xref: /openbmc/linux/arch/arm64/kernel/entry-common.c (revision 72ed5d5624af384eaf74d84915810d54486a75e2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Exception handling code
4  *
5  * Copyright (C) 2019 ARM Ltd.
6  */
7 
8 #include <linux/context_tracking.h>
9 #include <linux/kasan.h>
10 #include <linux/linkage.h>
11 #include <linux/lockdep.h>
12 #include <linux/ptrace.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/thread_info.h>
16 
17 #include <asm/cpufeature.h>
18 #include <asm/daifflags.h>
19 #include <asm/esr.h>
20 #include <asm/exception.h>
21 #include <asm/irq_regs.h>
22 #include <asm/kprobes.h>
23 #include <asm/mmu.h>
24 #include <asm/processor.h>
25 #include <asm/sdei.h>
26 #include <asm/stacktrace.h>
27 #include <asm/sysreg.h>
28 #include <asm/system_misc.h>
29 
30 /*
31  * Handle IRQ/context state management when entering from kernel mode.
32  * Before this function is called it is not safe to call regular kernel code,
33  * instrumentable code, or any code which may trigger an exception.
34  *
35  * This is intended to match the logic in irqentry_enter(), handling the kernel
36  * mode transitions only.
37  */
38 static __always_inline void __enter_from_kernel_mode(struct pt_regs *regs)
39 {
40 	regs->exit_rcu = false;
41 
42 	if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) {
43 		lockdep_hardirqs_off(CALLER_ADDR0);
44 		ct_irq_enter();
45 		trace_hardirqs_off_finish();
46 
47 		regs->exit_rcu = true;
48 		return;
49 	}
50 
51 	lockdep_hardirqs_off(CALLER_ADDR0);
52 	rcu_irq_enter_check_tick();
53 	trace_hardirqs_off_finish();
54 }
55 
56 static void noinstr enter_from_kernel_mode(struct pt_regs *regs)
57 {
58 	__enter_from_kernel_mode(regs);
59 	mte_check_tfsr_entry();
60 	mte_disable_tco_entry(current);
61 }
62 
63 /*
64  * Handle IRQ/context state management when exiting to kernel mode.
65  * After this function returns it is not safe to call regular kernel code,
66  * instrumentable code, or any code which may trigger an exception.
67  *
68  * This is intended to match the logic in irqentry_exit(), handling the kernel
69  * mode transitions only, and with preemption handled elsewhere.
70  */
71 static __always_inline void __exit_to_kernel_mode(struct pt_regs *regs)
72 {
73 	lockdep_assert_irqs_disabled();
74 
75 	if (interrupts_enabled(regs)) {
76 		if (regs->exit_rcu) {
77 			trace_hardirqs_on_prepare();
78 			lockdep_hardirqs_on_prepare();
79 			ct_irq_exit();
80 			lockdep_hardirqs_on(CALLER_ADDR0);
81 			return;
82 		}
83 
84 		trace_hardirqs_on();
85 	} else {
86 		if (regs->exit_rcu)
87 			ct_irq_exit();
88 	}
89 }
90 
91 static void noinstr exit_to_kernel_mode(struct pt_regs *regs)
92 {
93 	mte_check_tfsr_exit();
94 	__exit_to_kernel_mode(regs);
95 }
96 
97 /*
98  * Handle IRQ/context state management when entering from user mode.
99  * Before this function is called it is not safe to call regular kernel code,
100  * instrumentable code, or any code which may trigger an exception.
101  */
102 static __always_inline void __enter_from_user_mode(void)
103 {
104 	lockdep_hardirqs_off(CALLER_ADDR0);
105 	CT_WARN_ON(ct_state() != CONTEXT_USER);
106 	user_exit_irqoff();
107 	trace_hardirqs_off_finish();
108 	mte_disable_tco_entry(current);
109 }
110 
111 static __always_inline void enter_from_user_mode(struct pt_regs *regs)
112 {
113 	__enter_from_user_mode();
114 }
115 
116 /*
117  * Handle IRQ/context state management when exiting to user mode.
118  * After this function returns it is not safe to call regular kernel code,
119  * instrumentable code, or any code which may trigger an exception.
120  */
121 static __always_inline void __exit_to_user_mode(void)
122 {
123 	trace_hardirqs_on_prepare();
124 	lockdep_hardirqs_on_prepare();
125 	user_enter_irqoff();
126 	lockdep_hardirqs_on(CALLER_ADDR0);
127 }
128 
129 static __always_inline void prepare_exit_to_user_mode(struct pt_regs *regs)
130 {
131 	unsigned long flags;
132 
133 	local_daif_mask();
134 
135 	flags = read_thread_flags();
136 	if (unlikely(flags & _TIF_WORK_MASK))
137 		do_notify_resume(regs, flags);
138 }
139 
140 static __always_inline void exit_to_user_mode(struct pt_regs *regs)
141 {
142 	prepare_exit_to_user_mode(regs);
143 	mte_check_tfsr_exit();
144 	__exit_to_user_mode();
145 }
146 
147 asmlinkage void noinstr asm_exit_to_user_mode(struct pt_regs *regs)
148 {
149 	exit_to_user_mode(regs);
150 }
151 
152 /*
153  * Handle IRQ/context state management when entering an NMI from user/kernel
154  * mode. Before this function is called it is not safe to call regular kernel
155  * code, instrumentable code, or any code which may trigger an exception.
156  */
157 static void noinstr arm64_enter_nmi(struct pt_regs *regs)
158 {
159 	regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
160 
161 	__nmi_enter();
162 	lockdep_hardirqs_off(CALLER_ADDR0);
163 	lockdep_hardirq_enter();
164 	ct_nmi_enter();
165 
166 	trace_hardirqs_off_finish();
167 	ftrace_nmi_enter();
168 }
169 
170 /*
171  * Handle IRQ/context state management when exiting an NMI from user/kernel
172  * mode. After this function returns it is not safe to call regular kernel
173  * code, instrumentable code, or any code which may trigger an exception.
174  */
175 static void noinstr arm64_exit_nmi(struct pt_regs *regs)
176 {
177 	bool restore = regs->lockdep_hardirqs;
178 
179 	ftrace_nmi_exit();
180 	if (restore) {
181 		trace_hardirqs_on_prepare();
182 		lockdep_hardirqs_on_prepare();
183 	}
184 
185 	ct_nmi_exit();
186 	lockdep_hardirq_exit();
187 	if (restore)
188 		lockdep_hardirqs_on(CALLER_ADDR0);
189 	__nmi_exit();
190 }
191 
192 /*
193  * Handle IRQ/context state management when entering a debug exception from
194  * kernel mode. Before this function is called it is not safe to call regular
195  * kernel code, instrumentable code, or any code which may trigger an exception.
196  */
197 static void noinstr arm64_enter_el1_dbg(struct pt_regs *regs)
198 {
199 	regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
200 
201 	lockdep_hardirqs_off(CALLER_ADDR0);
202 	ct_nmi_enter();
203 
204 	trace_hardirqs_off_finish();
205 }
206 
207 /*
208  * Handle IRQ/context state management when exiting a debug exception from
209  * kernel mode. After this function returns it is not safe to call regular
210  * kernel code, instrumentable code, or any code which may trigger an exception.
211  */
212 static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs)
213 {
214 	bool restore = regs->lockdep_hardirqs;
215 
216 	if (restore) {
217 		trace_hardirqs_on_prepare();
218 		lockdep_hardirqs_on_prepare();
219 	}
220 
221 	ct_nmi_exit();
222 	if (restore)
223 		lockdep_hardirqs_on(CALLER_ADDR0);
224 }
225 
226 #ifdef CONFIG_PREEMPT_DYNAMIC
227 DEFINE_STATIC_KEY_TRUE(sk_dynamic_irqentry_exit_cond_resched);
228 #define need_irq_preemption() \
229 	(static_branch_unlikely(&sk_dynamic_irqentry_exit_cond_resched))
230 #else
231 #define need_irq_preemption()	(IS_ENABLED(CONFIG_PREEMPTION))
232 #endif
233 
234 static void __sched arm64_preempt_schedule_irq(void)
235 {
236 	if (!need_irq_preemption())
237 		return;
238 
239 	/*
240 	 * Note: thread_info::preempt_count includes both thread_info::count
241 	 * and thread_info::need_resched, and is not equivalent to
242 	 * preempt_count().
243 	 */
244 	if (READ_ONCE(current_thread_info()->preempt_count) != 0)
245 		return;
246 
247 	/*
248 	 * DAIF.DA are cleared at the start of IRQ/FIQ handling, and when GIC
249 	 * priority masking is used the GIC irqchip driver will clear DAIF.IF
250 	 * using gic_arch_enable_irqs() for normal IRQs. If anything is set in
251 	 * DAIF we must have handled an NMI, so skip preemption.
252 	 */
253 	if (system_uses_irq_prio_masking() && read_sysreg(daif))
254 		return;
255 
256 	/*
257 	 * Preempting a task from an IRQ means we leave copies of PSTATE
258 	 * on the stack. cpufeature's enable calls may modify PSTATE, but
259 	 * resuming one of these preempted tasks would undo those changes.
260 	 *
261 	 * Only allow a task to be preempted once cpufeatures have been
262 	 * enabled.
263 	 */
264 	if (system_capabilities_finalized())
265 		preempt_schedule_irq();
266 }
267 
268 static void do_interrupt_handler(struct pt_regs *regs,
269 				 void (*handler)(struct pt_regs *))
270 {
271 	struct pt_regs *old_regs = set_irq_regs(regs);
272 
273 	if (on_thread_stack())
274 		call_on_irq_stack(regs, handler);
275 	else
276 		handler(regs);
277 
278 	set_irq_regs(old_regs);
279 }
280 
281 extern void (*handle_arch_irq)(struct pt_regs *);
282 extern void (*handle_arch_fiq)(struct pt_regs *);
283 
284 static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector,
285 				      unsigned long esr)
286 {
287 	arm64_enter_nmi(regs);
288 
289 	console_verbose();
290 
291 	pr_crit("Unhandled %s exception on CPU%d, ESR 0x%016lx -- %s\n",
292 		vector, smp_processor_id(), esr,
293 		esr_get_class_string(esr));
294 
295 	__show_regs(regs);
296 	panic("Unhandled exception");
297 }
298 
299 #define UNHANDLED(el, regsize, vector)							\
300 asmlinkage void noinstr el##_##regsize##_##vector##_handler(struct pt_regs *regs)	\
301 {											\
302 	const char *desc = #regsize "-bit " #el " " #vector;				\
303 	__panic_unhandled(regs, desc, read_sysreg(esr_el1));				\
304 }
305 
306 #ifdef CONFIG_ARM64_ERRATUM_1463225
307 static DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
308 
309 static void cortex_a76_erratum_1463225_svc_handler(void)
310 {
311 	u32 reg, val;
312 
313 	if (!unlikely(test_thread_flag(TIF_SINGLESTEP)))
314 		return;
315 
316 	if (!unlikely(this_cpu_has_cap(ARM64_WORKAROUND_1463225)))
317 		return;
318 
319 	__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 1);
320 	reg = read_sysreg(mdscr_el1);
321 	val = reg | DBG_MDSCR_SS | DBG_MDSCR_KDE;
322 	write_sysreg(val, mdscr_el1);
323 	asm volatile("msr daifclr, #8");
324 	isb();
325 
326 	/* We will have taken a single-step exception by this point */
327 
328 	write_sysreg(reg, mdscr_el1);
329 	__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 0);
330 }
331 
332 static __always_inline bool
333 cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
334 {
335 	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
336 		return false;
337 
338 	/*
339 	 * We've taken a dummy step exception from the kernel to ensure
340 	 * that interrupts are re-enabled on the syscall path. Return back
341 	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
342 	 * masked so that we can safely restore the mdscr and get on with
343 	 * handling the syscall.
344 	 */
345 	regs->pstate |= PSR_D_BIT;
346 	return true;
347 }
348 #else /* CONFIG_ARM64_ERRATUM_1463225 */
349 static void cortex_a76_erratum_1463225_svc_handler(void) { }
350 static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
351 {
352 	return false;
353 }
354 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
355 
356 UNHANDLED(el1t, 64, sync)
357 UNHANDLED(el1t, 64, irq)
358 UNHANDLED(el1t, 64, fiq)
359 UNHANDLED(el1t, 64, error)
360 
361 static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr)
362 {
363 	unsigned long far = read_sysreg(far_el1);
364 
365 	enter_from_kernel_mode(regs);
366 	local_daif_inherit(regs);
367 	do_mem_abort(far, esr, regs);
368 	local_daif_mask();
369 	exit_to_kernel_mode(regs);
370 }
371 
372 static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr)
373 {
374 	unsigned long far = read_sysreg(far_el1);
375 
376 	enter_from_kernel_mode(regs);
377 	local_daif_inherit(regs);
378 	do_sp_pc_abort(far, esr, regs);
379 	local_daif_mask();
380 	exit_to_kernel_mode(regs);
381 }
382 
383 static void noinstr el1_undef(struct pt_regs *regs, unsigned long esr)
384 {
385 	enter_from_kernel_mode(regs);
386 	local_daif_inherit(regs);
387 	do_el1_undef(regs, esr);
388 	local_daif_mask();
389 	exit_to_kernel_mode(regs);
390 }
391 
392 static void noinstr el1_bti(struct pt_regs *regs, unsigned long esr)
393 {
394 	enter_from_kernel_mode(regs);
395 	local_daif_inherit(regs);
396 	do_el1_bti(regs, esr);
397 	local_daif_mask();
398 	exit_to_kernel_mode(regs);
399 }
400 
401 static void noinstr el1_dbg(struct pt_regs *regs, unsigned long esr)
402 {
403 	unsigned long far = read_sysreg(far_el1);
404 
405 	arm64_enter_el1_dbg(regs);
406 	if (!cortex_a76_erratum_1463225_debug_handler(regs))
407 		do_debug_exception(far, esr, regs);
408 	arm64_exit_el1_dbg(regs);
409 }
410 
411 static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr)
412 {
413 	enter_from_kernel_mode(regs);
414 	local_daif_inherit(regs);
415 	do_el1_fpac(regs, esr);
416 	local_daif_mask();
417 	exit_to_kernel_mode(regs);
418 }
419 
420 asmlinkage void noinstr el1h_64_sync_handler(struct pt_regs *regs)
421 {
422 	unsigned long esr = read_sysreg(esr_el1);
423 
424 	switch (ESR_ELx_EC(esr)) {
425 	case ESR_ELx_EC_DABT_CUR:
426 	case ESR_ELx_EC_IABT_CUR:
427 		el1_abort(regs, esr);
428 		break;
429 	/*
430 	 * We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a
431 	 * recursive exception when trying to push the initial pt_regs.
432 	 */
433 	case ESR_ELx_EC_PC_ALIGN:
434 		el1_pc(regs, esr);
435 		break;
436 	case ESR_ELx_EC_SYS64:
437 	case ESR_ELx_EC_UNKNOWN:
438 		el1_undef(regs, esr);
439 		break;
440 	case ESR_ELx_EC_BTI:
441 		el1_bti(regs, esr);
442 		break;
443 	case ESR_ELx_EC_BREAKPT_CUR:
444 	case ESR_ELx_EC_SOFTSTP_CUR:
445 	case ESR_ELx_EC_WATCHPT_CUR:
446 	case ESR_ELx_EC_BRK64:
447 		el1_dbg(regs, esr);
448 		break;
449 	case ESR_ELx_EC_FPAC:
450 		el1_fpac(regs, esr);
451 		break;
452 	default:
453 		__panic_unhandled(regs, "64-bit el1h sync", esr);
454 	}
455 }
456 
457 static __always_inline void __el1_pnmi(struct pt_regs *regs,
458 				       void (*handler)(struct pt_regs *))
459 {
460 	arm64_enter_nmi(regs);
461 	do_interrupt_handler(regs, handler);
462 	arm64_exit_nmi(regs);
463 }
464 
465 static __always_inline void __el1_irq(struct pt_regs *regs,
466 				      void (*handler)(struct pt_regs *))
467 {
468 	enter_from_kernel_mode(regs);
469 
470 	irq_enter_rcu();
471 	do_interrupt_handler(regs, handler);
472 	irq_exit_rcu();
473 
474 	arm64_preempt_schedule_irq();
475 
476 	exit_to_kernel_mode(regs);
477 }
478 static void noinstr el1_interrupt(struct pt_regs *regs,
479 				  void (*handler)(struct pt_regs *))
480 {
481 	write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
482 
483 	if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs))
484 		__el1_pnmi(regs, handler);
485 	else
486 		__el1_irq(regs, handler);
487 }
488 
489 asmlinkage void noinstr el1h_64_irq_handler(struct pt_regs *regs)
490 {
491 	el1_interrupt(regs, handle_arch_irq);
492 }
493 
494 asmlinkage void noinstr el1h_64_fiq_handler(struct pt_regs *regs)
495 {
496 	el1_interrupt(regs, handle_arch_fiq);
497 }
498 
499 asmlinkage void noinstr el1h_64_error_handler(struct pt_regs *regs)
500 {
501 	unsigned long esr = read_sysreg(esr_el1);
502 
503 	local_daif_restore(DAIF_ERRCTX);
504 	arm64_enter_nmi(regs);
505 	do_serror(regs, esr);
506 	arm64_exit_nmi(regs);
507 }
508 
509 static void noinstr el0_da(struct pt_regs *regs, unsigned long esr)
510 {
511 	unsigned long far = read_sysreg(far_el1);
512 
513 	enter_from_user_mode(regs);
514 	local_daif_restore(DAIF_PROCCTX);
515 	do_mem_abort(far, esr, regs);
516 	exit_to_user_mode(regs);
517 }
518 
519 static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr)
520 {
521 	unsigned long far = read_sysreg(far_el1);
522 
523 	/*
524 	 * We've taken an instruction abort from userspace and not yet
525 	 * re-enabled IRQs. If the address is a kernel address, apply
526 	 * BP hardening prior to enabling IRQs and pre-emption.
527 	 */
528 	if (!is_ttbr0_addr(far))
529 		arm64_apply_bp_hardening();
530 
531 	enter_from_user_mode(regs);
532 	local_daif_restore(DAIF_PROCCTX);
533 	do_mem_abort(far, esr, regs);
534 	exit_to_user_mode(regs);
535 }
536 
537 static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr)
538 {
539 	enter_from_user_mode(regs);
540 	local_daif_restore(DAIF_PROCCTX);
541 	do_fpsimd_acc(esr, regs);
542 	exit_to_user_mode(regs);
543 }
544 
545 static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr)
546 {
547 	enter_from_user_mode(regs);
548 	local_daif_restore(DAIF_PROCCTX);
549 	do_sve_acc(esr, regs);
550 	exit_to_user_mode(regs);
551 }
552 
553 static void noinstr el0_sme_acc(struct pt_regs *regs, unsigned long esr)
554 {
555 	enter_from_user_mode(regs);
556 	local_daif_restore(DAIF_PROCCTX);
557 	do_sme_acc(esr, regs);
558 	exit_to_user_mode(regs);
559 }
560 
561 static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr)
562 {
563 	enter_from_user_mode(regs);
564 	local_daif_restore(DAIF_PROCCTX);
565 	do_fpsimd_exc(esr, regs);
566 	exit_to_user_mode(regs);
567 }
568 
569 static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr)
570 {
571 	enter_from_user_mode(regs);
572 	local_daif_restore(DAIF_PROCCTX);
573 	do_el0_sys(esr, regs);
574 	exit_to_user_mode(regs);
575 }
576 
577 static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr)
578 {
579 	unsigned long far = read_sysreg(far_el1);
580 
581 	if (!is_ttbr0_addr(instruction_pointer(regs)))
582 		arm64_apply_bp_hardening();
583 
584 	enter_from_user_mode(regs);
585 	local_daif_restore(DAIF_PROCCTX);
586 	do_sp_pc_abort(far, esr, regs);
587 	exit_to_user_mode(regs);
588 }
589 
590 static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr)
591 {
592 	enter_from_user_mode(regs);
593 	local_daif_restore(DAIF_PROCCTX);
594 	do_sp_pc_abort(regs->sp, esr, regs);
595 	exit_to_user_mode(regs);
596 }
597 
598 static void noinstr el0_undef(struct pt_regs *regs, unsigned long esr)
599 {
600 	enter_from_user_mode(regs);
601 	local_daif_restore(DAIF_PROCCTX);
602 	do_el0_undef(regs, esr);
603 	exit_to_user_mode(regs);
604 }
605 
606 static void noinstr el0_bti(struct pt_regs *regs)
607 {
608 	enter_from_user_mode(regs);
609 	local_daif_restore(DAIF_PROCCTX);
610 	do_el0_bti(regs);
611 	exit_to_user_mode(regs);
612 }
613 
614 static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr)
615 {
616 	enter_from_user_mode(regs);
617 	local_daif_restore(DAIF_PROCCTX);
618 	bad_el0_sync(regs, 0, esr);
619 	exit_to_user_mode(regs);
620 }
621 
622 static void noinstr el0_dbg(struct pt_regs *regs, unsigned long esr)
623 {
624 	/* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */
625 	unsigned long far = read_sysreg(far_el1);
626 
627 	enter_from_user_mode(regs);
628 	do_debug_exception(far, esr, regs);
629 	local_daif_restore(DAIF_PROCCTX);
630 	exit_to_user_mode(regs);
631 }
632 
633 static void noinstr el0_svc(struct pt_regs *regs)
634 {
635 	enter_from_user_mode(regs);
636 	cortex_a76_erratum_1463225_svc_handler();
637 	do_el0_svc(regs);
638 	exit_to_user_mode(regs);
639 }
640 
641 static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr)
642 {
643 	enter_from_user_mode(regs);
644 	local_daif_restore(DAIF_PROCCTX);
645 	do_el0_fpac(regs, esr);
646 	exit_to_user_mode(regs);
647 }
648 
649 asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs)
650 {
651 	unsigned long esr = read_sysreg(esr_el1);
652 
653 	switch (ESR_ELx_EC(esr)) {
654 	case ESR_ELx_EC_SVC64:
655 		el0_svc(regs);
656 		break;
657 	case ESR_ELx_EC_DABT_LOW:
658 		el0_da(regs, esr);
659 		break;
660 	case ESR_ELx_EC_IABT_LOW:
661 		el0_ia(regs, esr);
662 		break;
663 	case ESR_ELx_EC_FP_ASIMD:
664 		el0_fpsimd_acc(regs, esr);
665 		break;
666 	case ESR_ELx_EC_SVE:
667 		el0_sve_acc(regs, esr);
668 		break;
669 	case ESR_ELx_EC_SME:
670 		el0_sme_acc(regs, esr);
671 		break;
672 	case ESR_ELx_EC_FP_EXC64:
673 		el0_fpsimd_exc(regs, esr);
674 		break;
675 	case ESR_ELx_EC_SYS64:
676 	case ESR_ELx_EC_WFx:
677 		el0_sys(regs, esr);
678 		break;
679 	case ESR_ELx_EC_SP_ALIGN:
680 		el0_sp(regs, esr);
681 		break;
682 	case ESR_ELx_EC_PC_ALIGN:
683 		el0_pc(regs, esr);
684 		break;
685 	case ESR_ELx_EC_UNKNOWN:
686 		el0_undef(regs, esr);
687 		break;
688 	case ESR_ELx_EC_BTI:
689 		el0_bti(regs);
690 		break;
691 	case ESR_ELx_EC_BREAKPT_LOW:
692 	case ESR_ELx_EC_SOFTSTP_LOW:
693 	case ESR_ELx_EC_WATCHPT_LOW:
694 	case ESR_ELx_EC_BRK64:
695 		el0_dbg(regs, esr);
696 		break;
697 	case ESR_ELx_EC_FPAC:
698 		el0_fpac(regs, esr);
699 		break;
700 	default:
701 		el0_inv(regs, esr);
702 	}
703 }
704 
705 static void noinstr el0_interrupt(struct pt_regs *regs,
706 				  void (*handler)(struct pt_regs *))
707 {
708 	enter_from_user_mode(regs);
709 
710 	write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
711 
712 	if (regs->pc & BIT(55))
713 		arm64_apply_bp_hardening();
714 
715 	irq_enter_rcu();
716 	do_interrupt_handler(regs, handler);
717 	irq_exit_rcu();
718 
719 	exit_to_user_mode(regs);
720 }
721 
722 static void noinstr __el0_irq_handler_common(struct pt_regs *regs)
723 {
724 	el0_interrupt(regs, handle_arch_irq);
725 }
726 
727 asmlinkage void noinstr el0t_64_irq_handler(struct pt_regs *regs)
728 {
729 	__el0_irq_handler_common(regs);
730 }
731 
732 static void noinstr __el0_fiq_handler_common(struct pt_regs *regs)
733 {
734 	el0_interrupt(regs, handle_arch_fiq);
735 }
736 
737 asmlinkage void noinstr el0t_64_fiq_handler(struct pt_regs *regs)
738 {
739 	__el0_fiq_handler_common(regs);
740 }
741 
742 static void noinstr __el0_error_handler_common(struct pt_regs *regs)
743 {
744 	unsigned long esr = read_sysreg(esr_el1);
745 
746 	enter_from_user_mode(regs);
747 	local_daif_restore(DAIF_ERRCTX);
748 	arm64_enter_nmi(regs);
749 	do_serror(regs, esr);
750 	arm64_exit_nmi(regs);
751 	local_daif_restore(DAIF_PROCCTX);
752 	exit_to_user_mode(regs);
753 }
754 
755 asmlinkage void noinstr el0t_64_error_handler(struct pt_regs *regs)
756 {
757 	__el0_error_handler_common(regs);
758 }
759 
760 #ifdef CONFIG_COMPAT
761 static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr)
762 {
763 	enter_from_user_mode(regs);
764 	local_daif_restore(DAIF_PROCCTX);
765 	do_el0_cp15(esr, regs);
766 	exit_to_user_mode(regs);
767 }
768 
769 static void noinstr el0_svc_compat(struct pt_regs *regs)
770 {
771 	enter_from_user_mode(regs);
772 	cortex_a76_erratum_1463225_svc_handler();
773 	do_el0_svc_compat(regs);
774 	exit_to_user_mode(regs);
775 }
776 
777 asmlinkage void noinstr el0t_32_sync_handler(struct pt_regs *regs)
778 {
779 	unsigned long esr = read_sysreg(esr_el1);
780 
781 	switch (ESR_ELx_EC(esr)) {
782 	case ESR_ELx_EC_SVC32:
783 		el0_svc_compat(regs);
784 		break;
785 	case ESR_ELx_EC_DABT_LOW:
786 		el0_da(regs, esr);
787 		break;
788 	case ESR_ELx_EC_IABT_LOW:
789 		el0_ia(regs, esr);
790 		break;
791 	case ESR_ELx_EC_FP_ASIMD:
792 		el0_fpsimd_acc(regs, esr);
793 		break;
794 	case ESR_ELx_EC_FP_EXC32:
795 		el0_fpsimd_exc(regs, esr);
796 		break;
797 	case ESR_ELx_EC_PC_ALIGN:
798 		el0_pc(regs, esr);
799 		break;
800 	case ESR_ELx_EC_UNKNOWN:
801 	case ESR_ELx_EC_CP14_MR:
802 	case ESR_ELx_EC_CP14_LS:
803 	case ESR_ELx_EC_CP14_64:
804 		el0_undef(regs, esr);
805 		break;
806 	case ESR_ELx_EC_CP15_32:
807 	case ESR_ELx_EC_CP15_64:
808 		el0_cp15(regs, esr);
809 		break;
810 	case ESR_ELx_EC_BREAKPT_LOW:
811 	case ESR_ELx_EC_SOFTSTP_LOW:
812 	case ESR_ELx_EC_WATCHPT_LOW:
813 	case ESR_ELx_EC_BKPT32:
814 		el0_dbg(regs, esr);
815 		break;
816 	default:
817 		el0_inv(regs, esr);
818 	}
819 }
820 
821 asmlinkage void noinstr el0t_32_irq_handler(struct pt_regs *regs)
822 {
823 	__el0_irq_handler_common(regs);
824 }
825 
826 asmlinkage void noinstr el0t_32_fiq_handler(struct pt_regs *regs)
827 {
828 	__el0_fiq_handler_common(regs);
829 }
830 
831 asmlinkage void noinstr el0t_32_error_handler(struct pt_regs *regs)
832 {
833 	__el0_error_handler_common(regs);
834 }
835 #else /* CONFIG_COMPAT */
836 UNHANDLED(el0t, 32, sync)
837 UNHANDLED(el0t, 32, irq)
838 UNHANDLED(el0t, 32, fiq)
839 UNHANDLED(el0t, 32, error)
840 #endif /* CONFIG_COMPAT */
841 
842 #ifdef CONFIG_VMAP_STACK
843 asmlinkage void noinstr handle_bad_stack(struct pt_regs *regs)
844 {
845 	unsigned long esr = read_sysreg(esr_el1);
846 	unsigned long far = read_sysreg(far_el1);
847 
848 	arm64_enter_nmi(regs);
849 	panic_bad_stack(regs, esr, far);
850 }
851 #endif /* CONFIG_VMAP_STACK */
852 
853 #ifdef CONFIG_ARM_SDE_INTERFACE
854 asmlinkage noinstr unsigned long
855 __sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
856 {
857 	unsigned long ret;
858 
859 	/*
860 	 * We didn't take an exception to get here, so the HW hasn't
861 	 * set/cleared bits in PSTATE that we may rely on.
862 	 *
863 	 * The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to
864 	 * whether PSTATE bits are inherited unchanged or generated from
865 	 * scratch, and the TF-A implementation always clears PAN and always
866 	 * clears UAO. There are no other known implementations.
867 	 *
868 	 * Subsequent revisions (ARM DEN 0054B) follow the usual rules for how
869 	 * PSTATE is modified upon architectural exceptions, and so PAN is
870 	 * either inherited or set per SCTLR_ELx.SPAN, and UAO is always
871 	 * cleared.
872 	 *
873 	 * We must explicitly reset PAN to the expected state, including
874 	 * clearing it when the host isn't using it, in case a VM had it set.
875 	 */
876 	if (system_uses_hw_pan())
877 		set_pstate_pan(1);
878 	else if (cpu_has_pan())
879 		set_pstate_pan(0);
880 
881 	arm64_enter_nmi(regs);
882 	ret = do_sdei_event(regs, arg);
883 	arm64_exit_nmi(regs);
884 
885 	return ret;
886 }
887 #endif /* CONFIG_ARM_SDE_INTERFACE */
888