread_info()->preempt_count) != 0) 245 return; 246 247 /* 248 * DAIF.DA are cleared at the start of IRQ/FIQ handling, and when GIC 249 * priority masking is used the GIC irqchip driver will clear DAIF.IF 250 * using gic_arch_enable_irqs() for normal IRQs. If anything is set in 251 * DAIF we must have handled an NMI, so skip preemption. 252 */ 253 if (system_uses_irq_prio_masking() && read_sysreg(daif)) 254 return; 255 256 /* 257 * Preempting a task from an IRQ means we leave copies of PSTATE 258 * on the stack. cpufeature's enable calls may modify PSTATE, but 259 * resuming one of these preempted tasks would undo those changes. 260 * 261 * Only allow a task to be preempted once cpufeatures have been 262 * enabled. 263 */ 264 if (system_capabilities_finalized()) 265 preempt_schedule_irq(); 266 } 267 268 static void do_interrupt_handler(struct pt_regs *regs, 269 void (*handler)(struct pt_regs *)) 270 { 271 struct pt_regs *old_regs = set_irq_regs(regs); 272 273 if (on_thread_stack()) 274 call_on_irq_stack(regs, handler); 275 else 276 handler(regs); 277 278 set_irq_regs(old_regs); 279 } 280 281 extern void (*handle_arch_irq)(struct pt_regs *); 282 extern void (*handle_arch_fiq)(struct pt_regs *); 283 284 static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector, 285 unsigned long esr) 286 { 287 arm64_enter_nmi(regs); 288 289 console_verbose(); 290 291 pr_crit("Unhandled %s exception on CPU%d, ESR 0x%016lx -- %s\n", 292 vector, smp_processor_id(), esr, 293 esr_get_class_string(esr)); 294 295 __show_regs(regs); 296 panic("Unhandled exception"); 297 } 298 299 #define UNHANDLED(el, regsize, vector) \ 300 asmlinkage void noinstr el##_##regsize##_##vector##_handler(struct pt_regs *regs) \ 301 { \ 302 const char *desc = #regsize "-bit " #el " " #vector; \ 303 __panic_unhandled(regs, desc, read_sysreg(esr_el1)); \ 304 } 305 306 #ifdef CONFIG_ARM64_ERRATUM_1463225 307 static DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa); 308 309 static void cortex_a76_erratum_1463225_svc_handler(void) 310 { 311 u32 reg, val; 312 313 if (!unlikely(test_thread_flag(TIF_SINGLESTEP))) 314 return; 315 316 if (!unlikely(this_cpu_has_cap(ARM64_WORKAROUND_1463225))) 317 return; 318 319 __this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 1); 320 reg = read_sysreg(mdscr_el1); 321 val = reg | DBG_MDSCR_SS | DBG_MDSCR_KDE; 322 write_sysreg(val, mdscr_el1); 323 asm volatile("msr daifclr, #8"); 324 isb(); 325 326 /* We will have taken a single-step exception by this point */ 327 328 write_sysreg(reg, mdscr_el1); 329 __this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 0); 330 } 331 332 static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) 333 { 334 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa)) 335 return false; 336 337 /* 338 * We've taken a dummy step exception from the kernel to ensure 339 * that interrupts are re-enabled on the syscall path. Return back 340 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions 341 * masked so that we can safely restore the mdscr and get on with 342 * handling the syscall. 343 */ 344 regs->pstate |= PSR_D_BIT; 345 return true; 346 } 347 #else /* CONFIG_ARM64_ERRATUM_1463225 */ 348 static void cortex_a76_erratum_1463225_svc_handler(void) { } 349 static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) 350 { 351 return false; 352 } 353 #endif /* CONFIG_ARM64_ERRATUM_1463225 */ 354 355 UNHANDLED(el1t, 64, sync) 356 UNHANDLED(el1t, 64, irq) 357 UNHANDLED(el1t, 64, fiq) 358 UNHANDLED(el1t, 64, error) 359 360 static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr) 361 { 362 unsigned long far = read_sysreg(far_el1); 363 364 enter_from_kernel_mode(regs); 365 local_daif_inherit(regs); 366 do_mem_abort(far, esr, regs); 367 local_daif_mask(); 368 exit_to_kernel_mode(regs); 369 } 370 371 static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr) 372 { 373 unsigned long far = read_sysreg(far_el1); 374 375 enter_from_kernel_mode(regs); 376 local_daif_inherit(regs); 377 do_sp_pc_abort(far, esr, regs); 378 local_daif_mask(); 379 exit_to_kernel_mode(regs); 380 } 381 382 static void noinstr el1_undef(struct pt_regs *regs, unsigned long esr) 383 { 384 enter_from_kernel_mode(regs); 385 local_daif_inherit(regs); 386 do_undefinstr(regs, esr); 387 local_daif_mask(); 388 exit_to_kernel_mode(regs); 389 } 390 391 static void noinstr el1_bti(struct pt_regs *regs, unsigned long esr) 392 { 393 enter_from_kernel_mode(regs); 394 local_daif_inherit(regs); 395 do_el1_bti(regs, esr); 396 local_daif_mask(); 397 exit_to_kernel_mode(regs); 398 } 399 400 static void noinstr el1_dbg(struct pt_regs *regs, unsigned long esr) 401 { 402 unsigned long far = read_sysreg(far_el1); 403 404 arm64_enter_el1_dbg(regs); 405 if (!cortex_a76_erratum_1463225_debug_handler(regs)) 406 do_debug_exception(far, esr, regs); 407 arm64_exit_el1_dbg(regs); 408 } 409 410 static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr) 411 { 412 enter_from_kernel_mode(regs); 413 local_daif_inherit(regs); 414 do_el1_fpac(regs, esr); 415 local_daif_mask(); 416 exit_to_kernel_mode(regs); 417 } 418 419 asmlinkage void noinstr el1h_64_sync_handler(struct pt_regs *regs) 420 { 421 unsigned long esr = read_sysreg(esr_el1); 422 423 switch (ESR_ELx_EC(esr)) { 424 case ESR_ELx_EC_DABT_CUR: 425 case ESR_ELx_EC_IABT_CUR: 426 el1_abort(regs, esr); 427 break; 428 /* 429 * We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a 430 * recursive exception when trying to push the initial pt_regs. 431 */ 432 case ESR_ELx_EC_PC_ALIGN: 433 el1_pc(regs, esr); 434 break; 435 case ESR_ELx_EC_SYS64: 436 case ESR_ELx_EC_UNKNOWN: 437 el1_undef(regs, esr); 438 break; 439 case ESR_ELx_EC_BTI: 440 el1_bti(regs, esr); 441 break; 442 case ESR_ELx_EC_BREAKPT_CUR: 443 case ESR_ELx_EC_SOFTSTP_CUR: 444 case ESR_ELx_EC_WATCHPT_CUR: 445 case ESR_ELx_EC_BRK64: 446 el1_dbg(regs, esr); 447 break; 448 case ESR_ELx_EC_FPAC: 449 el1_fpac(regs, esr); 450 break; 451 default: 452 __panic_unhandled(regs, "64-bit el1h sync", esr); 453 } 454 } 455 456 static __always_inline void __el1_pnmi(struct pt_regs *regs, 457 void (*handler)(struct pt_regs *)) 458 { 459 arm64_enter_nmi(regs); 460 do_interrupt_handler(regs, handler); 461 arm64_exit_nmi(regs); 462 } 463 464 static __always_inline void __el1_irq(struct pt_regs *regs, 465 void (*handler)(struct pt_regs *)) 466 { 467 enter_from_kernel_mode(regs); 468 469 irq_enter_rcu(); 470 do_interrupt_handler(regs, handler); 471 irq_exit_rcu(); 472 473 arm64_preempt_schedule_irq(); 474 475 exit_to_kernel_mode(regs); 476 } 477 static void noinstr el1_interrupt(struct pt_regs *regs, 478 void (*handler)(struct pt_regs *)) 479 { 480 write_sysreg(DAIF_PROCCTX_NOIRQ, daif); 481 482 if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs)) 483 __el1_pnmi(regs, handler); 484 else 485 __el1_irq(regs, handler); 486 } 487 488 asmlinkage void noinstr el1h_64_irq_handler(struct pt_regs *regs) 489 { 490 el1_interrupt(regs, handle_arch_irq); 491 } 492 493 asmlinkage void noinstr el1h_64_fiq_handler(struct pt_regs *regs) 494 { 495 el1_interrupt(regs, handle_arch_fiq); 496 } 497 498 asmlinkage void noinstr el1h_64_error_handler(struct pt_regs *regs) 499 { 500 unsigned long esr = read_sysreg(esr_el1); 501 502 local_daif_restore(DAIF_ERRCTX); 503 arm64_enter_nmi(regs); 504 do_serror(regs, esr); 505 arm64_exit_nmi(regs); 506 } 507 508 static void noinstr el0_da(struct pt_regs *regs, unsigned long esr) 509 { 510 unsigned long far = read_sysreg(far_el1); 511 512 enter_from_user_mode(regs); 513 local_daif_restore(DAIF_PROCCTX); 514 do_mem_abort(far, esr, regs); 515 exit_to_user_mode(regs); 516 } 517 518 static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr) 519 { 520 unsigned long far = read_sysreg(far_el1); 521 522 /* 523 * We've taken an instruction abort from userspace and not yet 524 * re-enabled IRQs. If the address is a kernel address, apply 525 * BP hardening prior to enabling IRQs and pre-emption. 526 */ 527 if (!is_ttbr0_addr(far)) 528 arm64_apply_bp_hardening(); 529 530 enter_from_user_mode(regs); 531 local_daif_restore(DAIF_PROCCTX); 532 do_mem_abort(far, esr, regs); 533 exit_to_user_mode(regs); 534 } 535 536 static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr) 537 { 538 enter_from_user_mode(regs); 539 local_daif_restore(DAIF_PROCCTX); 540 do_fpsimd_acc(esr, regs); 541 exit_to_user_mode(regs); 542 } 543 544 static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr) 545 { 546 enter_from_user_mode(regs); 547 local_daif_restore(DAIF_PROCCTX); 548 do_sve_acc(esr, regs); 549 exit_to_user_mode(regs); 550 } 551 552 static void noinstr el0_sme_acc(struct pt_regs *regs, unsigned long esr) 553 { 554 enter_from_user_mode(regs); 555 local_daif_restore(DAIF_PROCCTX); 556 do_sme_acc(esr, regs); 557 exit_to_user_mode(regs); 558 } 559 560 static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr) 561 { 562 enter_from_user_mode(regs); 563 local_daif_restore(DAIF_PROCCTX); 564 do_fpsimd_exc(esr, regs); 565 exit_to_user_mode(regs); 566 } 567 568 static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr) 569 { 570 enter_from_user_mode(regs); 571 local_daif_restore(DAIF_PROCCTX); 572 do_sysinstr(esr, regs); 573 exit_to_user_mode(regs); 574 } 575 576 static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr) 577 { 578 unsigned long far = read_sysreg(far_el1); 579 580 if (!is_ttbr0_addr(instruction_pointer(regs))) 581 arm64_apply_bp_hardening(); 582 583 enter_from_user_mode(regs); 584 local_daif_restore(DAIF_PROCCTX); 585 do_sp_pc_abort(far, esr, regs); 586 exit_to_user_mode(regs); 587 } 588 589 static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr) 590 { 591 enter_from_user_mode(regs); 592 local_daif_restore(DAIF_PROCCTX); 593 do_sp_pc_abort(regs->sp, esr, regs); 594 exit_to_user_mode(regs); 595 } 596 597 static void noinstr el0_undef(struct pt_regs *regs, unsigned long esr) 598 { 599 enter_from_user_mode(regs); 600 local_daif_restore(DAIF_PROCCTX); 601 do_undefinstr(regs, esr); 602 exit_to_user_mode(regs); 603 } 604 605 static void noinstr el0_bti(struct pt_regs *regs) 606 { 607 enter_from_user_mode(regs); 608 local_daif_restore(DAIF_PROCCTX); 609 do_el0_bti(regs); 610 exit_to_user_mode(regs); 611 } 612 613 static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr) 614 { 615 enter_from_user_mode(regs); 616 local_daif_restore(DAIF_PROCCTX); 617 bad_el0_sync(regs, 0, esr); 618 exit_to_user_mode(regs); 619 } 620 621 static void noinstr el0_dbg(struct pt_regs *regs, unsigned long esr) 622 { 623 /* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */ 624 unsigned long far = read_sysreg(far_el1); 625 626 enter_from_user_mode(regs); 627 do_debug_exception(far, esr, regs); 628 local_daif_restore(DAIF_PROCCTX); 629 exit_to_user_mode(regs); 630 } 631 632 static void noinstr el0_svc(struct pt_regs *regs) 633 { 634 enter_from_user_mode(regs); 635 cortex_a76_erratum_1463225_svc_handler(); 636 do_el0_svc(regs); 637 exit_to_user_mode(regs); 638 } 639 640 static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr) 641 { 642 enter_from_user_mode(regs); 643 local_daif_restore(DAIF_PROCCTX); 644 do_el0_fpac(regs, esr); 645 exit_to_user_mode(regs); 646 } 647 648 asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs) 649 { 650 unsigned long esr = read_sysreg(esr_el1); 651 652 switch (ESR_ELx_EC(esr)) { 653 case ESR_ELx_EC_SVC64: 654 el0_svc(regs); 655 break; 656 case ESR_ELx_EC_DABT_LOW: 657 el0_da(regs, esr); 658 break; 659 case ESR_ELx_EC_IABT_LOW: 660 el0_ia(regs, esr); 661 break; 662 case ESR_ELx_EC_FP_ASIMD: 663 el0_fpsimd_acc(regs, esr); 664 break; 665 case ESR_ELx_EC_SVE: 666 el0_sve_acc(regs, esr); 667 break; 668 case ESR_ELx_EC_SME: 669 el0_sme_acc(regs, esr); 670 break; 671 case ESR_ELx_EC_FP_EXC64: 672 el0_fpsimd_exc(regs, esr); 673 break; 674 case ESR_ELx_EC_SYS64: 675 case ESR_ELx_EC_WFx: 676 el0_sys(regs, esr); 677 break; 678 case ESR_ELx_EC_SP_ALIGN: 679 el0_sp(regs, esr); 680 break; 681 case ESR_ELx_EC_PC_ALIGN: 682 el0_pc(regs, esr); 683 break; 684 case ESR_ELx_EC_UNKNOWN: 685 el0_undef(regs, esr); 686 break; 687 case ESR_ELx_EC_BTI: 688 el0_bti(regs); 689 break; 690 case ESR_ELx_EC_BREAKPT_LOW: 691 case ESR_ELx_EC_SOFTSTP_LOW: 692 case ESR_ELx_EC_WATCHPT_LOW: 693 case ESR_ELx_EC_BRK64: 694 el0_dbg(regs, esr); 695 break; 696 case ESR_ELx_EC_FPAC: 697 el0_fpac(regs, esr); 698 break; 699 default: 700 el0_inv(regs, esr); 701 } 702 } 703 704 static void noinstr el0_interrupt(struct pt_regs *regs, 705 void (*handler)(struct pt_regs *)) 706 { 707 enter_from_user_mode(regs); 708 709 write_sysreg(DAIF_PROCCTX_NOIRQ, daif); 710 711 if (regs->pc & BIT(55)) 712 arm64_apply_bp_hardening(); 713 714 irq_enter_rcu(); 715 do_interrupt_handler(regs, handler); 716 irq_exit_rcu(); 717 718 exit_to_user_mode(regs); 719 } 720 721 static void noinstr __el0_irq_handler_common(struct pt_regs *regs) 722 { 723 el0_interrupt(regs, handle_arch_irq); 724 } 725 726 asmlinkage void noinstr el0t_64_irq_handler(struct pt_regs *regs) 727 { 728 __el0_irq_handler_common(regs); 729 } 730 731 static void noinstr __el0_fiq_handler_common(struct pt_regs *regs) 732 { 733 el0_interrupt(regs, handle_arch_fiq); 734 } 735 736 asmlinkage void noinstr el0t_64_fiq_handler(struct pt_regs *regs) 737 { 738 __el0_fiq_handler_common(regs); 739 } 740 741 static void noinstr __el0_error_handler_common(struct pt_regs *regs) 742 { 743 unsigned long esr = read_sysreg(esr_el1); 744 745 enter_from_user_mode(regs); 746 local_daif_restore(DAIF_ERRCTX); 747 arm64_enter_nmi(regs); 748 do_serror(regs, esr); 749 arm64_exit_nmi(regs); 750 local_daif_restore(DAIF_PROCCTX); 751 exit_to_user_mode(regs); 752 } 753 754 asmlinkage void noinstr el0t_64_error_handler(struct pt_regs *regs) 755 { 756 __el0_error_handler_common(regs); 757 } 758 759 #ifdef CONFIG_COMPAT 760 static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr) 761 { 762 enter_from_user_mode(regs); 763 local_daif_restore(DAIF_PROCCTX); 764 do_cp15instr(esr, regs); 765 exit_to_user_mode(regs); 766 } 767 768 static void noinstr el0_svc_compat(struct pt_regs *regs) 769 { 770 enter_from_user_mode(regs); 771 cortex_a76_erratum_1463225_svc_handler(); 772 do_el0_svc_compat(regs); 773 exit_to_user_mode(regs); 774 } 775 776 asmlinkage void noinstr el0t_32_sync_handler(struct pt_regs *regs) 777 { 778 unsigned long esr = read_sysreg(esr_el1); 779 780 switch (ESR_ELx_EC(esr)) { 781 case ESR_ELx_EC_SVC32: 782 el0_svc_compat(regs); 783 break; 784 case ESR_ELx_EC_DABT_LOW: 785 el0_da(regs, esr); 786 break; 787 case ESR_ELx_EC_IABT_LOW: 788 el0_ia(regs, esr); 789 break; 790 case ESR_ELx_EC_FP_ASIMD: 791 el0_fpsimd_acc(regs, esr); 792 break; 793 case ESR_ELx_EC_FP_EXC32: 794 el0_fpsimd_exc(regs, esr); 795 break; 796 case ESR_ELx_EC_PC_ALIGN: 797 el0_pc(regs, esr); 798 break; 799 case ESR_ELx_EC_UNKNOWN: 800 case ESR_ELx_EC_CP14_MR: 801 case ESR_ELx_EC_CP14_LS: 802 case ESR_ELx_EC_CP14_64: 803 el0_undef(regs, esr); 804 break; 805 case ESR_ELx_EC_CP15_32: 806 case ESR_ELx_EC_CP15_64: 807 el0_cp15(regs, esr); 808 break; 809 case ESR_ELx_EC_BREAKPT_LOW: 810 case ESR_ELx_EC_SOFTSTP_LOW: 811 case ESR_ELx_EC_WATCHPT_LOW: 812 case ESR_ELx_EC_BKPT32: 813 el0_dbg(regs, esr); 814 break; 815 default: 816 el0_inv(regs, esr); 817 } 818 } 819 820 asmlinkage void noinstr el0t_32_irq_handler(struct pt_regs *regs) 821 { 822 __el0_irq_handler_common(regs); 823 } 824 825 asmlinkage void noinstr el0t_32_fiq_handler(struct pt_regs *regs) 826 { 827 __el0_fiq_handler_common(regs); 828 } 829 830 asmlinkage void noinstr el0t_32_error_handler(struct pt_regs *regs) 831 { 832 __el0_error_handler_common(regs); 833 } 834 #else /* CONFIG_COMPAT */ 835 UNHANDLED(el0t, 32, sync) 836 UNHANDLED(el0t, 32, irq) 837 UNHANDLED(el0t, 32, fiq) 838 UNHANDLED(el0t, 32, error) 839 #endif /* CONFIG_COMPAT */ 840 841 #ifdef CONFIG_VMAP_STACK 842 asmlinkage void noinstr handle_bad_stack(struct pt_regs *regs) 843 { 844 unsigned long esr = read_sysreg(esr_el1); 845 unsigned long far = read_sysreg(far_el1); 846 847 arm64_enter_nmi(regs); 848 panic_bad_stack(regs, esr, far); 849 } 850 #endif /* CONFIG_VMAP_STACK */ 851 852 #ifdef CONFIG_ARM_SDE_INTERFACE 853 asmlinkage noinstr unsigned long 854 __sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg) 855 { 856 unsigned long ret; 857 858 /* 859 * We didn't take an exception to get here, so the HW hasn't 860 * set/cleared bits in PSTATE that we may rely on. 861 * 862 * The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to 863 * whether PSTATE bits are inherited unchanged or generated from 864 * scratch, and the TF-A implementation always clears PAN and always 865 * clears UAO. There are no other known implementations. 866 * 867 * Subsequent revisions (ARM DEN 0054B) follow the usual rules for how 868 * PSTATE is modified upon architectural exceptions, and so PAN is 869 * either inherited or set per SCTLR_ELx.SPAN, and UAO is always 870 * cleared. 871 * 872 * We must explicitly reset PAN to the expected state, including 873 * clearing it when the host isn't using it, in case a VM had it set. 874 */ 875 if (system_uses_hw_pan()) 876 set_pstate_pan(1); 877 else if (cpu_has_pan()) 878 set_pstate_pan(0); 879 880 arm64_enter_nmi(regs); 881 ret = do_sdei_event(regs, arg); 882 arm64_exit_nmi(regs); 883 884 return ret; 885 } 886 #endif /* CONFIG_ARM_SDE_INTERFACE */ 887