xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt) "CPU features: " fmt
20 
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/fpsimd.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
35 #include <asm/virt.h>
36 
37 unsigned long elf_hwcap __read_mostly;
38 EXPORT_SYMBOL_GPL(elf_hwcap);
39 
40 #ifdef CONFIG_COMPAT
41 #define COMPAT_ELF_HWCAP_DEFAULT	\
42 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
45 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
46 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
47 				 COMPAT_HWCAP_LPAE)
48 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
49 unsigned int compat_elf_hwcap2 __read_mostly;
50 #endif
51 
52 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
53 EXPORT_SYMBOL(cpu_hwcaps);
54 
55 /*
56  * Flag to indicate if we have computed the system wide
57  * capabilities based on the boot time active CPUs. This
58  * will be used to determine if a new booting CPU should
59  * go through the verification process to make sure that it
60  * supports the system capabilities, without using a hotplug
61  * notifier.
62  */
63 static bool sys_caps_initialised;
64 
65 static inline void set_sys_caps_initialised(void)
66 {
67 	sys_caps_initialised = true;
68 }
69 
70 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
71 {
72 	/* file-wide pr_fmt adds "CPU features: " prefix */
73 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
74 	return 0;
75 }
76 
77 static struct notifier_block cpu_hwcaps_notifier = {
78 	.notifier_call = dump_cpu_hwcaps
79 };
80 
81 static int __init register_cpu_hwcaps_dumper(void)
82 {
83 	atomic_notifier_chain_register(&panic_notifier_list,
84 				       &cpu_hwcaps_notifier);
85 	return 0;
86 }
87 __initcall(register_cpu_hwcaps_dumper);
88 
89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
90 EXPORT_SYMBOL(cpu_hwcap_keys);
91 
92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93 	{						\
94 		.sign = SIGNED,				\
95 		.visible = VISIBLE,			\
96 		.strict = STRICT,			\
97 		.type = TYPE,				\
98 		.shift = SHIFT,				\
99 		.width = WIDTH,				\
100 		.safe_val = SAFE_VAL,			\
101 	}
102 
103 /* Define a feature with unsigned values */
104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
105 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
106 
107 /* Define a feature with a signed value */
108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
109 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
110 
111 #define ARM64_FTR_END					\
112 	{						\
113 		.width = 0,				\
114 	}
115 
116 /* meta feature for alternatives */
117 static bool __maybe_unused
118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
119 
120 
121 /*
122  * NOTE: Any changes to the visibility of features should be kept in
123  * sync with the documentation of the CPU feature register ABI.
124  */
125 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
126 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
127 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
128 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
129 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
130 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
131 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
132 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
133 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
134 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
135 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
136 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
137 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
138 	ARM64_FTR_END,
139 };
140 
141 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
142 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
143 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
144 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
145 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
146 	ARM64_FTR_END,
147 };
148 
149 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
150 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
151 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
152 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
153 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
154 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
155 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
156 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
157 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
158 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
159 	/* Linux doesn't care about the EL3 */
160 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
161 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
162 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
163 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
164 	ARM64_FTR_END,
165 };
166 
167 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
168 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
169 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
170 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
171 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
172 	/* Linux shouldn't care about secure memory */
173 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
174 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
175 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
176 	/*
177 	 * Differing PARange is fine as long as all peripherals and memory are mapped
178 	 * within the minimum PARange of all CPUs
179 	 */
180 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
181 	ARM64_FTR_END,
182 };
183 
184 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
185 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
186 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
187 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
188 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
189 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
190 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
191 	ARM64_FTR_END,
192 };
193 
194 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
195 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
196 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
197 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
198 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
199 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
200 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
201 	ARM64_FTR_END,
202 };
203 
204 static const struct arm64_ftr_bits ftr_ctr[] = {
205 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
206 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
207 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
208 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_CWG_SHIFT, 4, 0),
209 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_ERG_SHIFT, 4, 0),
210 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
211 	/*
212 	 * Linux can handle differing I-cache policies. Userspace JITs will
213 	 * make use of *minLine.
214 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
215 	 */
216 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
217 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
218 	ARM64_FTR_END,
219 };
220 
221 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
222 	.name		= "SYS_CTR_EL0",
223 	.ftr_bits	= ftr_ctr
224 };
225 
226 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
227 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
228 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
229 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
230 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
231 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
232 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
233 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
234 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
235 	ARM64_FTR_END,
236 };
237 
238 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
239 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
240 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
241 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
242 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
243 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
244 	/*
245 	 * We can instantiate multiple PMU instances with different levels
246 	 * of support.
247 	 */
248 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
249 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
250 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
251 	ARM64_FTR_END,
252 };
253 
254 static const struct arm64_ftr_bits ftr_mvfr2[] = {
255 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
256 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
257 	ARM64_FTR_END,
258 };
259 
260 static const struct arm64_ftr_bits ftr_dczid[] = {
261 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
262 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
263 	ARM64_FTR_END,
264 };
265 
266 
267 static const struct arm64_ftr_bits ftr_id_isar5[] = {
268 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
269 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
270 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
271 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
272 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
273 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
274 	ARM64_FTR_END,
275 };
276 
277 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
278 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
279 	ARM64_FTR_END,
280 };
281 
282 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
283 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
284 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
285 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
286 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
287 	ARM64_FTR_END,
288 };
289 
290 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
291 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
292 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
293 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
294 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
295 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
296 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
297 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
298 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
299 	ARM64_FTR_END,
300 };
301 
302 static const struct arm64_ftr_bits ftr_zcr[] = {
303 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
304 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
305 	ARM64_FTR_END,
306 };
307 
308 /*
309  * Common ftr bits for a 32bit register with all hidden, strict
310  * attributes, with 4bit feature fields and a default safe value of
311  * 0. Covers the following 32bit registers:
312  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
313  */
314 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
315 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
316 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
317 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
318 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
319 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
320 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
321 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
322 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
323 	ARM64_FTR_END,
324 };
325 
326 /* Table for a single 32bit feature value */
327 static const struct arm64_ftr_bits ftr_single32[] = {
328 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
329 	ARM64_FTR_END,
330 };
331 
332 static const struct arm64_ftr_bits ftr_raz[] = {
333 	ARM64_FTR_END,
334 };
335 
336 #define ARM64_FTR_REG(id, table) {		\
337 	.sys_id = id,				\
338 	.reg = 	&(struct arm64_ftr_reg){	\
339 		.name = #id,			\
340 		.ftr_bits = &((table)[0]),	\
341 	}}
342 
343 static const struct __ftr_reg_entry {
344 	u32			sys_id;
345 	struct arm64_ftr_reg 	*reg;
346 } arm64_ftr_regs[] = {
347 
348 	/* Op1 = 0, CRn = 0, CRm = 1 */
349 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
350 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
351 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
352 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
353 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
354 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
355 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
356 
357 	/* Op1 = 0, CRn = 0, CRm = 2 */
358 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
359 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
360 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
361 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
362 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
363 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
364 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
365 
366 	/* Op1 = 0, CRn = 0, CRm = 3 */
367 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
368 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
369 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
370 
371 	/* Op1 = 0, CRn = 0, CRm = 4 */
372 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
373 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
374 	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
375 
376 	/* Op1 = 0, CRn = 0, CRm = 5 */
377 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
378 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
379 
380 	/* Op1 = 0, CRn = 0, CRm = 6 */
381 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
382 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
383 
384 	/* Op1 = 0, CRn = 0, CRm = 7 */
385 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
386 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
387 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
388 
389 	/* Op1 = 0, CRn = 1, CRm = 2 */
390 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
391 
392 	/* Op1 = 3, CRn = 0, CRm = 0 */
393 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
394 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
395 
396 	/* Op1 = 3, CRn = 14, CRm = 0 */
397 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
398 };
399 
400 static int search_cmp_ftr_reg(const void *id, const void *regp)
401 {
402 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
403 }
404 
405 /*
406  * get_arm64_ftr_reg - Lookup a feature register entry using its
407  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
408  * ascending order of sys_id , we use binary search to find a matching
409  * entry.
410  *
411  * returns - Upon success,  matching ftr_reg entry for id.
412  *         - NULL on failure. It is upto the caller to decide
413  *	     the impact of a failure.
414  */
415 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
416 {
417 	const struct __ftr_reg_entry *ret;
418 
419 	ret = bsearch((const void *)(unsigned long)sys_id,
420 			arm64_ftr_regs,
421 			ARRAY_SIZE(arm64_ftr_regs),
422 			sizeof(arm64_ftr_regs[0]),
423 			search_cmp_ftr_reg);
424 	if (ret)
425 		return ret->reg;
426 	return NULL;
427 }
428 
429 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
430 			       s64 ftr_val)
431 {
432 	u64 mask = arm64_ftr_mask(ftrp);
433 
434 	reg &= ~mask;
435 	reg |= (ftr_val << ftrp->shift) & mask;
436 	return reg;
437 }
438 
439 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
440 				s64 cur)
441 {
442 	s64 ret = 0;
443 
444 	switch (ftrp->type) {
445 	case FTR_EXACT:
446 		ret = ftrp->safe_val;
447 		break;
448 	case FTR_LOWER_SAFE:
449 		ret = new < cur ? new : cur;
450 		break;
451 	case FTR_HIGHER_SAFE:
452 		ret = new > cur ? new : cur;
453 		break;
454 	default:
455 		BUG();
456 	}
457 
458 	return ret;
459 }
460 
461 static void __init sort_ftr_regs(void)
462 {
463 	int i;
464 
465 	/* Check that the array is sorted so that we can do the binary search */
466 	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
467 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
468 }
469 
470 /*
471  * Initialise the CPU feature register from Boot CPU values.
472  * Also initiliases the strict_mask for the register.
473  * Any bits that are not covered by an arm64_ftr_bits entry are considered
474  * RES0 for the system-wide value, and must strictly match.
475  */
476 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
477 {
478 	u64 val = 0;
479 	u64 strict_mask = ~0x0ULL;
480 	u64 user_mask = 0;
481 	u64 valid_mask = 0;
482 
483 	const struct arm64_ftr_bits *ftrp;
484 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
485 
486 	BUG_ON(!reg);
487 
488 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
489 		u64 ftr_mask = arm64_ftr_mask(ftrp);
490 		s64 ftr_new = arm64_ftr_value(ftrp, new);
491 
492 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
493 
494 		valid_mask |= ftr_mask;
495 		if (!ftrp->strict)
496 			strict_mask &= ~ftr_mask;
497 		if (ftrp->visible)
498 			user_mask |= ftr_mask;
499 		else
500 			reg->user_val = arm64_ftr_set_value(ftrp,
501 							    reg->user_val,
502 							    ftrp->safe_val);
503 	}
504 
505 	val &= valid_mask;
506 
507 	reg->sys_val = val;
508 	reg->strict_mask = strict_mask;
509 	reg->user_mask = user_mask;
510 }
511 
512 extern const struct arm64_cpu_capabilities arm64_errata[];
513 static void __init setup_boot_cpu_capabilities(void);
514 
515 void __init init_cpu_features(struct cpuinfo_arm64 *info)
516 {
517 	/* Before we start using the tables, make sure it is sorted */
518 	sort_ftr_regs();
519 
520 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
521 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
522 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
523 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
524 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
525 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
526 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
527 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
528 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
529 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
530 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
531 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
532 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
533 
534 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
535 		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
536 		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
537 		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
538 		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
539 		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
540 		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
541 		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
542 		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
543 		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
544 		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
545 		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
546 		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
547 		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
548 		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
549 		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
550 		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
551 	}
552 
553 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
554 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
555 		sve_init_vq_map();
556 	}
557 
558 	/*
559 	 * Detect and enable early CPU capabilities based on the boot CPU,
560 	 * after we have initialised the CPU feature infrastructure.
561 	 */
562 	setup_boot_cpu_capabilities();
563 }
564 
565 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
566 {
567 	const struct arm64_ftr_bits *ftrp;
568 
569 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
570 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
571 		s64 ftr_new = arm64_ftr_value(ftrp, new);
572 
573 		if (ftr_cur == ftr_new)
574 			continue;
575 		/* Find a safe value */
576 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
577 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
578 	}
579 
580 }
581 
582 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
583 {
584 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
585 
586 	BUG_ON(!regp);
587 	update_cpu_ftr_reg(regp, val);
588 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
589 		return 0;
590 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
591 			regp->name, boot, cpu, val);
592 	return 1;
593 }
594 
595 /*
596  * Update system wide CPU feature registers with the values from a
597  * non-boot CPU. Also performs SANITY checks to make sure that there
598  * aren't any insane variations from that of the boot CPU.
599  */
600 void update_cpu_features(int cpu,
601 			 struct cpuinfo_arm64 *info,
602 			 struct cpuinfo_arm64 *boot)
603 {
604 	int taint = 0;
605 
606 	/*
607 	 * The kernel can handle differing I-cache policies, but otherwise
608 	 * caches should look identical. Userspace JITs will make use of
609 	 * *minLine.
610 	 */
611 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
612 				      info->reg_ctr, boot->reg_ctr);
613 
614 	/*
615 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
616 	 * could result in too much or too little memory being zeroed if a
617 	 * process is preempted and migrated between CPUs.
618 	 */
619 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
620 				      info->reg_dczid, boot->reg_dczid);
621 
622 	/* If different, timekeeping will be broken (especially with KVM) */
623 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
624 				      info->reg_cntfrq, boot->reg_cntfrq);
625 
626 	/*
627 	 * The kernel uses self-hosted debug features and expects CPUs to
628 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
629 	 * and BRPs to be identical.
630 	 * ID_AA64DFR1 is currently RES0.
631 	 */
632 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
633 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
634 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
635 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
636 	/*
637 	 * Even in big.LITTLE, processors should be identical instruction-set
638 	 * wise.
639 	 */
640 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
641 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
642 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
643 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
644 
645 	/*
646 	 * Differing PARange support is fine as long as all peripherals and
647 	 * memory are mapped within the minimum PARange of all CPUs.
648 	 * Linux should not care about secure memory.
649 	 */
650 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
651 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
652 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
653 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
654 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
655 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
656 
657 	/*
658 	 * EL3 is not our concern.
659 	 * ID_AA64PFR1 is currently RES0.
660 	 */
661 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
662 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
663 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
664 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
665 
666 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
667 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
668 
669 	/*
670 	 * If we have AArch32, we care about 32-bit features for compat.
671 	 * If the system doesn't support AArch32, don't update them.
672 	 */
673 	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
674 		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
675 
676 		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
677 					info->reg_id_dfr0, boot->reg_id_dfr0);
678 		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
679 					info->reg_id_isar0, boot->reg_id_isar0);
680 		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
681 					info->reg_id_isar1, boot->reg_id_isar1);
682 		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
683 					info->reg_id_isar2, boot->reg_id_isar2);
684 		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
685 					info->reg_id_isar3, boot->reg_id_isar3);
686 		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
687 					info->reg_id_isar4, boot->reg_id_isar4);
688 		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
689 					info->reg_id_isar5, boot->reg_id_isar5);
690 
691 		/*
692 		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
693 		 * ACTLR formats could differ across CPUs and therefore would have to
694 		 * be trapped for virtualization anyway.
695 		 */
696 		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
697 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
698 		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
699 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
700 		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
701 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
702 		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
703 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
704 		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
705 					info->reg_id_pfr0, boot->reg_id_pfr0);
706 		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
707 					info->reg_id_pfr1, boot->reg_id_pfr1);
708 		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
709 					info->reg_mvfr0, boot->reg_mvfr0);
710 		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
711 					info->reg_mvfr1, boot->reg_mvfr1);
712 		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
713 					info->reg_mvfr2, boot->reg_mvfr2);
714 	}
715 
716 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
717 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
718 					info->reg_zcr, boot->reg_zcr);
719 
720 		/* Probe vector lengths, unless we already gave up on SVE */
721 		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
722 		    !sys_caps_initialised)
723 			sve_update_vq_map();
724 	}
725 
726 	/*
727 	 * Mismatched CPU features are a recipe for disaster. Don't even
728 	 * pretend to support them.
729 	 */
730 	if (taint) {
731 		pr_warn_once("Unsupported CPU feature variation detected.\n");
732 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
733 	}
734 }
735 
736 u64 read_sanitised_ftr_reg(u32 id)
737 {
738 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
739 
740 	/* We shouldn't get a request for an unsupported register */
741 	BUG_ON(!regp);
742 	return regp->sys_val;
743 }
744 
745 #define read_sysreg_case(r)	\
746 	case r:		return read_sysreg_s(r)
747 
748 /*
749  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
750  * Read the system register on the current CPU
751  */
752 static u64 __read_sysreg_by_encoding(u32 sys_id)
753 {
754 	switch (sys_id) {
755 	read_sysreg_case(SYS_ID_PFR0_EL1);
756 	read_sysreg_case(SYS_ID_PFR1_EL1);
757 	read_sysreg_case(SYS_ID_DFR0_EL1);
758 	read_sysreg_case(SYS_ID_MMFR0_EL1);
759 	read_sysreg_case(SYS_ID_MMFR1_EL1);
760 	read_sysreg_case(SYS_ID_MMFR2_EL1);
761 	read_sysreg_case(SYS_ID_MMFR3_EL1);
762 	read_sysreg_case(SYS_ID_ISAR0_EL1);
763 	read_sysreg_case(SYS_ID_ISAR1_EL1);
764 	read_sysreg_case(SYS_ID_ISAR2_EL1);
765 	read_sysreg_case(SYS_ID_ISAR3_EL1);
766 	read_sysreg_case(SYS_ID_ISAR4_EL1);
767 	read_sysreg_case(SYS_ID_ISAR5_EL1);
768 	read_sysreg_case(SYS_MVFR0_EL1);
769 	read_sysreg_case(SYS_MVFR1_EL1);
770 	read_sysreg_case(SYS_MVFR2_EL1);
771 
772 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
773 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
774 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
775 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
776 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
777 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
778 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
779 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
780 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
781 
782 	read_sysreg_case(SYS_CNTFRQ_EL0);
783 	read_sysreg_case(SYS_CTR_EL0);
784 	read_sysreg_case(SYS_DCZID_EL0);
785 
786 	default:
787 		BUG();
788 		return 0;
789 	}
790 }
791 
792 #include <linux/irqchip/arm-gic-v3.h>
793 
794 static bool
795 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
796 {
797 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
798 
799 	return val >= entry->min_field_value;
800 }
801 
802 static bool
803 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
804 {
805 	u64 val;
806 
807 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
808 	if (scope == SCOPE_SYSTEM)
809 		val = read_sanitised_ftr_reg(entry->sys_reg);
810 	else
811 		val = __read_sysreg_by_encoding(entry->sys_reg);
812 
813 	return feature_matches(val, entry);
814 }
815 
816 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
817 {
818 	bool has_sre;
819 
820 	if (!has_cpuid_feature(entry, scope))
821 		return false;
822 
823 	has_sre = gic_enable_sre();
824 	if (!has_sre)
825 		pr_warn_once("%s present but disabled by higher exception level\n",
826 			     entry->desc);
827 
828 	return has_sre;
829 }
830 
831 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
832 {
833 	u32 midr = read_cpuid_id();
834 
835 	/* Cavium ThunderX pass 1.x and 2.x */
836 	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
837 		MIDR_CPU_VAR_REV(0, 0),
838 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
839 }
840 
841 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
842 {
843 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
844 
845 	return cpuid_feature_extract_signed_field(pfr0,
846 					ID_AA64PFR0_FP_SHIFT) < 0;
847 }
848 
849 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
850 			  int __unused)
851 {
852 	return read_sanitised_ftr_reg(SYS_CTR_EL0) & BIT(CTR_IDC_SHIFT);
853 }
854 
855 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
856 			  int __unused)
857 {
858 	return read_sanitised_ftr_reg(SYS_CTR_EL0) & BIT(CTR_DIC_SHIFT);
859 }
860 
861 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
862 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
863 
864 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
865 				int scope)
866 {
867 	/* List of CPUs that are not vulnerable and don't need KPTI */
868 	static const struct midr_range kpti_safe_list[] = {
869 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
870 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
871 		{ /* sentinel */ }
872 	};
873 	char const *str = "command line option";
874 
875 	/*
876 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
877 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
878 	 * ends as well as you might imagine. Don't even try.
879 	 */
880 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
881 		str = "ARM64_WORKAROUND_CAVIUM_27456";
882 		__kpti_forced = -1;
883 	}
884 
885 	/* Forced? */
886 	if (__kpti_forced) {
887 		pr_info_once("kernel page table isolation forced %s by %s\n",
888 			     __kpti_forced > 0 ? "ON" : "OFF", str);
889 		return __kpti_forced > 0;
890 	}
891 
892 	/* Useful for KASLR robustness */
893 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
894 		return true;
895 
896 	/* Don't force KPTI for CPUs that are not vulnerable */
897 	if (is_midr_in_range_list(read_cpuid_id(), kpti_safe_list))
898 		return false;
899 
900 	/* Defer to CPU feature registers */
901 	return !has_cpuid_feature(entry, scope);
902 }
903 
904 static void
905 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
906 {
907 	typedef void (kpti_remap_fn)(int, int, phys_addr_t);
908 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
909 	kpti_remap_fn *remap_fn;
910 
911 	static bool kpti_applied = false;
912 	int cpu = smp_processor_id();
913 
914 	if (kpti_applied)
915 		return;
916 
917 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
918 
919 	cpu_install_idmap();
920 	remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
921 	cpu_uninstall_idmap();
922 
923 	if (!cpu)
924 		kpti_applied = true;
925 
926 	return;
927 }
928 
929 static int __init parse_kpti(char *str)
930 {
931 	bool enabled;
932 	int ret = strtobool(str, &enabled);
933 
934 	if (ret)
935 		return ret;
936 
937 	__kpti_forced = enabled ? 1 : -1;
938 	return 0;
939 }
940 early_param("kpti", parse_kpti);
941 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
942 
943 #ifdef CONFIG_ARM64_HW_AFDBM
944 static inline void __cpu_enable_hw_dbm(void)
945 {
946 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
947 
948 	write_sysreg(tcr, tcr_el1);
949 	isb();
950 }
951 
952 static bool cpu_has_broken_dbm(void)
953 {
954 	/* List of CPUs which have broken DBM support. */
955 	static const struct midr_range cpus[] = {
956 #ifdef CONFIG_ARM64_ERRATUM_1024718
957 		MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
958 #endif
959 		{},
960 	};
961 
962 	return is_midr_in_range_list(read_cpuid_id(), cpus);
963 }
964 
965 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
966 {
967 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
968 	       !cpu_has_broken_dbm();
969 }
970 
971 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
972 {
973 	if (cpu_can_use_dbm(cap))
974 		__cpu_enable_hw_dbm();
975 }
976 
977 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
978 		       int __unused)
979 {
980 	static bool detected = false;
981 	/*
982 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
983 	 * run a mix of CPUs with and without the feature. So, we
984 	 * unconditionally enable the capability to allow any late CPU
985 	 * to use the feature. We only enable the control bits on the
986 	 * CPU, if it actually supports.
987 	 *
988 	 * We have to make sure we print the "feature" detection only
989 	 * when at least one CPU actually uses it. So check if this CPU
990 	 * can actually use it and print the message exactly once.
991 	 *
992 	 * This is safe as all CPUs (including secondary CPUs - due to the
993 	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
994 	 * goes through the "matches" check exactly once. Also if a CPU
995 	 * matches the criteria, it is guaranteed that the CPU will turn
996 	 * the DBM on, as the capability is unconditionally enabled.
997 	 */
998 	if (!detected && cpu_can_use_dbm(cap)) {
999 		detected = true;
1000 		pr_info("detected: Hardware dirty bit management\n");
1001 	}
1002 
1003 	return true;
1004 }
1005 
1006 #endif
1007 
1008 #ifdef CONFIG_ARM64_VHE
1009 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1010 {
1011 	return is_kernel_in_hyp_mode();
1012 }
1013 
1014 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1015 {
1016 	/*
1017 	 * Copy register values that aren't redirected by hardware.
1018 	 *
1019 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1020 	 * this value to tpidr_el2 before we patch the code. Once we've done
1021 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1022 	 * do anything here.
1023 	 */
1024 	if (!alternatives_applied)
1025 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1026 }
1027 #endif
1028 
1029 static const struct arm64_cpu_capabilities arm64_features[] = {
1030 	{
1031 		.desc = "GIC system register CPU interface",
1032 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1033 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1034 		.matches = has_useable_gicv3_cpuif,
1035 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1036 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
1037 		.sign = FTR_UNSIGNED,
1038 		.min_field_value = 1,
1039 	},
1040 #ifdef CONFIG_ARM64_PAN
1041 	{
1042 		.desc = "Privileged Access Never",
1043 		.capability = ARM64_HAS_PAN,
1044 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1045 		.matches = has_cpuid_feature,
1046 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1047 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
1048 		.sign = FTR_UNSIGNED,
1049 		.min_field_value = 1,
1050 		.cpu_enable = cpu_enable_pan,
1051 	},
1052 #endif /* CONFIG_ARM64_PAN */
1053 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1054 	{
1055 		.desc = "LSE atomic instructions",
1056 		.capability = ARM64_HAS_LSE_ATOMICS,
1057 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1058 		.matches = has_cpuid_feature,
1059 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
1060 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1061 		.sign = FTR_UNSIGNED,
1062 		.min_field_value = 2,
1063 	},
1064 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1065 	{
1066 		.desc = "Software prefetching using PRFM",
1067 		.capability = ARM64_HAS_NO_HW_PREFETCH,
1068 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1069 		.matches = has_no_hw_prefetch,
1070 	},
1071 #ifdef CONFIG_ARM64_UAO
1072 	{
1073 		.desc = "User Access Override",
1074 		.capability = ARM64_HAS_UAO,
1075 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1076 		.matches = has_cpuid_feature,
1077 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1078 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
1079 		.min_field_value = 1,
1080 		/*
1081 		 * We rely on stop_machine() calling uao_thread_switch() to set
1082 		 * UAO immediately after patching.
1083 		 */
1084 	},
1085 #endif /* CONFIG_ARM64_UAO */
1086 #ifdef CONFIG_ARM64_PAN
1087 	{
1088 		.capability = ARM64_ALT_PAN_NOT_UAO,
1089 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1090 		.matches = cpufeature_pan_not_uao,
1091 	},
1092 #endif /* CONFIG_ARM64_PAN */
1093 #ifdef CONFIG_ARM64_VHE
1094 	{
1095 		.desc = "Virtualization Host Extensions",
1096 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
1097 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1098 		.matches = runs_at_el2,
1099 		.cpu_enable = cpu_copy_el2regs,
1100 	},
1101 #endif	/* CONFIG_ARM64_VHE */
1102 	{
1103 		.desc = "32-bit EL0 Support",
1104 		.capability = ARM64_HAS_32BIT_EL0,
1105 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1106 		.matches = has_cpuid_feature,
1107 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1108 		.sign = FTR_UNSIGNED,
1109 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
1110 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1111 	},
1112 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1113 	{
1114 		.desc = "Kernel page table isolation (KPTI)",
1115 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
1116 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1117 		/*
1118 		 * The ID feature fields below are used to indicate that
1119 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1120 		 * more details.
1121 		 */
1122 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1123 		.field_pos = ID_AA64PFR0_CSV3_SHIFT,
1124 		.min_field_value = 1,
1125 		.matches = unmap_kernel_at_el0,
1126 		.cpu_enable = kpti_install_ng_mappings,
1127 	},
1128 #endif
1129 	{
1130 		/* FP/SIMD is not implemented */
1131 		.capability = ARM64_HAS_NO_FPSIMD,
1132 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1133 		.min_field_value = 0,
1134 		.matches = has_no_fpsimd,
1135 	},
1136 #ifdef CONFIG_ARM64_PMEM
1137 	{
1138 		.desc = "Data cache clean to Point of Persistence",
1139 		.capability = ARM64_HAS_DCPOP,
1140 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1141 		.matches = has_cpuid_feature,
1142 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1143 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
1144 		.min_field_value = 1,
1145 	},
1146 #endif
1147 #ifdef CONFIG_ARM64_SVE
1148 	{
1149 		.desc = "Scalable Vector Extension",
1150 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1151 		.capability = ARM64_SVE,
1152 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1153 		.sign = FTR_UNSIGNED,
1154 		.field_pos = ID_AA64PFR0_SVE_SHIFT,
1155 		.min_field_value = ID_AA64PFR0_SVE,
1156 		.matches = has_cpuid_feature,
1157 		.cpu_enable = sve_kernel_enable,
1158 	},
1159 #endif /* CONFIG_ARM64_SVE */
1160 #ifdef CONFIG_ARM64_RAS_EXTN
1161 	{
1162 		.desc = "RAS Extension Support",
1163 		.capability = ARM64_HAS_RAS_EXTN,
1164 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1165 		.matches = has_cpuid_feature,
1166 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1167 		.sign = FTR_UNSIGNED,
1168 		.field_pos = ID_AA64PFR0_RAS_SHIFT,
1169 		.min_field_value = ID_AA64PFR0_RAS_V1,
1170 		.cpu_enable = cpu_clear_disr,
1171 	},
1172 #endif /* CONFIG_ARM64_RAS_EXTN */
1173 	{
1174 		.desc = "Data cache clean to the PoU not required for I/D coherence",
1175 		.capability = ARM64_HAS_CACHE_IDC,
1176 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1177 		.matches = has_cache_idc,
1178 	},
1179 	{
1180 		.desc = "Instruction cache invalidation not required for I/D coherence",
1181 		.capability = ARM64_HAS_CACHE_DIC,
1182 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1183 		.matches = has_cache_dic,
1184 	},
1185 #ifdef CONFIG_ARM64_HW_AFDBM
1186 	{
1187 		/*
1188 		 * Since we turn this on always, we don't want the user to
1189 		 * think that the feature is available when it may not be.
1190 		 * So hide the description.
1191 		 *
1192 		 * .desc = "Hardware pagetable Dirty Bit Management",
1193 		 *
1194 		 */
1195 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1196 		.capability = ARM64_HW_DBM,
1197 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1198 		.sign = FTR_UNSIGNED,
1199 		.field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1200 		.min_field_value = 2,
1201 		.matches = has_hw_dbm,
1202 		.cpu_enable = cpu_enable_hw_dbm,
1203 	},
1204 #endif
1205 	{},
1206 };
1207 
1208 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)	\
1209 	{							\
1210 		.desc = #cap,					\
1211 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,		\
1212 		.matches = has_cpuid_feature,			\
1213 		.sys_reg = reg,					\
1214 		.field_pos = field,				\
1215 		.sign = s,					\
1216 		.min_field_value = min_value,			\
1217 		.hwcap_type = cap_type,				\
1218 		.hwcap = cap,					\
1219 	}
1220 
1221 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1222 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
1223 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
1224 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
1225 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1226 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1227 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
1228 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1229 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1230 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
1231 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
1232 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
1233 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1234 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1235 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
1236 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1237 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1238 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1239 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1240 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
1241 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1242 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1243 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1244 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1245 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
1246 	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
1247 #ifdef CONFIG_ARM64_SVE
1248 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1249 #endif
1250 	{},
1251 };
1252 
1253 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1254 #ifdef CONFIG_COMPAT
1255 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1256 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1257 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1258 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1259 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1260 #endif
1261 	{},
1262 };
1263 
1264 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1265 {
1266 	switch (cap->hwcap_type) {
1267 	case CAP_HWCAP:
1268 		elf_hwcap |= cap->hwcap;
1269 		break;
1270 #ifdef CONFIG_COMPAT
1271 	case CAP_COMPAT_HWCAP:
1272 		compat_elf_hwcap |= (u32)cap->hwcap;
1273 		break;
1274 	case CAP_COMPAT_HWCAP2:
1275 		compat_elf_hwcap2 |= (u32)cap->hwcap;
1276 		break;
1277 #endif
1278 	default:
1279 		WARN_ON(1);
1280 		break;
1281 	}
1282 }
1283 
1284 /* Check if we have a particular HWCAP enabled */
1285 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1286 {
1287 	bool rc;
1288 
1289 	switch (cap->hwcap_type) {
1290 	case CAP_HWCAP:
1291 		rc = (elf_hwcap & cap->hwcap) != 0;
1292 		break;
1293 #ifdef CONFIG_COMPAT
1294 	case CAP_COMPAT_HWCAP:
1295 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1296 		break;
1297 	case CAP_COMPAT_HWCAP2:
1298 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1299 		break;
1300 #endif
1301 	default:
1302 		WARN_ON(1);
1303 		rc = false;
1304 	}
1305 
1306 	return rc;
1307 }
1308 
1309 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1310 {
1311 	/* We support emulation of accesses to CPU ID feature registers */
1312 	elf_hwcap |= HWCAP_CPUID;
1313 	for (; hwcaps->matches; hwcaps++)
1314 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1315 			cap_set_elf_hwcap(hwcaps);
1316 }
1317 
1318 /*
1319  * Check if the current CPU has a given feature capability.
1320  * Should be called from non-preemptible context.
1321  */
1322 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1323 			       unsigned int cap)
1324 {
1325 	const struct arm64_cpu_capabilities *caps;
1326 
1327 	if (WARN_ON(preemptible()))
1328 		return false;
1329 
1330 	for (caps = cap_array; caps->matches; caps++)
1331 		if (caps->capability == cap)
1332 			return caps->matches(caps, SCOPE_LOCAL_CPU);
1333 
1334 	return false;
1335 }
1336 
1337 static void __update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1338 				      u16 scope_mask, const char *info)
1339 {
1340 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1341 	for (; caps->matches; caps++) {
1342 		if (!(caps->type & scope_mask) ||
1343 		    !caps->matches(caps, cpucap_default_scope(caps)))
1344 			continue;
1345 
1346 		if (!cpus_have_cap(caps->capability) && caps->desc)
1347 			pr_info("%s %s\n", info, caps->desc);
1348 		cpus_set_cap(caps->capability);
1349 	}
1350 }
1351 
1352 static void update_cpu_capabilities(u16 scope_mask)
1353 {
1354 	__update_cpu_capabilities(arm64_errata, scope_mask,
1355 				  "enabling workaround for");
1356 	__update_cpu_capabilities(arm64_features, scope_mask, "detected:");
1357 }
1358 
1359 static int __enable_cpu_capability(void *arg)
1360 {
1361 	const struct arm64_cpu_capabilities *cap = arg;
1362 
1363 	cap->cpu_enable(cap);
1364 	return 0;
1365 }
1366 
1367 /*
1368  * Run through the enabled capabilities and enable() it on all active
1369  * CPUs
1370  */
1371 static void __init
1372 __enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1373 			  u16 scope_mask)
1374 {
1375 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1376 	for (; caps->matches; caps++) {
1377 		unsigned int num = caps->capability;
1378 
1379 		if (!(caps->type & scope_mask) || !cpus_have_cap(num))
1380 			continue;
1381 
1382 		/* Ensure cpus_have_const_cap(num) works */
1383 		static_branch_enable(&cpu_hwcap_keys[num]);
1384 
1385 		if (caps->cpu_enable) {
1386 			/*
1387 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
1388 			 * before any secondary CPU boots. Thus, each secondary
1389 			 * will enable the capability as appropriate via
1390 			 * check_local_cpu_capabilities(). The only exception is
1391 			 * the boot CPU, for which the capability must be
1392 			 * enabled here. This approach avoids costly
1393 			 * stop_machine() calls for this case.
1394 			 *
1395 			 * Otherwise, use stop_machine() as it schedules the
1396 			 * work allowing us to modify PSTATE, instead of
1397 			 * on_each_cpu() which uses an IPI, giving us a PSTATE
1398 			 * that disappears when we return.
1399 			 */
1400 			if (scope_mask & SCOPE_BOOT_CPU)
1401 				caps->cpu_enable(caps);
1402 			else
1403 				stop_machine(__enable_cpu_capability,
1404 					     (void *)caps, cpu_online_mask);
1405 		}
1406 	}
1407 }
1408 
1409 static void __init enable_cpu_capabilities(u16 scope_mask)
1410 {
1411 	__enable_cpu_capabilities(arm64_errata, scope_mask);
1412 	__enable_cpu_capabilities(arm64_features, scope_mask);
1413 }
1414 
1415 /*
1416  * Run through the list of capabilities to check for conflicts.
1417  * If the system has already detected a capability, take necessary
1418  * action on this CPU.
1419  *
1420  * Returns "false" on conflicts.
1421  */
1422 static bool
1423 __verify_local_cpu_caps(const struct arm64_cpu_capabilities *caps,
1424 			u16 scope_mask)
1425 {
1426 	bool cpu_has_cap, system_has_cap;
1427 
1428 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1429 
1430 	for (; caps->matches; caps++) {
1431 		if (!(caps->type & scope_mask))
1432 			continue;
1433 
1434 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1435 		system_has_cap = cpus_have_cap(caps->capability);
1436 
1437 		if (system_has_cap) {
1438 			/*
1439 			 * Check if the new CPU misses an advertised feature,
1440 			 * which is not safe to miss.
1441 			 */
1442 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1443 				break;
1444 			/*
1445 			 * We have to issue cpu_enable() irrespective of
1446 			 * whether the CPU has it or not, as it is enabeld
1447 			 * system wide. It is upto the call back to take
1448 			 * appropriate action on this CPU.
1449 			 */
1450 			if (caps->cpu_enable)
1451 				caps->cpu_enable(caps);
1452 		} else {
1453 			/*
1454 			 * Check if the CPU has this capability if it isn't
1455 			 * safe to have when the system doesn't.
1456 			 */
1457 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1458 				break;
1459 		}
1460 	}
1461 
1462 	if (caps->matches) {
1463 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1464 			smp_processor_id(), caps->capability,
1465 			caps->desc, system_has_cap, cpu_has_cap);
1466 		return false;
1467 	}
1468 
1469 	return true;
1470 }
1471 
1472 static bool verify_local_cpu_caps(u16 scope_mask)
1473 {
1474 	return __verify_local_cpu_caps(arm64_errata, scope_mask) &&
1475 	       __verify_local_cpu_caps(arm64_features, scope_mask);
1476 }
1477 
1478 /*
1479  * Check for CPU features that are used in early boot
1480  * based on the Boot CPU value.
1481  */
1482 static void check_early_cpu_features(void)
1483 {
1484 	verify_cpu_asid_bits();
1485 	/*
1486 	 * Early features are used by the kernel already. If there
1487 	 * is a conflict, we cannot proceed further.
1488 	 */
1489 	if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1490 		cpu_panic_kernel();
1491 }
1492 
1493 static void
1494 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1495 {
1496 
1497 	for (; caps->matches; caps++)
1498 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1499 			pr_crit("CPU%d: missing HWCAP: %s\n",
1500 					smp_processor_id(), caps->desc);
1501 			cpu_die_early();
1502 		}
1503 }
1504 
1505 static void verify_sve_features(void)
1506 {
1507 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1508 	u64 zcr = read_zcr_features();
1509 
1510 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1511 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1512 
1513 	if (len < safe_len || sve_verify_vq_map()) {
1514 		pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1515 			smp_processor_id());
1516 		cpu_die_early();
1517 	}
1518 
1519 	/* Add checks on other ZCR bits here if necessary */
1520 }
1521 
1522 
1523 /*
1524  * Run through the enabled system capabilities and enable() it on this CPU.
1525  * The capabilities were decided based on the available CPUs at the boot time.
1526  * Any new CPU should match the system wide status of the capability. If the
1527  * new CPU doesn't have a capability which the system now has enabled, we
1528  * cannot do anything to fix it up and could cause unexpected failures. So
1529  * we park the CPU.
1530  */
1531 static void verify_local_cpu_capabilities(void)
1532 {
1533 	/*
1534 	 * The capabilities with SCOPE_BOOT_CPU are checked from
1535 	 * check_early_cpu_features(), as they need to be verified
1536 	 * on all secondary CPUs.
1537 	 */
1538 	if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1539 		cpu_die_early();
1540 
1541 	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1542 
1543 	if (system_supports_32bit_el0())
1544 		verify_local_elf_hwcaps(compat_elf_hwcaps);
1545 
1546 	if (system_supports_sve())
1547 		verify_sve_features();
1548 }
1549 
1550 void check_local_cpu_capabilities(void)
1551 {
1552 	/*
1553 	 * All secondary CPUs should conform to the early CPU features
1554 	 * in use by the kernel based on boot CPU.
1555 	 */
1556 	check_early_cpu_features();
1557 
1558 	/*
1559 	 * If we haven't finalised the system capabilities, this CPU gets
1560 	 * a chance to update the errata work arounds and local features.
1561 	 * Otherwise, this CPU should verify that it has all the system
1562 	 * advertised capabilities.
1563 	 */
1564 	if (!sys_caps_initialised)
1565 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
1566 	else
1567 		verify_local_cpu_capabilities();
1568 }
1569 
1570 static void __init setup_boot_cpu_capabilities(void)
1571 {
1572 	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1573 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1574 	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1575 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
1576 }
1577 
1578 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1579 EXPORT_SYMBOL(arm64_const_caps_ready);
1580 
1581 static void __init mark_const_caps_ready(void)
1582 {
1583 	static_branch_enable(&arm64_const_caps_ready);
1584 }
1585 
1586 extern const struct arm64_cpu_capabilities arm64_errata[];
1587 
1588 bool this_cpu_has_cap(unsigned int cap)
1589 {
1590 	return (__this_cpu_has_cap(arm64_features, cap) ||
1591 		__this_cpu_has_cap(arm64_errata, cap));
1592 }
1593 
1594 static void __init setup_system_capabilities(void)
1595 {
1596 	/*
1597 	 * We have finalised the system-wide safe feature
1598 	 * registers, finalise the capabilities that depend
1599 	 * on it. Also enable all the available capabilities,
1600 	 * that are not enabled already.
1601 	 */
1602 	update_cpu_capabilities(SCOPE_SYSTEM);
1603 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
1604 }
1605 
1606 void __init setup_cpu_features(void)
1607 {
1608 	u32 cwg;
1609 
1610 	setup_system_capabilities();
1611 	mark_const_caps_ready();
1612 	setup_elf_hwcaps(arm64_elf_hwcaps);
1613 
1614 	if (system_supports_32bit_el0())
1615 		setup_elf_hwcaps(compat_elf_hwcaps);
1616 
1617 	if (system_uses_ttbr0_pan())
1618 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
1619 
1620 	sve_setup();
1621 	minsigstksz_setup();
1622 
1623 	/* Advertise that we have computed the system capabilities */
1624 	set_sys_caps_initialised();
1625 
1626 	/*
1627 	 * Check for sane CTR_EL0.CWG value.
1628 	 */
1629 	cwg = cache_type_cwg();
1630 	if (!cwg)
1631 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
1632 			ARCH_DMA_MINALIGN);
1633 }
1634 
1635 static bool __maybe_unused
1636 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1637 {
1638 	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1639 }
1640 
1641 /*
1642  * We emulate only the following system register space.
1643  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1644  * See Table C5-6 System instruction encodings for System register accesses,
1645  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1646  */
1647 static inline bool __attribute_const__ is_emulated(u32 id)
1648 {
1649 	return (sys_reg_Op0(id) == 0x3 &&
1650 		sys_reg_CRn(id) == 0x0 &&
1651 		sys_reg_Op1(id) == 0x0 &&
1652 		(sys_reg_CRm(id) == 0 ||
1653 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1654 }
1655 
1656 /*
1657  * With CRm == 0, reg should be one of :
1658  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1659  */
1660 static inline int emulate_id_reg(u32 id, u64 *valp)
1661 {
1662 	switch (id) {
1663 	case SYS_MIDR_EL1:
1664 		*valp = read_cpuid_id();
1665 		break;
1666 	case SYS_MPIDR_EL1:
1667 		*valp = SYS_MPIDR_SAFE_VAL;
1668 		break;
1669 	case SYS_REVIDR_EL1:
1670 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
1671 		*valp = 0;
1672 		break;
1673 	default:
1674 		return -EINVAL;
1675 	}
1676 
1677 	return 0;
1678 }
1679 
1680 static int emulate_sys_reg(u32 id, u64 *valp)
1681 {
1682 	struct arm64_ftr_reg *regp;
1683 
1684 	if (!is_emulated(id))
1685 		return -EINVAL;
1686 
1687 	if (sys_reg_CRm(id) == 0)
1688 		return emulate_id_reg(id, valp);
1689 
1690 	regp = get_arm64_ftr_reg(id);
1691 	if (regp)
1692 		*valp = arm64_ftr_reg_user_value(regp);
1693 	else
1694 		/*
1695 		 * The untracked registers are either IMPLEMENTATION DEFINED
1696 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1697 		 */
1698 		*valp = 0;
1699 	return 0;
1700 }
1701 
1702 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1703 {
1704 	int rc;
1705 	u32 sys_reg, dst;
1706 	u64 val;
1707 
1708 	/*
1709 	 * sys_reg values are defined as used in mrs/msr instruction.
1710 	 * shift the imm value to get the encoding.
1711 	 */
1712 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1713 	rc = emulate_sys_reg(sys_reg, &val);
1714 	if (!rc) {
1715 		dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1716 		pt_regs_write_reg(regs, dst, val);
1717 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1718 	}
1719 
1720 	return rc;
1721 }
1722 
1723 static struct undef_hook mrs_hook = {
1724 	.instr_mask = 0xfff00000,
1725 	.instr_val  = 0xd5300000,
1726 	.pstate_mask = COMPAT_PSR_MODE_MASK,
1727 	.pstate_val = PSR_MODE_EL0t,
1728 	.fn = emulate_mrs,
1729 };
1730 
1731 static int __init enable_mrs_emulation(void)
1732 {
1733 	register_undef_hook(&mrs_hook);
1734 	return 0;
1735 }
1736 
1737 core_initcall(enable_mrs_emulation);
1738 
1739 void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1740 {
1741 	/* Firmware may have left a deferred SError in this register. */
1742 	write_sysreg_s(0, SYS_DISR_EL1);
1743 }
1744