xref: /openbmc/linux/arch/arm64/kernel/entry-common.c (revision f130ac0a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Exception handling code
4  *
5  * Copyright (C) 2019 ARM Ltd.
6  */
7 
8 #include <linux/context_tracking.h>
9 #include <linux/kasan.h>
10 #include <linux/linkage.h>
11 #include <linux/lockdep.h>
12 #include <linux/ptrace.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/thread_info.h>
16 
17 #include <asm/cpufeature.h>
18 #include <asm/daifflags.h>
19 #include <asm/esr.h>
20 #include <asm/exception.h>
21 #include <asm/irq_regs.h>
22 #include <asm/kprobes.h>
23 #include <asm/mmu.h>
24 #include <asm/processor.h>
25 #include <asm/sdei.h>
26 #include <asm/stacktrace.h>
27 #include <asm/sysreg.h>
28 #include <asm/system_misc.h>
29 
30 /*
31  * Handle IRQ/context state management when entering from kernel mode.
32  * Before this function is called it is not safe to call regular kernel code,
33  * instrumentable code, or any code which may trigger an exception.
34  *
35  * This is intended to match the logic in irqentry_enter(), handling the kernel
36  * mode transitions only.
37  */
__enter_from_kernel_mode(struct pt_regs * regs)38 static __always_inline void __enter_from_kernel_mode(struct pt_regs *regs)
39 {
40 	regs->exit_rcu = false;
41 
42 	if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) {
43 		lockdep_hardirqs_off(CALLER_ADDR0);
44 		ct_irq_enter();
45 		trace_hardirqs_off_finish();
46 
47 		regs->exit_rcu = true;
48 		return;
49 	}
50 
51 	lockdep_hardirqs_off(CALLER_ADDR0);
52 	rcu_irq_enter_check_tick();
53 	trace_hardirqs_off_finish();
54 }
55 
enter_from_kernel_mode(struct pt_regs * regs)56 static void noinstr enter_from_kernel_mode(struct pt_regs *regs)
57 {
58 	__enter_from_kernel_mode(regs);
59 	mte_check_tfsr_entry();
60 	mte_disable_tco_entry(current);
61 }
62 
63 /*
64  * Handle IRQ/context state management when exiting to kernel mode.
65  * After this function returns it is not safe to call regular kernel code,
66  * instrumentable code, or any code which may trigger an exception.
67  *
68  * This is intended to match the logic in irqentry_exit(), handling the kernel
69  * mode transitions only, and with preemption handled elsewhere.
70  */
__exit_to_kernel_mode(struct pt_regs * regs)71 static __always_inline void __exit_to_kernel_mode(struct pt_regs *regs)
72 {
73 	lockdep_assert_irqs_disabled();
74 
75 	if (interrupts_enabled(regs)) {
76 		if (regs->exit_rcu) {
77 			trace_hardirqs_on_prepare();
78 			lockdep_hardirqs_on_prepare();
79 			ct_irq_exit();
80 			lockdep_hardirqs_on(CALLER_ADDR0);
81 			return;
82 		}
83 
84 		trace_hardirqs_on();
85 	} else {
86 		if (regs->exit_rcu)
87 			ct_irq_exit();
88 	}
89 }
90 
exit_to_kernel_mode(struct pt_regs * regs)91 static void noinstr exit_to_kernel_mode(struct pt_regs *regs)
92 {
93 	mte_check_tfsr_exit();
94 	__exit_to_kernel_mode(regs);
95 }
96 
97 /*
98  * Handle IRQ/context state management when entering from user mode.
99  * Before this function is called it is not safe to call regular kernel code,
100  * instrumentable code, or any code which may trigger an exception.
101  */
__enter_from_user_mode(void)102 static __always_inline void __enter_from_user_mode(void)
103 {
104 	lockdep_hardirqs_off(CALLER_ADDR0);
105 	CT_WARN_ON(ct_state() != CONTEXT_USER);
106 	user_exit_irqoff();
107 	trace_hardirqs_off_finish();
108 	mte_disable_tco_entry(current);
109 }
110 
enter_from_user_mode(struct pt_regs * regs)111 static __always_inline void enter_from_user_mode(struct pt_regs *regs)
112 {
113 	__enter_from_user_mode();
114 }
115 
116 /*
117  * Handle IRQ/context state management when exiting to user mode.
118  * After this function returns it is not safe to call regular kernel code,
119  * instrumentable code, or any code which may trigger an exception.
120  */
__exit_to_user_mode(void)121 static __always_inline void __exit_to_user_mode(void)
122 {
123 	trace_hardirqs_on_prepare();
124 	lockdep_hardirqs_on_prepare();
125 	user_enter_irqoff();
126 	lockdep_hardirqs_on(CALLER_ADDR0);
127 }
128 
exit_to_user_mode_prepare(struct pt_regs * regs)129 static __always_inline void exit_to_user_mode_prepare(struct pt_regs *regs)
130 {
131 	unsigned long flags;
132 
133 	local_daif_mask();
134 
135 	flags = read_thread_flags();
136 	if (unlikely(flags & _TIF_WORK_MASK))
137 		do_notify_resume(regs, flags);
138 
139 	lockdep_sys_exit();
140 }
141 
exit_to_user_mode(struct pt_regs * regs)142 static __always_inline void exit_to_user_mode(struct pt_regs *regs)
143 {
144 	exit_to_user_mode_prepare(regs);
145 	mte_check_tfsr_exit();
146 	__exit_to_user_mode();
147 }
148 
asm_exit_to_user_mode(struct pt_regs * regs)149 asmlinkage void noinstr asm_exit_to_user_mode(struct pt_regs *regs)
150 {
151 	exit_to_user_mode(regs);
152 }
153 
154 /*
155  * Handle IRQ/context state management when entering an NMI from user/kernel
156  * mode. Before this function is called it is not safe to call regular kernel
157  * code, instrumentable code, or any code which may trigger an exception.
158  */
arm64_enter_nmi(struct pt_regs * regs)159 static void noinstr arm64_enter_nmi(struct pt_regs *regs)
160 {
161 	regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
162 
163 	__nmi_enter();
164 	lockdep_hardirqs_off(CALLER_ADDR0);
165 	lockdep_hardirq_enter();
166 	ct_nmi_enter();
167 
168 	trace_hardirqs_off_finish();
169 	ftrace_nmi_enter();
170 }
171 
172 /*
173  * Handle IRQ/context state management when exiting an NMI from user/kernel
174  * mode. After this function returns it is not safe to call regular kernel
175  * code, instrumentable code, or any code which may trigger an exception.
176  */
arm64_exit_nmi(struct pt_regs * regs)177 static void noinstr arm64_exit_nmi(struct pt_regs *regs)
178 {
179 	bool restore = regs->lockdep_hardirqs;
180 
181 	ftrace_nmi_exit();
182 	if (restore) {
183 		trace_hardirqs_on_prepare();
184 		lockdep_hardirqs_on_prepare();
185 	}
186 
187 	ct_nmi_exit();
188 	lockdep_hardirq_exit();
189 	if (restore)
190 		lockdep_hardirqs_on(CALLER_ADDR0);
191 	__nmi_exit();
192 }
193 
194 /*
195  * Handle IRQ/context state management when entering a debug exception from
196  * kernel mode. Before this function is called it is not safe to call regular
197  * kernel code, instrumentable code, or any code which may trigger an exception.
198  */
arm64_enter_el1_dbg(struct pt_regs * regs)199 static void noinstr arm64_enter_el1_dbg(struct pt_regs *regs)
200 {
201 	regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
202 
203 	lockdep_hardirqs_off(CALLER_ADDR0);
204 	ct_nmi_enter();
205 
206 	trace_hardirqs_off_finish();
207 }
208 
209 /*
210  * Handle IRQ/context state management when exiting a debug exception from
211  * kernel mode. After this function returns it is not safe to call regular
212  * kernel code, instrumentable code, or any code which may trigger an exception.
213  */
arm64_exit_el1_dbg(struct pt_regs * regs)214 static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs)
215 {
216 	bool restore = regs->lockdep_hardirqs;
217 
218 	if (restore) {
219 		trace_hardirqs_on_prepare();
220 		lockdep_hardirqs_on_prepare();
221 	}
222 
223 	ct_nmi_exit();
224 	if (restore)
225 		lockdep_hardirqs_on(CALLER_ADDR0);
226 }
227 
228 #ifdef CONFIG_PREEMPT_DYNAMIC
229 DEFINE_STATIC_KEY_TRUE(sk_dynamic_irqentry_exit_cond_resched);
230 #define need_irq_preemption() \
231 	(static_branch_unlikely(&sk_dynamic_irqentry_exit_cond_resched))
232 #else
233 #define need_irq_preemption()	(IS_ENABLED(CONFIG_PREEMPTION))
234 #endif
235 
arm64_preempt_schedule_irq(void)236 static void __sched arm64_preempt_schedule_irq(void)
237 {
238 	if (!need_irq_preemption())
239 		return;
240 
241 	/*
242 	 * Note: thread_info::preempt_count includes both thread_info::count
243 	 * and thread_info::need_resched, and is not equivalent to
244 	 * preempt_count().
245 	 */
246 	if (READ_ONCE(current_thread_info()->preempt_count) != 0)
247 		return;
248 
249 	/*
250 	 * DAIF.DA are cleared at the start of IRQ/FIQ handling, and when GIC
251 	 * priority masking is used the GIC irqchip driver will clear DAIF.IF
252 	 * using gic_arch_enable_irqs() for normal IRQs. If anything is set in
253 	 * DAIF we must have handled an NMI, so skip preemption.
254 	 */
255 	if (system_uses_irq_prio_masking() && read_sysreg(daif))
256 		return;
257 
258 	/*
259 	 * Preempting a task from an IRQ means we leave copies of PSTATE
260 	 * on the stack. cpufeature's enable calls may modify PSTATE, but
261 	 * resuming one of these preempted tasks would undo those changes.
262 	 *
263 	 * Only allow a task to be preempted once cpufeatures have been
264 	 * enabled.
265 	 */
266 	if (system_capabilities_finalized())
267 		preempt_schedule_irq();
268 }
269 
do_interrupt_handler(struct pt_regs * regs,void (* handler)(struct pt_regs *))270 static void do_interrupt_handler(struct pt_regs *regs,
271 				 void (*handler)(struct pt_regs *))
272 {
273 	struct pt_regs *old_regs = set_irq_regs(regs);
274 
275 	if (on_thread_stack())
276 		call_on_irq_stack(regs, handler);
277 	else
278 		handler(regs);
279 
280 	set_irq_regs(old_regs);
281 }
282 
283 extern void (*handle_arch_irq)(struct pt_regs *);
284 extern void (*handle_arch_fiq)(struct pt_regs *);
285 
__panic_unhandled(struct pt_regs * regs,const char * vector,unsigned long esr)286 static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector,
287 				      unsigned long esr)
288 {
289 	arm64_enter_nmi(regs);
290 
291 	console_verbose();
292 
293 	pr_crit("Unhandled %s exception on CPU%d, ESR 0x%016lx -- %s\n",
294 		vector, smp_processor_id(), esr,
295 		esr_get_class_string(esr));
296 
297 	__show_regs(regs);
298 	panic("Unhandled exception");
299 }
300 
301 #define UNHANDLED(el, regsize, vector)							\
302 asmlinkage void noinstr el##_##regsize##_##vector##_handler(struct pt_regs *regs)	\
303 {											\
304 	const char *desc = #regsize "-bit " #el " " #vector;				\
305 	__panic_unhandled(regs, desc, read_sysreg(esr_el1));				\
306 }
307 
308 #ifdef CONFIG_ARM64_ERRATUM_1463225
309 static DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
310 
cortex_a76_erratum_1463225_svc_handler(void)311 static void cortex_a76_erratum_1463225_svc_handler(void)
312 {
313 	u32 reg, val;
314 
315 	if (!unlikely(test_thread_flag(TIF_SINGLESTEP)))
316 		return;
317 
318 	if (!unlikely(this_cpu_has_cap(ARM64_WORKAROUND_1463225)))
319 		return;
320 
321 	__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 1);
322 	reg = read_sysreg(mdscr_el1);
323 	val = reg | DBG_MDSCR_SS | DBG_MDSCR_KDE;
324 	write_sysreg(val, mdscr_el1);
325 	asm volatile("msr daifclr, #8");
326 	isb();
327 
328 	/* We will have taken a single-step exception by this point */
329 
330 	write_sysreg(reg, mdscr_el1);
331 	__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 0);
332 }
333 
334 static __always_inline bool
cortex_a76_erratum_1463225_debug_handler(struct pt_regs * regs)335 cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
336 {
337 	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
338 		return false;
339 
340 	/*
341 	 * We've taken a dummy step exception from the kernel to ensure
342 	 * that interrupts are re-enabled on the syscall path. Return back
343 	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
344 	 * masked so that we can safely restore the mdscr and get on with
345 	 * handling the syscall.
346 	 */
347 	regs->pstate |= PSR_D_BIT;
348 	return true;
349 }
350 #else /* CONFIG_ARM64_ERRATUM_1463225 */
cortex_a76_erratum_1463225_svc_handler(void)351 static void cortex_a76_erratum_1463225_svc_handler(void) { }
cortex_a76_erratum_1463225_debug_handler(struct pt_regs * regs)352 static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
353 {
354 	return false;
355 }
356 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
357 
358 /*
359  * As per the ABI exit SME streaming mode and clear the SVE state not
360  * shared with FPSIMD on syscall entry.
361  */
fp_user_discard(void)362 static inline void fp_user_discard(void)
363 {
364 	/*
365 	 * If SME is active then exit streaming mode.  If ZA is active
366 	 * then flush the SVE registers but leave userspace access to
367 	 * both SVE and SME enabled, otherwise disable SME for the
368 	 * task and fall through to disabling SVE too.  This means
369 	 * that after a syscall we never have any streaming mode
370 	 * register state to track, if this changes the KVM code will
371 	 * need updating.
372 	 */
373 	if (system_supports_sme())
374 		sme_smstop_sm();
375 
376 	if (!system_supports_sve())
377 		return;
378 
379 	if (test_thread_flag(TIF_SVE)) {
380 		unsigned int sve_vq_minus_one;
381 
382 		sve_vq_minus_one = sve_vq_from_vl(task_get_sve_vl(current)) - 1;
383 		sve_flush_live(true, sve_vq_minus_one);
384 	}
385 }
386 
387 UNHANDLED(el1t, 64, sync)
388 UNHANDLED(el1t, 64, irq)
389 UNHANDLED(el1t, 64, fiq)
390 UNHANDLED(el1t, 64, error)
391 
el1_abort(struct pt_regs * regs,unsigned long esr)392 static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr)
393 {
394 	unsigned long far = read_sysreg(far_el1);
395 
396 	enter_from_kernel_mode(regs);
397 	local_daif_inherit(regs);
398 	do_mem_abort(far, esr, regs);
399 	local_daif_mask();
400 	exit_to_kernel_mode(regs);
401 }
402 
el1_pc(struct pt_regs * regs,unsigned long esr)403 static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr)
404 {
405 	unsigned long far = read_sysreg(far_el1);
406 
407 	enter_from_kernel_mode(regs);
408 	local_daif_inherit(regs);
409 	do_sp_pc_abort(far, esr, regs);
410 	local_daif_mask();
411 	exit_to_kernel_mode(regs);
412 }
413 
el1_undef(struct pt_regs * regs,unsigned long esr)414 static void noinstr el1_undef(struct pt_regs *regs, unsigned long esr)
415 {
416 	enter_from_kernel_mode(regs);
417 	local_daif_inherit(regs);
418 	do_el1_undef(regs, esr);
419 	local_daif_mask();
420 	exit_to_kernel_mode(regs);
421 }
422 
el1_bti(struct pt_regs * regs,unsigned long esr)423 static void noinstr el1_bti(struct pt_regs *regs, unsigned long esr)
424 {
425 	enter_from_kernel_mode(regs);
426 	local_daif_inherit(regs);
427 	do_el1_bti(regs, esr);
428 	local_daif_mask();
429 	exit_to_kernel_mode(regs);
430 }
431 
el1_dbg(struct pt_regs * regs,unsigned long esr)432 static void noinstr el1_dbg(struct pt_regs *regs, unsigned long esr)
433 {
434 	unsigned long far = read_sysreg(far_el1);
435 
436 	arm64_enter_el1_dbg(regs);
437 	if (!cortex_a76_erratum_1463225_debug_handler(regs))
438 		do_debug_exception(far, esr, regs);
439 	arm64_exit_el1_dbg(regs);
440 }
441 
el1_fpac(struct pt_regs * regs,unsigned long esr)442 static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr)
443 {
444 	enter_from_kernel_mode(regs);
445 	local_daif_inherit(regs);
446 	do_el1_fpac(regs, esr);
447 	local_daif_mask();
448 	exit_to_kernel_mode(regs);
449 }
450 
el1h_64_sync_handler(struct pt_regs * regs)451 asmlinkage void noinstr el1h_64_sync_handler(struct pt_regs *regs)
452 {
453 	unsigned long esr = read_sysreg(esr_el1);
454 
455 	switch (ESR_ELx_EC(esr)) {
456 	case ESR_ELx_EC_DABT_CUR:
457 	case ESR_ELx_EC_IABT_CUR:
458 		el1_abort(regs, esr);
459 		break;
460 	/*
461 	 * We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a
462 	 * recursive exception when trying to push the initial pt_regs.
463 	 */
464 	case ESR_ELx_EC_PC_ALIGN:
465 		el1_pc(regs, esr);
466 		break;
467 	case ESR_ELx_EC_SYS64:
468 	case ESR_ELx_EC_UNKNOWN:
469 		el1_undef(regs, esr);
470 		break;
471 	case ESR_ELx_EC_BTI:
472 		el1_bti(regs, esr);
473 		break;
474 	case ESR_ELx_EC_BREAKPT_CUR:
475 	case ESR_ELx_EC_SOFTSTP_CUR:
476 	case ESR_ELx_EC_WATCHPT_CUR:
477 	case ESR_ELx_EC_BRK64:
478 		el1_dbg(regs, esr);
479 		break;
480 	case ESR_ELx_EC_FPAC:
481 		el1_fpac(regs, esr);
482 		break;
483 	default:
484 		__panic_unhandled(regs, "64-bit el1h sync", esr);
485 	}
486 }
487 
__el1_pnmi(struct pt_regs * regs,void (* handler)(struct pt_regs *))488 static __always_inline void __el1_pnmi(struct pt_regs *regs,
489 				       void (*handler)(struct pt_regs *))
490 {
491 	arm64_enter_nmi(regs);
492 	do_interrupt_handler(regs, handler);
493 	arm64_exit_nmi(regs);
494 }
495 
__el1_irq(struct pt_regs * regs,void (* handler)(struct pt_regs *))496 static __always_inline void __el1_irq(struct pt_regs *regs,
497 				      void (*handler)(struct pt_regs *))
498 {
499 	enter_from_kernel_mode(regs);
500 
501 	irq_enter_rcu();
502 	do_interrupt_handler(regs, handler);
503 	irq_exit_rcu();
504 
505 	arm64_preempt_schedule_irq();
506 
507 	exit_to_kernel_mode(regs);
508 }
el1_interrupt(struct pt_regs * regs,void (* handler)(struct pt_regs *))509 static void noinstr el1_interrupt(struct pt_regs *regs,
510 				  void (*handler)(struct pt_regs *))
511 {
512 	write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
513 
514 	if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs))
515 		__el1_pnmi(regs, handler);
516 	else
517 		__el1_irq(regs, handler);
518 }
519 
el1h_64_irq_handler(struct pt_regs * regs)520 asmlinkage void noinstr el1h_64_irq_handler(struct pt_regs *regs)
521 {
522 	el1_interrupt(regs, handle_arch_irq);
523 }
524 
el1h_64_fiq_handler(struct pt_regs * regs)525 asmlinkage void noinstr el1h_64_fiq_handler(struct pt_regs *regs)
526 {
527 	el1_interrupt(regs, handle_arch_fiq);
528 }
529 
el1h_64_error_handler(struct pt_regs * regs)530 asmlinkage void noinstr el1h_64_error_handler(struct pt_regs *regs)
531 {
532 	unsigned long esr = read_sysreg(esr_el1);
533 
534 	local_daif_restore(DAIF_ERRCTX);
535 	arm64_enter_nmi(regs);
536 	do_serror(regs, esr);
537 	arm64_exit_nmi(regs);
538 }
539 
el0_da(struct pt_regs * regs,unsigned long esr)540 static void noinstr el0_da(struct pt_regs *regs, unsigned long esr)
541 {
542 	unsigned long far = read_sysreg(far_el1);
543 
544 	enter_from_user_mode(regs);
545 	local_daif_restore(DAIF_PROCCTX);
546 	do_mem_abort(far, esr, regs);
547 	exit_to_user_mode(regs);
548 }
549 
el0_ia(struct pt_regs * regs,unsigned long esr)550 static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr)
551 {
552 	unsigned long far = read_sysreg(far_el1);
553 
554 	/*
555 	 * We've taken an instruction abort from userspace and not yet
556 	 * re-enabled IRQs. If the address is a kernel address, apply
557 	 * BP hardening prior to enabling IRQs and pre-emption.
558 	 */
559 	if (!is_ttbr0_addr(far))
560 		arm64_apply_bp_hardening();
561 
562 	enter_from_user_mode(regs);
563 	local_daif_restore(DAIF_PROCCTX);
564 	do_mem_abort(far, esr, regs);
565 	exit_to_user_mode(regs);
566 }
567 
el0_fpsimd_acc(struct pt_regs * regs,unsigned long esr)568 static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr)
569 {
570 	enter_from_user_mode(regs);
571 	local_daif_restore(DAIF_PROCCTX);
572 	do_fpsimd_acc(esr, regs);
573 	exit_to_user_mode(regs);
574 }
575 
el0_sve_acc(struct pt_regs * regs,unsigned long esr)576 static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr)
577 {
578 	enter_from_user_mode(regs);
579 	local_daif_restore(DAIF_PROCCTX);
580 	do_sve_acc(esr, regs);
581 	exit_to_user_mode(regs);
582 }
583 
el0_sme_acc(struct pt_regs * regs,unsigned long esr)584 static void noinstr el0_sme_acc(struct pt_regs *regs, unsigned long esr)
585 {
586 	enter_from_user_mode(regs);
587 	local_daif_restore(DAIF_PROCCTX);
588 	do_sme_acc(esr, regs);
589 	exit_to_user_mode(regs);
590 }
591 
el0_fpsimd_exc(struct pt_regs * regs,unsigned long esr)592 static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr)
593 {
594 	enter_from_user_mode(regs);
595 	local_daif_restore(DAIF_PROCCTX);
596 	do_fpsimd_exc(esr, regs);
597 	exit_to_user_mode(regs);
598 }
599 
el0_sys(struct pt_regs * regs,unsigned long esr)600 static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr)
601 {
602 	enter_from_user_mode(regs);
603 	local_daif_restore(DAIF_PROCCTX);
604 	do_el0_sys(esr, regs);
605 	exit_to_user_mode(regs);
606 }
607 
el0_pc(struct pt_regs * regs,unsigned long esr)608 static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr)
609 {
610 	unsigned long far = read_sysreg(far_el1);
611 
612 	if (!is_ttbr0_addr(instruction_pointer(regs)))
613 		arm64_apply_bp_hardening();
614 
615 	enter_from_user_mode(regs);
616 	local_daif_restore(DAIF_PROCCTX);
617 	do_sp_pc_abort(far, esr, regs);
618 	exit_to_user_mode(regs);
619 }
620 
el0_sp(struct pt_regs * regs,unsigned long esr)621 static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr)
622 {
623 	enter_from_user_mode(regs);
624 	local_daif_restore(DAIF_PROCCTX);
625 	do_sp_pc_abort(regs->sp, esr, regs);
626 	exit_to_user_mode(regs);
627 }
628 
el0_undef(struct pt_regs * regs,unsigned long esr)629 static void noinstr el0_undef(struct pt_regs *regs, unsigned long esr)
630 {
631 	enter_from_user_mode(regs);
632 	local_daif_restore(DAIF_PROCCTX);
633 	do_el0_undef(regs, esr);
634 	exit_to_user_mode(regs);
635 }
636 
el0_bti(struct pt_regs * regs)637 static void noinstr el0_bti(struct pt_regs *regs)
638 {
639 	enter_from_user_mode(regs);
640 	local_daif_restore(DAIF_PROCCTX);
641 	do_el0_bti(regs);
642 	exit_to_user_mode(regs);
643 }
644 
el0_mops(struct pt_regs * regs,unsigned long esr)645 static void noinstr el0_mops(struct pt_regs *regs, unsigned long esr)
646 {
647 	enter_from_user_mode(regs);
648 	local_daif_restore(DAIF_PROCCTX);
649 	do_el0_mops(regs, esr);
650 	exit_to_user_mode(regs);
651 }
652 
el0_inv(struct pt_regs * regs,unsigned long esr)653 static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr)
654 {
655 	enter_from_user_mode(regs);
656 	local_daif_restore(DAIF_PROCCTX);
657 	bad_el0_sync(regs, 0, esr);
658 	exit_to_user_mode(regs);
659 }
660 
el0_dbg(struct pt_regs * regs,unsigned long esr)661 static void noinstr el0_dbg(struct pt_regs *regs, unsigned long esr)
662 {
663 	/* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */
664 	unsigned long far = read_sysreg(far_el1);
665 
666 	enter_from_user_mode(regs);
667 	do_debug_exception(far, esr, regs);
668 	local_daif_restore(DAIF_PROCCTX);
669 	exit_to_user_mode(regs);
670 }
671 
el0_svc(struct pt_regs * regs)672 static void noinstr el0_svc(struct pt_regs *regs)
673 {
674 	enter_from_user_mode(regs);
675 	cortex_a76_erratum_1463225_svc_handler();
676 	fp_user_discard();
677 	local_daif_restore(DAIF_PROCCTX);
678 	do_el0_svc(regs);
679 	exit_to_user_mode(regs);
680 }
681 
el0_fpac(struct pt_regs * regs,unsigned long esr)682 static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr)
683 {
684 	enter_from_user_mode(regs);
685 	local_daif_restore(DAIF_PROCCTX);
686 	do_el0_fpac(regs, esr);
687 	exit_to_user_mode(regs);
688 }
689 
el0t_64_sync_handler(struct pt_regs * regs)690 asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs)
691 {
692 	unsigned long esr = read_sysreg(esr_el1);
693 
694 	switch (ESR_ELx_EC(esr)) {
695 	case ESR_ELx_EC_SVC64:
696 		el0_svc(regs);
697 		break;
698 	case ESR_ELx_EC_DABT_LOW:
699 		el0_da(regs, esr);
700 		break;
701 	case ESR_ELx_EC_IABT_LOW:
702 		el0_ia(regs, esr);
703 		break;
704 	case ESR_ELx_EC_FP_ASIMD:
705 		el0_fpsimd_acc(regs, esr);
706 		break;
707 	case ESR_ELx_EC_SVE:
708 		el0_sve_acc(regs, esr);
709 		break;
710 	case ESR_ELx_EC_SME:
711 		el0_sme_acc(regs, esr);
712 		break;
713 	case ESR_ELx_EC_FP_EXC64:
714 		el0_fpsimd_exc(regs, esr);
715 		break;
716 	case ESR_ELx_EC_SYS64:
717 	case ESR_ELx_EC_WFx:
718 		el0_sys(regs, esr);
719 		break;
720 	case ESR_ELx_EC_SP_ALIGN:
721 		el0_sp(regs, esr);
722 		break;
723 	case ESR_ELx_EC_PC_ALIGN:
724 		el0_pc(regs, esr);
725 		break;
726 	case ESR_ELx_EC_UNKNOWN:
727 		el0_undef(regs, esr);
728 		break;
729 	case ESR_ELx_EC_BTI:
730 		el0_bti(regs);
731 		break;
732 	case ESR_ELx_EC_MOPS:
733 		el0_mops(regs, esr);
734 		break;
735 	case ESR_ELx_EC_BREAKPT_LOW:
736 	case ESR_ELx_EC_SOFTSTP_LOW:
737 	case ESR_ELx_EC_WATCHPT_LOW:
738 	case ESR_ELx_EC_BRK64:
739 		el0_dbg(regs, esr);
740 		break;
741 	case ESR_ELx_EC_FPAC:
742 		el0_fpac(regs, esr);
743 		break;
744 	default:
745 		el0_inv(regs, esr);
746 	}
747 }
748 
el0_interrupt(struct pt_regs * regs,void (* handler)(struct pt_regs *))749 static void noinstr el0_interrupt(struct pt_regs *regs,
750 				  void (*handler)(struct pt_regs *))
751 {
752 	enter_from_user_mode(regs);
753 
754 	write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
755 
756 	if (regs->pc & BIT(55))
757 		arm64_apply_bp_hardening();
758 
759 	irq_enter_rcu();
760 	do_interrupt_handler(regs, handler);
761 	irq_exit_rcu();
762 
763 	exit_to_user_mode(regs);
764 }
765 
__el0_irq_handler_common(struct pt_regs * regs)766 static void noinstr __el0_irq_handler_common(struct pt_regs *regs)
767 {
768 	el0_interrupt(regs, handle_arch_irq);
769 }
770 
el0t_64_irq_handler(struct pt_regs * regs)771 asmlinkage void noinstr el0t_64_irq_handler(struct pt_regs *regs)
772 {
773 	__el0_irq_handler_common(regs);
774 }
775 
__el0_fiq_handler_common(struct pt_regs * regs)776 static void noinstr __el0_fiq_handler_common(struct pt_regs *regs)
777 {
778 	el0_interrupt(regs, handle_arch_fiq);
779 }
780 
el0t_64_fiq_handler(struct pt_regs * regs)781 asmlinkage void noinstr el0t_64_fiq_handler(struct pt_regs *regs)
782 {
783 	__el0_fiq_handler_common(regs);
784 }
785 
__el0_error_handler_common(struct pt_regs * regs)786 static void noinstr __el0_error_handler_common(struct pt_regs *regs)
787 {
788 	unsigned long esr = read_sysreg(esr_el1);
789 
790 	enter_from_user_mode(regs);
791 	local_daif_restore(DAIF_ERRCTX);
792 	arm64_enter_nmi(regs);
793 	do_serror(regs, esr);
794 	arm64_exit_nmi(regs);
795 	local_daif_restore(DAIF_PROCCTX);
796 	exit_to_user_mode(regs);
797 }
798 
el0t_64_error_handler(struct pt_regs * regs)799 asmlinkage void noinstr el0t_64_error_handler(struct pt_regs *regs)
800 {
801 	__el0_error_handler_common(regs);
802 }
803 
804 #ifdef CONFIG_COMPAT
el0_cp15(struct pt_regs * regs,unsigned long esr)805 static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr)
806 {
807 	enter_from_user_mode(regs);
808 	local_daif_restore(DAIF_PROCCTX);
809 	do_el0_cp15(esr, regs);
810 	exit_to_user_mode(regs);
811 }
812 
el0_svc_compat(struct pt_regs * regs)813 static void noinstr el0_svc_compat(struct pt_regs *regs)
814 {
815 	enter_from_user_mode(regs);
816 	cortex_a76_erratum_1463225_svc_handler();
817 	local_daif_restore(DAIF_PROCCTX);
818 	do_el0_svc_compat(regs);
819 	exit_to_user_mode(regs);
820 }
821 
el0t_32_sync_handler(struct pt_regs * regs)822 asmlinkage void noinstr el0t_32_sync_handler(struct pt_regs *regs)
823 {
824 	unsigned long esr = read_sysreg(esr_el1);
825 
826 	switch (ESR_ELx_EC(esr)) {
827 	case ESR_ELx_EC_SVC32:
828 		el0_svc_compat(regs);
829 		break;
830 	case ESR_ELx_EC_DABT_LOW:
831 		el0_da(regs, esr);
832 		break;
833 	case ESR_ELx_EC_IABT_LOW:
834 		el0_ia(regs, esr);
835 		break;
836 	case ESR_ELx_EC_FP_ASIMD:
837 		el0_fpsimd_acc(regs, esr);
838 		break;
839 	case ESR_ELx_EC_FP_EXC32:
840 		el0_fpsimd_exc(regs, esr);
841 		break;
842 	case ESR_ELx_EC_PC_ALIGN:
843 		el0_pc(regs, esr);
844 		break;
845 	case ESR_ELx_EC_UNKNOWN:
846 	case ESR_ELx_EC_CP14_MR:
847 	case ESR_ELx_EC_CP14_LS:
848 	case ESR_ELx_EC_CP14_64:
849 		el0_undef(regs, esr);
850 		break;
851 	case ESR_ELx_EC_CP15_32:
852 	case ESR_ELx_EC_CP15_64:
853 		el0_cp15(regs, esr);
854 		break;
855 	case ESR_ELx_EC_BREAKPT_LOW:
856 	case ESR_ELx_EC_SOFTSTP_LOW:
857 	case ESR_ELx_EC_WATCHPT_LOW:
858 	case ESR_ELx_EC_BKPT32:
859 		el0_dbg(regs, esr);
860 		break;
861 	default:
862 		el0_inv(regs, esr);
863 	}
864 }
865 
el0t_32_irq_handler(struct pt_regs * regs)866 asmlinkage void noinstr el0t_32_irq_handler(struct pt_regs *regs)
867 {
868 	__el0_irq_handler_common(regs);
869 }
870 
el0t_32_fiq_handler(struct pt_regs * regs)871 asmlinkage void noinstr el0t_32_fiq_handler(struct pt_regs *regs)
872 {
873 	__el0_fiq_handler_common(regs);
874 }
875 
el0t_32_error_handler(struct pt_regs * regs)876 asmlinkage void noinstr el0t_32_error_handler(struct pt_regs *regs)
877 {
878 	__el0_error_handler_common(regs);
879 }
880 #else /* CONFIG_COMPAT */
881 UNHANDLED(el0t, 32, sync)
882 UNHANDLED(el0t, 32, irq)
883 UNHANDLED(el0t, 32, fiq)
884 UNHANDLED(el0t, 32, error)
885 #endif /* CONFIG_COMPAT */
886 
887 #ifdef CONFIG_VMAP_STACK
handle_bad_stack(struct pt_regs * regs)888 asmlinkage void noinstr __noreturn handle_bad_stack(struct pt_regs *regs)
889 {
890 	unsigned long esr = read_sysreg(esr_el1);
891 	unsigned long far = read_sysreg(far_el1);
892 
893 	arm64_enter_nmi(regs);
894 	panic_bad_stack(regs, esr, far);
895 }
896 #endif /* CONFIG_VMAP_STACK */
897 
898 #ifdef CONFIG_ARM_SDE_INTERFACE
899 asmlinkage noinstr unsigned long
__sdei_handler(struct pt_regs * regs,struct sdei_registered_event * arg)900 __sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
901 {
902 	unsigned long ret;
903 
904 	/*
905 	 * We didn't take an exception to get here, so the HW hasn't
906 	 * set/cleared bits in PSTATE that we may rely on.
907 	 *
908 	 * The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to
909 	 * whether PSTATE bits are inherited unchanged or generated from
910 	 * scratch, and the TF-A implementation always clears PAN and always
911 	 * clears UAO. There are no other known implementations.
912 	 *
913 	 * Subsequent revisions (ARM DEN 0054B) follow the usual rules for how
914 	 * PSTATE is modified upon architectural exceptions, and so PAN is
915 	 * either inherited or set per SCTLR_ELx.SPAN, and UAO is always
916 	 * cleared.
917 	 *
918 	 * We must explicitly reset PAN to the expected state, including
919 	 * clearing it when the host isn't using it, in case a VM had it set.
920 	 */
921 	if (system_uses_hw_pan())
922 		set_pstate_pan(1);
923 	else if (cpu_has_pan())
924 		set_pstate_pan(0);
925 
926 	arm64_enter_nmi(regs);
927 	ret = do_sdei_event(regs, arg);
928 	arm64_exit_nmi(regs);
929 
930 	return ret;
931 }
932 #endif /* CONFIG_ARM_SDE_INTERFACE */
933