xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  */
7 
8 #define pr_fmt(fmt) "CPU features: " fmt
9 
10 #include <linux/bsearch.h>
11 #include <linux/cpumask.h>
12 #include <linux/crash_dump.h>
13 #include <linux/sort.h>
14 #include <linux/stop_machine.h>
15 #include <linux/types.h>
16 #include <linux/mm.h>
17 #include <linux/cpu.h>
18 #include <asm/cpu.h>
19 #include <asm/cpufeature.h>
20 #include <asm/cpu_ops.h>
21 #include <asm/fpsimd.h>
22 #include <asm/mmu_context.h>
23 #include <asm/processor.h>
24 #include <asm/sysreg.h>
25 #include <asm/traps.h>
26 #include <asm/virt.h>
27 
28 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
29 static unsigned long elf_hwcap __read_mostly;
30 
31 #ifdef CONFIG_COMPAT
32 #define COMPAT_ELF_HWCAP_DEFAULT	\
33 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
34 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
35 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
36 				 COMPAT_HWCAP_LPAE)
37 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
38 unsigned int compat_elf_hwcap2 __read_mostly;
39 #endif
40 
41 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
42 EXPORT_SYMBOL(cpu_hwcaps);
43 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
44 
45 /* Need also bit for ARM64_CB_PATCH */
46 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
47 
48 bool arm64_use_ng_mappings = false;
49 EXPORT_SYMBOL(arm64_use_ng_mappings);
50 
51 /*
52  * Flag to indicate if we have computed the system wide
53  * capabilities based on the boot time active CPUs. This
54  * will be used to determine if a new booting CPU should
55  * go through the verification process to make sure that it
56  * supports the system capabilities, without using a hotplug
57  * notifier. This is also used to decide if we could use
58  * the fast path for checking constant CPU caps.
59  */
60 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
61 EXPORT_SYMBOL(arm64_const_caps_ready);
62 static inline void finalize_system_capabilities(void)
63 {
64 	static_branch_enable(&arm64_const_caps_ready);
65 }
66 
67 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
68 {
69 	/* file-wide pr_fmt adds "CPU features: " prefix */
70 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
71 	return 0;
72 }
73 
74 static struct notifier_block cpu_hwcaps_notifier = {
75 	.notifier_call = dump_cpu_hwcaps
76 };
77 
78 static int __init register_cpu_hwcaps_dumper(void)
79 {
80 	atomic_notifier_chain_register(&panic_notifier_list,
81 				       &cpu_hwcaps_notifier);
82 	return 0;
83 }
84 __initcall(register_cpu_hwcaps_dumper);
85 
86 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
87 EXPORT_SYMBOL(cpu_hwcap_keys);
88 
89 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
90 	{						\
91 		.sign = SIGNED,				\
92 		.visible = VISIBLE,			\
93 		.strict = STRICT,			\
94 		.type = TYPE,				\
95 		.shift = SHIFT,				\
96 		.width = WIDTH,				\
97 		.safe_val = SAFE_VAL,			\
98 	}
99 
100 /* Define a feature with unsigned values */
101 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
102 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
103 
104 /* Define a feature with a signed value */
105 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
106 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
107 
108 #define ARM64_FTR_END					\
109 	{						\
110 		.width = 0,				\
111 	}
112 
113 /* meta feature for alternatives */
114 static bool __maybe_unused
115 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
116 
117 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
118 
119 /*
120  * NOTE: Any changes to the visibility of features should be kept in
121  * sync with the documentation of the CPU feature register ABI.
122  */
123 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
124 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
125 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
126 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
127 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
128 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
129 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
130 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
131 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
132 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
133 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
134 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
135 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
136 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
137 	ARM64_FTR_END,
138 };
139 
140 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
141 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
142 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
143 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
144 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
145 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
146 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
147 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
148 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
149 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
150 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
151 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
152 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
153 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
154 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
155 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_API_SHIFT, 4, 0),
156 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
157 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_APA_SHIFT, 4, 0),
158 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
159 	ARM64_FTR_END,
160 };
161 
162 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
163 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
164 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
165 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
166 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
167 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
168 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
169 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
170 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
171 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
172 	/* Linux doesn't care about the EL3 */
173 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
174 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
175 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
176 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
177 	ARM64_FTR_END,
178 };
179 
180 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
181 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
182 	ARM64_FTR_END,
183 };
184 
185 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
186 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
187 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
188 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
189 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
190 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
191 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
192 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
193 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
194 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
195 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
196 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
197 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
198 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
199 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
200 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
201 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
202 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
203 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
204 	ARM64_FTR_END,
205 };
206 
207 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
208 	/*
209 	 * We already refuse to boot CPUs that don't support our configured
210 	 * page size, so we can only detect mismatches for a page size other
211 	 * than the one we're currently using. Unfortunately, SoCs like this
212 	 * exist in the wild so, even though we don't like it, we'll have to go
213 	 * along with it and treat them as non-strict.
214 	 */
215 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
216 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
217 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
218 
219 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
220 	/* Linux shouldn't care about secure memory */
221 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
222 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
223 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
224 	/*
225 	 * Differing PARange is fine as long as all peripherals and memory are mapped
226 	 * within the minimum PARange of all CPUs
227 	 */
228 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
229 	ARM64_FTR_END,
230 };
231 
232 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
233 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
234 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
235 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
236 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
237 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
238 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
239 	ARM64_FTR_END,
240 };
241 
242 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
243 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
244 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
245 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
246 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
247 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
248 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
249 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
250 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
251 	ARM64_FTR_END,
252 };
253 
254 static const struct arm64_ftr_bits ftr_ctr[] = {
255 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
256 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
257 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
258 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
259 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
260 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
261 	/*
262 	 * Linux can handle differing I-cache policies. Userspace JITs will
263 	 * make use of *minLine.
264 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
265 	 */
266 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
267 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
268 	ARM64_FTR_END,
269 };
270 
271 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
272 	.name		= "SYS_CTR_EL0",
273 	.ftr_bits	= ftr_ctr
274 };
275 
276 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
277 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
278 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
279 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
280 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
281 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
282 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
283 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
284 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
285 	ARM64_FTR_END,
286 };
287 
288 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
289 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
290 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
291 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
292 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
293 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
294 	/*
295 	 * We can instantiate multiple PMU instances with different levels
296 	 * of support.
297 	 */
298 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
299 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
300 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
301 	ARM64_FTR_END,
302 };
303 
304 static const struct arm64_ftr_bits ftr_mvfr2[] = {
305 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
306 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
307 	ARM64_FTR_END,
308 };
309 
310 static const struct arm64_ftr_bits ftr_dczid[] = {
311 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
312 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
313 	ARM64_FTR_END,
314 };
315 
316 
317 static const struct arm64_ftr_bits ftr_id_isar5[] = {
318 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
319 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
320 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
321 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
322 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
323 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
324 	ARM64_FTR_END,
325 };
326 
327 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
328 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
329 	ARM64_FTR_END,
330 };
331 
332 static const struct arm64_ftr_bits ftr_id_isar6[] = {
333 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
334 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
335 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
336 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
337 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
338 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
339 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
340 	ARM64_FTR_END,
341 };
342 
343 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
344 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
345 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
346 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
347 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
348 	ARM64_FTR_END,
349 };
350 
351 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
352 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
353 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
354 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
355 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
356 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
357 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
358 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
359 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
360 	ARM64_FTR_END,
361 };
362 
363 static const struct arm64_ftr_bits ftr_zcr[] = {
364 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
365 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
366 	ARM64_FTR_END,
367 };
368 
369 /*
370  * Common ftr bits for a 32bit register with all hidden, strict
371  * attributes, with 4bit feature fields and a default safe value of
372  * 0. Covers the following 32bit registers:
373  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
374  */
375 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
376 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
377 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
378 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
379 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
380 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
381 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
382 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
383 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
384 	ARM64_FTR_END,
385 };
386 
387 /* Table for a single 32bit feature value */
388 static const struct arm64_ftr_bits ftr_single32[] = {
389 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
390 	ARM64_FTR_END,
391 };
392 
393 static const struct arm64_ftr_bits ftr_raz[] = {
394 	ARM64_FTR_END,
395 };
396 
397 #define ARM64_FTR_REG(id, table) {		\
398 	.sys_id = id,				\
399 	.reg = 	&(struct arm64_ftr_reg){	\
400 		.name = #id,			\
401 		.ftr_bits = &((table)[0]),	\
402 	}}
403 
404 static const struct __ftr_reg_entry {
405 	u32			sys_id;
406 	struct arm64_ftr_reg 	*reg;
407 } arm64_ftr_regs[] = {
408 
409 	/* Op1 = 0, CRn = 0, CRm = 1 */
410 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
411 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
412 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
413 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
414 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
415 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
416 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
417 
418 	/* Op1 = 0, CRn = 0, CRm = 2 */
419 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
420 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
421 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
422 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
423 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
424 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
425 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
426 	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
427 
428 	/* Op1 = 0, CRn = 0, CRm = 3 */
429 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
430 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
431 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
432 
433 	/* Op1 = 0, CRn = 0, CRm = 4 */
434 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
435 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
436 	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
437 
438 	/* Op1 = 0, CRn = 0, CRm = 5 */
439 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
440 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
441 
442 	/* Op1 = 0, CRn = 0, CRm = 6 */
443 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
444 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
445 
446 	/* Op1 = 0, CRn = 0, CRm = 7 */
447 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
448 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
449 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
450 
451 	/* Op1 = 0, CRn = 1, CRm = 2 */
452 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
453 
454 	/* Op1 = 3, CRn = 0, CRm = 0 */
455 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
456 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
457 
458 	/* Op1 = 3, CRn = 14, CRm = 0 */
459 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
460 };
461 
462 static int search_cmp_ftr_reg(const void *id, const void *regp)
463 {
464 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
465 }
466 
467 /*
468  * get_arm64_ftr_reg - Lookup a feature register entry using its
469  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
470  * ascending order of sys_id , we use binary search to find a matching
471  * entry.
472  *
473  * returns - Upon success,  matching ftr_reg entry for id.
474  *         - NULL on failure. It is upto the caller to decide
475  *	     the impact of a failure.
476  */
477 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
478 {
479 	const struct __ftr_reg_entry *ret;
480 
481 	ret = bsearch((const void *)(unsigned long)sys_id,
482 			arm64_ftr_regs,
483 			ARRAY_SIZE(arm64_ftr_regs),
484 			sizeof(arm64_ftr_regs[0]),
485 			search_cmp_ftr_reg);
486 	if (ret)
487 		return ret->reg;
488 	return NULL;
489 }
490 
491 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
492 			       s64 ftr_val)
493 {
494 	u64 mask = arm64_ftr_mask(ftrp);
495 
496 	reg &= ~mask;
497 	reg |= (ftr_val << ftrp->shift) & mask;
498 	return reg;
499 }
500 
501 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
502 				s64 cur)
503 {
504 	s64 ret = 0;
505 
506 	switch (ftrp->type) {
507 	case FTR_EXACT:
508 		ret = ftrp->safe_val;
509 		break;
510 	case FTR_LOWER_SAFE:
511 		ret = new < cur ? new : cur;
512 		break;
513 	case FTR_HIGHER_OR_ZERO_SAFE:
514 		if (!cur || !new)
515 			break;
516 		/* Fallthrough */
517 	case FTR_HIGHER_SAFE:
518 		ret = new > cur ? new : cur;
519 		break;
520 	default:
521 		BUG();
522 	}
523 
524 	return ret;
525 }
526 
527 static void __init sort_ftr_regs(void)
528 {
529 	int i;
530 
531 	/* Check that the array is sorted so that we can do the binary search */
532 	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
533 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
534 }
535 
536 /*
537  * Initialise the CPU feature register from Boot CPU values.
538  * Also initiliases the strict_mask for the register.
539  * Any bits that are not covered by an arm64_ftr_bits entry are considered
540  * RES0 for the system-wide value, and must strictly match.
541  */
542 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
543 {
544 	u64 val = 0;
545 	u64 strict_mask = ~0x0ULL;
546 	u64 user_mask = 0;
547 	u64 valid_mask = 0;
548 
549 	const struct arm64_ftr_bits *ftrp;
550 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
551 
552 	BUG_ON(!reg);
553 
554 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
555 		u64 ftr_mask = arm64_ftr_mask(ftrp);
556 		s64 ftr_new = arm64_ftr_value(ftrp, new);
557 
558 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
559 
560 		valid_mask |= ftr_mask;
561 		if (!ftrp->strict)
562 			strict_mask &= ~ftr_mask;
563 		if (ftrp->visible)
564 			user_mask |= ftr_mask;
565 		else
566 			reg->user_val = arm64_ftr_set_value(ftrp,
567 							    reg->user_val,
568 							    ftrp->safe_val);
569 	}
570 
571 	val &= valid_mask;
572 
573 	reg->sys_val = val;
574 	reg->strict_mask = strict_mask;
575 	reg->user_mask = user_mask;
576 }
577 
578 extern const struct arm64_cpu_capabilities arm64_errata[];
579 static const struct arm64_cpu_capabilities arm64_features[];
580 
581 static void __init
582 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
583 {
584 	for (; caps->matches; caps++) {
585 		if (WARN(caps->capability >= ARM64_NCAPS,
586 			"Invalid capability %d\n", caps->capability))
587 			continue;
588 		if (WARN(cpu_hwcaps_ptrs[caps->capability],
589 			"Duplicate entry for capability %d\n",
590 			caps->capability))
591 			continue;
592 		cpu_hwcaps_ptrs[caps->capability] = caps;
593 	}
594 }
595 
596 static void __init init_cpu_hwcaps_indirect_list(void)
597 {
598 	init_cpu_hwcaps_indirect_list_from_array(arm64_features);
599 	init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
600 }
601 
602 static void __init setup_boot_cpu_capabilities(void);
603 
604 void __init init_cpu_features(struct cpuinfo_arm64 *info)
605 {
606 	/* Before we start using the tables, make sure it is sorted */
607 	sort_ftr_regs();
608 
609 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
610 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
611 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
612 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
613 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
614 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
615 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
616 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
617 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
618 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
619 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
620 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
621 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
622 
623 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
624 		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
625 		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
626 		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
627 		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
628 		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
629 		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
630 		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
631 		init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
632 		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
633 		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
634 		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
635 		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
636 		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
637 		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
638 		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
639 		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
640 		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
641 	}
642 
643 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
644 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
645 		sve_init_vq_map();
646 	}
647 
648 	/*
649 	 * Initialize the indirect array of CPU hwcaps capabilities pointers
650 	 * before we handle the boot CPU below.
651 	 */
652 	init_cpu_hwcaps_indirect_list();
653 
654 	/*
655 	 * Detect and enable early CPU capabilities based on the boot CPU,
656 	 * after we have initialised the CPU feature infrastructure.
657 	 */
658 	setup_boot_cpu_capabilities();
659 }
660 
661 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
662 {
663 	const struct arm64_ftr_bits *ftrp;
664 
665 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
666 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
667 		s64 ftr_new = arm64_ftr_value(ftrp, new);
668 
669 		if (ftr_cur == ftr_new)
670 			continue;
671 		/* Find a safe value */
672 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
673 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
674 	}
675 
676 }
677 
678 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
679 {
680 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
681 
682 	BUG_ON(!regp);
683 	update_cpu_ftr_reg(regp, val);
684 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
685 		return 0;
686 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
687 			regp->name, boot, cpu, val);
688 	return 1;
689 }
690 
691 /*
692  * Update system wide CPU feature registers with the values from a
693  * non-boot CPU. Also performs SANITY checks to make sure that there
694  * aren't any insane variations from that of the boot CPU.
695  */
696 void update_cpu_features(int cpu,
697 			 struct cpuinfo_arm64 *info,
698 			 struct cpuinfo_arm64 *boot)
699 {
700 	int taint = 0;
701 
702 	/*
703 	 * The kernel can handle differing I-cache policies, but otherwise
704 	 * caches should look identical. Userspace JITs will make use of
705 	 * *minLine.
706 	 */
707 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
708 				      info->reg_ctr, boot->reg_ctr);
709 
710 	/*
711 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
712 	 * could result in too much or too little memory being zeroed if a
713 	 * process is preempted and migrated between CPUs.
714 	 */
715 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
716 				      info->reg_dczid, boot->reg_dczid);
717 
718 	/* If different, timekeeping will be broken (especially with KVM) */
719 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
720 				      info->reg_cntfrq, boot->reg_cntfrq);
721 
722 	/*
723 	 * The kernel uses self-hosted debug features and expects CPUs to
724 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
725 	 * and BRPs to be identical.
726 	 * ID_AA64DFR1 is currently RES0.
727 	 */
728 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
729 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
730 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
731 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
732 	/*
733 	 * Even in big.LITTLE, processors should be identical instruction-set
734 	 * wise.
735 	 */
736 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
737 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
738 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
739 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
740 
741 	/*
742 	 * Differing PARange support is fine as long as all peripherals and
743 	 * memory are mapped within the minimum PARange of all CPUs.
744 	 * Linux should not care about secure memory.
745 	 */
746 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
747 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
748 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
749 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
750 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
751 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
752 
753 	/*
754 	 * EL3 is not our concern.
755 	 */
756 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
757 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
758 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
759 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
760 
761 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
762 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
763 
764 	/*
765 	 * If we have AArch32, we care about 32-bit features for compat.
766 	 * If the system doesn't support AArch32, don't update them.
767 	 */
768 	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
769 		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
770 
771 		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
772 					info->reg_id_dfr0, boot->reg_id_dfr0);
773 		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
774 					info->reg_id_isar0, boot->reg_id_isar0);
775 		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
776 					info->reg_id_isar1, boot->reg_id_isar1);
777 		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
778 					info->reg_id_isar2, boot->reg_id_isar2);
779 		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
780 					info->reg_id_isar3, boot->reg_id_isar3);
781 		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
782 					info->reg_id_isar4, boot->reg_id_isar4);
783 		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
784 					info->reg_id_isar5, boot->reg_id_isar5);
785 		taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
786 					info->reg_id_isar6, boot->reg_id_isar6);
787 
788 		/*
789 		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
790 		 * ACTLR formats could differ across CPUs and therefore would have to
791 		 * be trapped for virtualization anyway.
792 		 */
793 		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
794 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
795 		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
796 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
797 		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
798 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
799 		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
800 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
801 		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
802 					info->reg_id_pfr0, boot->reg_id_pfr0);
803 		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
804 					info->reg_id_pfr1, boot->reg_id_pfr1);
805 		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
806 					info->reg_mvfr0, boot->reg_mvfr0);
807 		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
808 					info->reg_mvfr1, boot->reg_mvfr1);
809 		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
810 					info->reg_mvfr2, boot->reg_mvfr2);
811 	}
812 
813 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
814 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
815 					info->reg_zcr, boot->reg_zcr);
816 
817 		/* Probe vector lengths, unless we already gave up on SVE */
818 		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
819 		    !system_capabilities_finalized())
820 			sve_update_vq_map();
821 	}
822 
823 	/*
824 	 * Mismatched CPU features are a recipe for disaster. Don't even
825 	 * pretend to support them.
826 	 */
827 	if (taint) {
828 		pr_warn_once("Unsupported CPU feature variation detected.\n");
829 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
830 	}
831 }
832 
833 u64 read_sanitised_ftr_reg(u32 id)
834 {
835 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
836 
837 	/* We shouldn't get a request for an unsupported register */
838 	BUG_ON(!regp);
839 	return regp->sys_val;
840 }
841 
842 #define read_sysreg_case(r)	\
843 	case r:		return read_sysreg_s(r)
844 
845 /*
846  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
847  * Read the system register on the current CPU
848  */
849 static u64 __read_sysreg_by_encoding(u32 sys_id)
850 {
851 	switch (sys_id) {
852 	read_sysreg_case(SYS_ID_PFR0_EL1);
853 	read_sysreg_case(SYS_ID_PFR1_EL1);
854 	read_sysreg_case(SYS_ID_DFR0_EL1);
855 	read_sysreg_case(SYS_ID_MMFR0_EL1);
856 	read_sysreg_case(SYS_ID_MMFR1_EL1);
857 	read_sysreg_case(SYS_ID_MMFR2_EL1);
858 	read_sysreg_case(SYS_ID_MMFR3_EL1);
859 	read_sysreg_case(SYS_ID_ISAR0_EL1);
860 	read_sysreg_case(SYS_ID_ISAR1_EL1);
861 	read_sysreg_case(SYS_ID_ISAR2_EL1);
862 	read_sysreg_case(SYS_ID_ISAR3_EL1);
863 	read_sysreg_case(SYS_ID_ISAR4_EL1);
864 	read_sysreg_case(SYS_ID_ISAR5_EL1);
865 	read_sysreg_case(SYS_ID_ISAR6_EL1);
866 	read_sysreg_case(SYS_MVFR0_EL1);
867 	read_sysreg_case(SYS_MVFR1_EL1);
868 	read_sysreg_case(SYS_MVFR2_EL1);
869 
870 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
871 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
872 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
873 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
874 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
875 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
876 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
877 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
878 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
879 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
880 
881 	read_sysreg_case(SYS_CNTFRQ_EL0);
882 	read_sysreg_case(SYS_CTR_EL0);
883 	read_sysreg_case(SYS_DCZID_EL0);
884 
885 	default:
886 		BUG();
887 		return 0;
888 	}
889 }
890 
891 #include <linux/irqchip/arm-gic-v3.h>
892 
893 static bool
894 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
895 {
896 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
897 
898 	return val >= entry->min_field_value;
899 }
900 
901 static bool
902 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
903 {
904 	u64 val;
905 
906 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
907 	if (scope == SCOPE_SYSTEM)
908 		val = read_sanitised_ftr_reg(entry->sys_reg);
909 	else
910 		val = __read_sysreg_by_encoding(entry->sys_reg);
911 
912 	return feature_matches(val, entry);
913 }
914 
915 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
916 {
917 	bool has_sre;
918 
919 	if (!has_cpuid_feature(entry, scope))
920 		return false;
921 
922 	has_sre = gic_enable_sre();
923 	if (!has_sre)
924 		pr_warn_once("%s present but disabled by higher exception level\n",
925 			     entry->desc);
926 
927 	return has_sre;
928 }
929 
930 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
931 {
932 	u32 midr = read_cpuid_id();
933 
934 	/* Cavium ThunderX pass 1.x and 2.x */
935 	return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
936 		MIDR_CPU_VAR_REV(0, 0),
937 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
938 }
939 
940 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
941 {
942 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
943 
944 	return cpuid_feature_extract_signed_field(pfr0,
945 					ID_AA64PFR0_FP_SHIFT) < 0;
946 }
947 
948 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
949 			  int scope)
950 {
951 	u64 ctr;
952 
953 	if (scope == SCOPE_SYSTEM)
954 		ctr = arm64_ftr_reg_ctrel0.sys_val;
955 	else
956 		ctr = read_cpuid_effective_cachetype();
957 
958 	return ctr & BIT(CTR_IDC_SHIFT);
959 }
960 
961 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
962 {
963 	/*
964 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
965 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
966 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
967 	 * value.
968 	 */
969 	if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
970 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
971 }
972 
973 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
974 			  int scope)
975 {
976 	u64 ctr;
977 
978 	if (scope == SCOPE_SYSTEM)
979 		ctr = arm64_ftr_reg_ctrel0.sys_val;
980 	else
981 		ctr = read_cpuid_cachetype();
982 
983 	return ctr & BIT(CTR_DIC_SHIFT);
984 }
985 
986 static bool __maybe_unused
987 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
988 {
989 	/*
990 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
991 	 * may share TLB entries with a CPU stuck in the crashed
992 	 * kernel.
993 	 */
994 	 if (is_kdump_kernel())
995 		return false;
996 
997 	return has_cpuid_feature(entry, scope);
998 }
999 
1000 /*
1001  * This check is triggered during the early boot before the cpufeature
1002  * is initialised. Checking the status on the local CPU allows the boot
1003  * CPU to detect the need for non-global mappings and thus avoiding a
1004  * pagetable re-write after all the CPUs are booted. This check will be
1005  * anyway run on individual CPUs, allowing us to get the consistent
1006  * state once the SMP CPUs are up and thus make the switch to non-global
1007  * mappings if required.
1008  */
1009 bool kaslr_requires_kpti(void)
1010 {
1011 	if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1012 		return false;
1013 
1014 	/*
1015 	 * E0PD does a similar job to KPTI so can be used instead
1016 	 * where available.
1017 	 */
1018 	if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1019 		u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1020 		if (cpuid_feature_extract_unsigned_field(mmfr2,
1021 						ID_AA64MMFR2_E0PD_SHIFT))
1022 			return false;
1023 	}
1024 
1025 	/*
1026 	 * Systems affected by Cavium erratum 24756 are incompatible
1027 	 * with KPTI.
1028 	 */
1029 	if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1030 		extern const struct midr_range cavium_erratum_27456_cpus[];
1031 
1032 		if (is_midr_in_range_list(read_cpuid_id(),
1033 					  cavium_erratum_27456_cpus))
1034 			return false;
1035 	}
1036 
1037 	return kaslr_offset() > 0;
1038 }
1039 
1040 static bool __meltdown_safe = true;
1041 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1042 
1043 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1044 				int scope)
1045 {
1046 	/* List of CPUs that are not vulnerable and don't need KPTI */
1047 	static const struct midr_range kpti_safe_list[] = {
1048 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1049 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1050 		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1051 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1052 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1053 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1054 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1055 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1056 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1057 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1058 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1059 		{ /* sentinel */ }
1060 	};
1061 	char const *str = "kpti command line option";
1062 	bool meltdown_safe;
1063 
1064 	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1065 
1066 	/* Defer to CPU feature registers */
1067 	if (has_cpuid_feature(entry, scope))
1068 		meltdown_safe = true;
1069 
1070 	if (!meltdown_safe)
1071 		__meltdown_safe = false;
1072 
1073 	/*
1074 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1075 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
1076 	 * ends as well as you might imagine. Don't even try.
1077 	 */
1078 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1079 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1080 		__kpti_forced = -1;
1081 	}
1082 
1083 	/* Useful for KASLR robustness */
1084 	if (kaslr_requires_kpti()) {
1085 		if (!__kpti_forced) {
1086 			str = "KASLR";
1087 			__kpti_forced = 1;
1088 		}
1089 	}
1090 
1091 	if (cpu_mitigations_off() && !__kpti_forced) {
1092 		str = "mitigations=off";
1093 		__kpti_forced = -1;
1094 	}
1095 
1096 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1097 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1098 		return false;
1099 	}
1100 
1101 	/* Forced? */
1102 	if (__kpti_forced) {
1103 		pr_info_once("kernel page table isolation forced %s by %s\n",
1104 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1105 		return __kpti_forced > 0;
1106 	}
1107 
1108 	return !meltdown_safe;
1109 }
1110 
1111 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1112 static void
1113 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1114 {
1115 	typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1116 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1117 	kpti_remap_fn *remap_fn;
1118 
1119 	int cpu = smp_processor_id();
1120 
1121 	/*
1122 	 * We don't need to rewrite the page-tables if either we've done
1123 	 * it already or we have KASLR enabled and therefore have not
1124 	 * created any global mappings at all.
1125 	 */
1126 	if (arm64_use_ng_mappings)
1127 		return;
1128 
1129 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1130 
1131 	cpu_install_idmap();
1132 	remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1133 	cpu_uninstall_idmap();
1134 
1135 	if (!cpu)
1136 		arm64_use_ng_mappings = true;
1137 
1138 	return;
1139 }
1140 #else
1141 static void
1142 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1143 {
1144 }
1145 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1146 
1147 static int __init parse_kpti(char *str)
1148 {
1149 	bool enabled;
1150 	int ret = strtobool(str, &enabled);
1151 
1152 	if (ret)
1153 		return ret;
1154 
1155 	__kpti_forced = enabled ? 1 : -1;
1156 	return 0;
1157 }
1158 early_param("kpti", parse_kpti);
1159 
1160 #ifdef CONFIG_ARM64_HW_AFDBM
1161 static inline void __cpu_enable_hw_dbm(void)
1162 {
1163 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1164 
1165 	write_sysreg(tcr, tcr_el1);
1166 	isb();
1167 }
1168 
1169 static bool cpu_has_broken_dbm(void)
1170 {
1171 	/* List of CPUs which have broken DBM support. */
1172 	static const struct midr_range cpus[] = {
1173 #ifdef CONFIG_ARM64_ERRATUM_1024718
1174 		MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
1175 #endif
1176 		{},
1177 	};
1178 
1179 	return is_midr_in_range_list(read_cpuid_id(), cpus);
1180 }
1181 
1182 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1183 {
1184 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1185 	       !cpu_has_broken_dbm();
1186 }
1187 
1188 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1189 {
1190 	if (cpu_can_use_dbm(cap))
1191 		__cpu_enable_hw_dbm();
1192 }
1193 
1194 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1195 		       int __unused)
1196 {
1197 	static bool detected = false;
1198 	/*
1199 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
1200 	 * run a mix of CPUs with and without the feature. So, we
1201 	 * unconditionally enable the capability to allow any late CPU
1202 	 * to use the feature. We only enable the control bits on the
1203 	 * CPU, if it actually supports.
1204 	 *
1205 	 * We have to make sure we print the "feature" detection only
1206 	 * when at least one CPU actually uses it. So check if this CPU
1207 	 * can actually use it and print the message exactly once.
1208 	 *
1209 	 * This is safe as all CPUs (including secondary CPUs - due to the
1210 	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1211 	 * goes through the "matches" check exactly once. Also if a CPU
1212 	 * matches the criteria, it is guaranteed that the CPU will turn
1213 	 * the DBM on, as the capability is unconditionally enabled.
1214 	 */
1215 	if (!detected && cpu_can_use_dbm(cap)) {
1216 		detected = true;
1217 		pr_info("detected: Hardware dirty bit management\n");
1218 	}
1219 
1220 	return true;
1221 }
1222 
1223 #endif
1224 
1225 #ifdef CONFIG_ARM64_VHE
1226 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1227 {
1228 	return is_kernel_in_hyp_mode();
1229 }
1230 
1231 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1232 {
1233 	/*
1234 	 * Copy register values that aren't redirected by hardware.
1235 	 *
1236 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1237 	 * this value to tpidr_el2 before we patch the code. Once we've done
1238 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1239 	 * do anything here.
1240 	 */
1241 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1242 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1243 }
1244 #endif
1245 
1246 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1247 {
1248 	u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1249 
1250 	/* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1251 	WARN_ON(val & (7 << 27 | 7 << 21));
1252 }
1253 
1254 #ifdef CONFIG_ARM64_SSBD
1255 static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
1256 {
1257 	if (user_mode(regs))
1258 		return 1;
1259 
1260 	if (instr & BIT(PSTATE_Imm_shift))
1261 		regs->pstate |= PSR_SSBS_BIT;
1262 	else
1263 		regs->pstate &= ~PSR_SSBS_BIT;
1264 
1265 	arm64_skip_faulting_instruction(regs, 4);
1266 	return 0;
1267 }
1268 
1269 static struct undef_hook ssbs_emulation_hook = {
1270 	.instr_mask	= ~(1U << PSTATE_Imm_shift),
1271 	.instr_val	= 0xd500401f | PSTATE_SSBS,
1272 	.fn		= ssbs_emulation_handler,
1273 };
1274 
1275 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
1276 {
1277 	static bool undef_hook_registered = false;
1278 	static DEFINE_RAW_SPINLOCK(hook_lock);
1279 
1280 	raw_spin_lock(&hook_lock);
1281 	if (!undef_hook_registered) {
1282 		register_undef_hook(&ssbs_emulation_hook);
1283 		undef_hook_registered = true;
1284 	}
1285 	raw_spin_unlock(&hook_lock);
1286 
1287 	if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1288 		sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
1289 		arm64_set_ssbd_mitigation(false);
1290 	} else {
1291 		arm64_set_ssbd_mitigation(true);
1292 	}
1293 }
1294 #endif /* CONFIG_ARM64_SSBD */
1295 
1296 #ifdef CONFIG_ARM64_PAN
1297 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1298 {
1299 	/*
1300 	 * We modify PSTATE. This won't work from irq context as the PSTATE
1301 	 * is discarded once we return from the exception.
1302 	 */
1303 	WARN_ON_ONCE(in_interrupt());
1304 
1305 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1306 	asm(SET_PSTATE_PAN(1));
1307 }
1308 #endif /* CONFIG_ARM64_PAN */
1309 
1310 #ifdef CONFIG_ARM64_RAS_EXTN
1311 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1312 {
1313 	/* Firmware may have left a deferred SError in this register. */
1314 	write_sysreg_s(0, SYS_DISR_EL1);
1315 }
1316 #endif /* CONFIG_ARM64_RAS_EXTN */
1317 
1318 #ifdef CONFIG_ARM64_PTR_AUTH
1319 static void cpu_enable_address_auth(struct arm64_cpu_capabilities const *cap)
1320 {
1321 	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ENIA | SCTLR_ELx_ENIB |
1322 				       SCTLR_ELx_ENDA | SCTLR_ELx_ENDB);
1323 }
1324 #endif /* CONFIG_ARM64_PTR_AUTH */
1325 
1326 #ifdef CONFIG_ARM64_E0PD
1327 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1328 {
1329 	if (this_cpu_has_cap(ARM64_HAS_E0PD))
1330 		sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1331 }
1332 #endif /* CONFIG_ARM64_E0PD */
1333 
1334 #ifdef CONFIG_ARM64_PSEUDO_NMI
1335 static bool enable_pseudo_nmi;
1336 
1337 static int __init early_enable_pseudo_nmi(char *p)
1338 {
1339 	return strtobool(p, &enable_pseudo_nmi);
1340 }
1341 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1342 
1343 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1344 				   int scope)
1345 {
1346 	return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1347 }
1348 #endif
1349 
1350 static const struct arm64_cpu_capabilities arm64_features[] = {
1351 	{
1352 		.desc = "GIC system register CPU interface",
1353 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1354 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1355 		.matches = has_useable_gicv3_cpuif,
1356 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1357 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
1358 		.sign = FTR_UNSIGNED,
1359 		.min_field_value = 1,
1360 	},
1361 #ifdef CONFIG_ARM64_PAN
1362 	{
1363 		.desc = "Privileged Access Never",
1364 		.capability = ARM64_HAS_PAN,
1365 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1366 		.matches = has_cpuid_feature,
1367 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1368 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
1369 		.sign = FTR_UNSIGNED,
1370 		.min_field_value = 1,
1371 		.cpu_enable = cpu_enable_pan,
1372 	},
1373 #endif /* CONFIG_ARM64_PAN */
1374 #ifdef CONFIG_ARM64_LSE_ATOMICS
1375 	{
1376 		.desc = "LSE atomic instructions",
1377 		.capability = ARM64_HAS_LSE_ATOMICS,
1378 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1379 		.matches = has_cpuid_feature,
1380 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
1381 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1382 		.sign = FTR_UNSIGNED,
1383 		.min_field_value = 2,
1384 	},
1385 #endif /* CONFIG_ARM64_LSE_ATOMICS */
1386 	{
1387 		.desc = "Software prefetching using PRFM",
1388 		.capability = ARM64_HAS_NO_HW_PREFETCH,
1389 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1390 		.matches = has_no_hw_prefetch,
1391 	},
1392 #ifdef CONFIG_ARM64_UAO
1393 	{
1394 		.desc = "User Access Override",
1395 		.capability = ARM64_HAS_UAO,
1396 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1397 		.matches = has_cpuid_feature,
1398 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1399 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
1400 		.min_field_value = 1,
1401 		/*
1402 		 * We rely on stop_machine() calling uao_thread_switch() to set
1403 		 * UAO immediately after patching.
1404 		 */
1405 	},
1406 #endif /* CONFIG_ARM64_UAO */
1407 #ifdef CONFIG_ARM64_PAN
1408 	{
1409 		.capability = ARM64_ALT_PAN_NOT_UAO,
1410 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1411 		.matches = cpufeature_pan_not_uao,
1412 	},
1413 #endif /* CONFIG_ARM64_PAN */
1414 #ifdef CONFIG_ARM64_VHE
1415 	{
1416 		.desc = "Virtualization Host Extensions",
1417 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
1418 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1419 		.matches = runs_at_el2,
1420 		.cpu_enable = cpu_copy_el2regs,
1421 	},
1422 #endif	/* CONFIG_ARM64_VHE */
1423 	{
1424 		.desc = "32-bit EL0 Support",
1425 		.capability = ARM64_HAS_32BIT_EL0,
1426 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1427 		.matches = has_cpuid_feature,
1428 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1429 		.sign = FTR_UNSIGNED,
1430 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
1431 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1432 	},
1433 	{
1434 		.desc = "Kernel page table isolation (KPTI)",
1435 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
1436 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1437 		/*
1438 		 * The ID feature fields below are used to indicate that
1439 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1440 		 * more details.
1441 		 */
1442 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1443 		.field_pos = ID_AA64PFR0_CSV3_SHIFT,
1444 		.min_field_value = 1,
1445 		.matches = unmap_kernel_at_el0,
1446 		.cpu_enable = kpti_install_ng_mappings,
1447 	},
1448 	{
1449 		/* FP/SIMD is not implemented */
1450 		.capability = ARM64_HAS_NO_FPSIMD,
1451 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1452 		.min_field_value = 0,
1453 		.matches = has_no_fpsimd,
1454 	},
1455 #ifdef CONFIG_ARM64_PMEM
1456 	{
1457 		.desc = "Data cache clean to Point of Persistence",
1458 		.capability = ARM64_HAS_DCPOP,
1459 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1460 		.matches = has_cpuid_feature,
1461 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1462 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
1463 		.min_field_value = 1,
1464 	},
1465 	{
1466 		.desc = "Data cache clean to Point of Deep Persistence",
1467 		.capability = ARM64_HAS_DCPODP,
1468 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1469 		.matches = has_cpuid_feature,
1470 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1471 		.sign = FTR_UNSIGNED,
1472 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
1473 		.min_field_value = 2,
1474 	},
1475 #endif
1476 #ifdef CONFIG_ARM64_SVE
1477 	{
1478 		.desc = "Scalable Vector Extension",
1479 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1480 		.capability = ARM64_SVE,
1481 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1482 		.sign = FTR_UNSIGNED,
1483 		.field_pos = ID_AA64PFR0_SVE_SHIFT,
1484 		.min_field_value = ID_AA64PFR0_SVE,
1485 		.matches = has_cpuid_feature,
1486 		.cpu_enable = sve_kernel_enable,
1487 	},
1488 #endif /* CONFIG_ARM64_SVE */
1489 #ifdef CONFIG_ARM64_RAS_EXTN
1490 	{
1491 		.desc = "RAS Extension Support",
1492 		.capability = ARM64_HAS_RAS_EXTN,
1493 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1494 		.matches = has_cpuid_feature,
1495 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1496 		.sign = FTR_UNSIGNED,
1497 		.field_pos = ID_AA64PFR0_RAS_SHIFT,
1498 		.min_field_value = ID_AA64PFR0_RAS_V1,
1499 		.cpu_enable = cpu_clear_disr,
1500 	},
1501 #endif /* CONFIG_ARM64_RAS_EXTN */
1502 	{
1503 		.desc = "Data cache clean to the PoU not required for I/D coherence",
1504 		.capability = ARM64_HAS_CACHE_IDC,
1505 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1506 		.matches = has_cache_idc,
1507 		.cpu_enable = cpu_emulate_effective_ctr,
1508 	},
1509 	{
1510 		.desc = "Instruction cache invalidation not required for I/D coherence",
1511 		.capability = ARM64_HAS_CACHE_DIC,
1512 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1513 		.matches = has_cache_dic,
1514 	},
1515 	{
1516 		.desc = "Stage-2 Force Write-Back",
1517 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1518 		.capability = ARM64_HAS_STAGE2_FWB,
1519 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1520 		.sign = FTR_UNSIGNED,
1521 		.field_pos = ID_AA64MMFR2_FWB_SHIFT,
1522 		.min_field_value = 1,
1523 		.matches = has_cpuid_feature,
1524 		.cpu_enable = cpu_has_fwb,
1525 	},
1526 #ifdef CONFIG_ARM64_HW_AFDBM
1527 	{
1528 		/*
1529 		 * Since we turn this on always, we don't want the user to
1530 		 * think that the feature is available when it may not be.
1531 		 * So hide the description.
1532 		 *
1533 		 * .desc = "Hardware pagetable Dirty Bit Management",
1534 		 *
1535 		 */
1536 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1537 		.capability = ARM64_HW_DBM,
1538 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1539 		.sign = FTR_UNSIGNED,
1540 		.field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1541 		.min_field_value = 2,
1542 		.matches = has_hw_dbm,
1543 		.cpu_enable = cpu_enable_hw_dbm,
1544 	},
1545 #endif
1546 	{
1547 		.desc = "CRC32 instructions",
1548 		.capability = ARM64_HAS_CRC32,
1549 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1550 		.matches = has_cpuid_feature,
1551 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
1552 		.field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1553 		.min_field_value = 1,
1554 	},
1555 #ifdef CONFIG_ARM64_SSBD
1556 	{
1557 		.desc = "Speculative Store Bypassing Safe (SSBS)",
1558 		.capability = ARM64_SSBS,
1559 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1560 		.matches = has_cpuid_feature,
1561 		.sys_reg = SYS_ID_AA64PFR1_EL1,
1562 		.field_pos = ID_AA64PFR1_SSBS_SHIFT,
1563 		.sign = FTR_UNSIGNED,
1564 		.min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1565 		.cpu_enable = cpu_enable_ssbs,
1566 	},
1567 #endif
1568 #ifdef CONFIG_ARM64_CNP
1569 	{
1570 		.desc = "Common not Private translations",
1571 		.capability = ARM64_HAS_CNP,
1572 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1573 		.matches = has_useable_cnp,
1574 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1575 		.sign = FTR_UNSIGNED,
1576 		.field_pos = ID_AA64MMFR2_CNP_SHIFT,
1577 		.min_field_value = 1,
1578 		.cpu_enable = cpu_enable_cnp,
1579 	},
1580 #endif
1581 	{
1582 		.desc = "Speculation barrier (SB)",
1583 		.capability = ARM64_HAS_SB,
1584 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1585 		.matches = has_cpuid_feature,
1586 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1587 		.field_pos = ID_AA64ISAR1_SB_SHIFT,
1588 		.sign = FTR_UNSIGNED,
1589 		.min_field_value = 1,
1590 	},
1591 #ifdef CONFIG_ARM64_PTR_AUTH
1592 	{
1593 		.desc = "Address authentication (architected algorithm)",
1594 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
1595 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1596 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1597 		.sign = FTR_UNSIGNED,
1598 		.field_pos = ID_AA64ISAR1_APA_SHIFT,
1599 		.min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
1600 		.matches = has_cpuid_feature,
1601 		.cpu_enable = cpu_enable_address_auth,
1602 	},
1603 	{
1604 		.desc = "Address authentication (IMP DEF algorithm)",
1605 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
1606 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1607 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1608 		.sign = FTR_UNSIGNED,
1609 		.field_pos = ID_AA64ISAR1_API_SHIFT,
1610 		.min_field_value = ID_AA64ISAR1_API_IMP_DEF,
1611 		.matches = has_cpuid_feature,
1612 		.cpu_enable = cpu_enable_address_auth,
1613 	},
1614 	{
1615 		.desc = "Generic authentication (architected algorithm)",
1616 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH,
1617 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1618 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1619 		.sign = FTR_UNSIGNED,
1620 		.field_pos = ID_AA64ISAR1_GPA_SHIFT,
1621 		.min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
1622 		.matches = has_cpuid_feature,
1623 	},
1624 	{
1625 		.desc = "Generic authentication (IMP DEF algorithm)",
1626 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
1627 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1628 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1629 		.sign = FTR_UNSIGNED,
1630 		.field_pos = ID_AA64ISAR1_GPI_SHIFT,
1631 		.min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
1632 		.matches = has_cpuid_feature,
1633 	},
1634 #endif /* CONFIG_ARM64_PTR_AUTH */
1635 #ifdef CONFIG_ARM64_PSEUDO_NMI
1636 	{
1637 		/*
1638 		 * Depends on having GICv3
1639 		 */
1640 		.desc = "IRQ priority masking",
1641 		.capability = ARM64_HAS_IRQ_PRIO_MASKING,
1642 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1643 		.matches = can_use_gic_priorities,
1644 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1645 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
1646 		.sign = FTR_UNSIGNED,
1647 		.min_field_value = 1,
1648 	},
1649 #endif
1650 #ifdef CONFIG_ARM64_E0PD
1651 	{
1652 		.desc = "E0PD",
1653 		.capability = ARM64_HAS_E0PD,
1654 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1655 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1656 		.sign = FTR_UNSIGNED,
1657 		.field_pos = ID_AA64MMFR2_E0PD_SHIFT,
1658 		.matches = has_cpuid_feature,
1659 		.min_field_value = 1,
1660 		.cpu_enable = cpu_enable_e0pd,
1661 	},
1662 #endif
1663 #ifdef CONFIG_ARCH_RANDOM
1664 	{
1665 		.desc = "Random Number Generator",
1666 		.capability = ARM64_HAS_RNG,
1667 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1668 		.matches = has_cpuid_feature,
1669 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
1670 		.field_pos = ID_AA64ISAR0_RNDR_SHIFT,
1671 		.sign = FTR_UNSIGNED,
1672 		.min_field_value = 1,
1673 	},
1674 #endif
1675 	{},
1676 };
1677 
1678 #define HWCAP_CPUID_MATCH(reg, field, s, min_value)				\
1679 		.matches = has_cpuid_feature,					\
1680 		.sys_reg = reg,							\
1681 		.field_pos = field,						\
1682 		.sign = s,							\
1683 		.min_field_value = min_value,
1684 
1685 #define __HWCAP_CAP(name, cap_type, cap)					\
1686 		.desc = name,							\
1687 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
1688 		.hwcap_type = cap_type,						\
1689 		.hwcap = cap,							\
1690 
1691 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)			\
1692 	{									\
1693 		__HWCAP_CAP(#cap, cap_type, cap)				\
1694 		HWCAP_CPUID_MATCH(reg, field, s, min_value)			\
1695 	}
1696 
1697 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
1698 	{									\
1699 		__HWCAP_CAP(#cap, cap_type, cap)				\
1700 		.matches = cpucap_multi_entry_cap_matches,			\
1701 		.match_list = list,						\
1702 	}
1703 
1704 #define HWCAP_CAP_MATCH(match, cap_type, cap)					\
1705 	{									\
1706 		__HWCAP_CAP(#cap, cap_type, cap)				\
1707 		.matches = match,						\
1708 	}
1709 
1710 #ifdef CONFIG_ARM64_PTR_AUTH
1711 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
1712 	{
1713 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
1714 				  FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
1715 	},
1716 	{
1717 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
1718 				  FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
1719 	},
1720 	{},
1721 };
1722 
1723 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
1724 	{
1725 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
1726 				  FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
1727 	},
1728 	{
1729 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
1730 				  FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
1731 	},
1732 	{},
1733 };
1734 #endif
1735 
1736 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1737 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
1738 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
1739 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
1740 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
1741 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
1742 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
1743 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
1744 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
1745 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
1746 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
1747 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
1748 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
1749 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
1750 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
1751 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
1752 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
1753 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
1754 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
1755 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
1756 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
1757 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
1758 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
1759 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
1760 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
1761 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
1762 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
1763 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
1764 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
1765 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
1766 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
1767 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
1768 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
1769 	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
1770 #ifdef CONFIG_ARM64_SVE
1771 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
1772 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
1773 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
1774 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
1775 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
1776 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
1777 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
1778 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
1779 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
1780 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
1781 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
1782 #endif
1783 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
1784 #ifdef CONFIG_ARM64_PTR_AUTH
1785 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
1786 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
1787 #endif
1788 	{},
1789 };
1790 
1791 #ifdef CONFIG_COMPAT
1792 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
1793 {
1794 	/*
1795 	 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
1796 	 * in line with that of arm32 as in vfp_init(). We make sure that the
1797 	 * check is future proof, by making sure value is non-zero.
1798 	 */
1799 	u32 mvfr1;
1800 
1801 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1802 	if (scope == SCOPE_SYSTEM)
1803 		mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
1804 	else
1805 		mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
1806 
1807 	return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
1808 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
1809 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
1810 }
1811 #endif
1812 
1813 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1814 #ifdef CONFIG_COMPAT
1815 	HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
1816 	HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
1817 	/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
1818 	HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
1819 	HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
1820 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1821 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1822 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1823 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1824 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1825 #endif
1826 	{},
1827 };
1828 
1829 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1830 {
1831 	switch (cap->hwcap_type) {
1832 	case CAP_HWCAP:
1833 		cpu_set_feature(cap->hwcap);
1834 		break;
1835 #ifdef CONFIG_COMPAT
1836 	case CAP_COMPAT_HWCAP:
1837 		compat_elf_hwcap |= (u32)cap->hwcap;
1838 		break;
1839 	case CAP_COMPAT_HWCAP2:
1840 		compat_elf_hwcap2 |= (u32)cap->hwcap;
1841 		break;
1842 #endif
1843 	default:
1844 		WARN_ON(1);
1845 		break;
1846 	}
1847 }
1848 
1849 /* Check if we have a particular HWCAP enabled */
1850 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1851 {
1852 	bool rc;
1853 
1854 	switch (cap->hwcap_type) {
1855 	case CAP_HWCAP:
1856 		rc = cpu_have_feature(cap->hwcap);
1857 		break;
1858 #ifdef CONFIG_COMPAT
1859 	case CAP_COMPAT_HWCAP:
1860 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1861 		break;
1862 	case CAP_COMPAT_HWCAP2:
1863 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1864 		break;
1865 #endif
1866 	default:
1867 		WARN_ON(1);
1868 		rc = false;
1869 	}
1870 
1871 	return rc;
1872 }
1873 
1874 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1875 {
1876 	/* We support emulation of accesses to CPU ID feature registers */
1877 	cpu_set_named_feature(CPUID);
1878 	for (; hwcaps->matches; hwcaps++)
1879 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1880 			cap_set_elf_hwcap(hwcaps);
1881 }
1882 
1883 static void update_cpu_capabilities(u16 scope_mask)
1884 {
1885 	int i;
1886 	const struct arm64_cpu_capabilities *caps;
1887 
1888 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1889 	for (i = 0; i < ARM64_NCAPS; i++) {
1890 		caps = cpu_hwcaps_ptrs[i];
1891 		if (!caps || !(caps->type & scope_mask) ||
1892 		    cpus_have_cap(caps->capability) ||
1893 		    !caps->matches(caps, cpucap_default_scope(caps)))
1894 			continue;
1895 
1896 		if (caps->desc)
1897 			pr_info("detected: %s\n", caps->desc);
1898 		cpus_set_cap(caps->capability);
1899 
1900 		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
1901 			set_bit(caps->capability, boot_capabilities);
1902 	}
1903 }
1904 
1905 /*
1906  * Enable all the available capabilities on this CPU. The capabilities
1907  * with BOOT_CPU scope are handled separately and hence skipped here.
1908  */
1909 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
1910 {
1911 	int i;
1912 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
1913 
1914 	for_each_available_cap(i) {
1915 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
1916 
1917 		if (WARN_ON(!cap))
1918 			continue;
1919 
1920 		if (!(cap->type & non_boot_scope))
1921 			continue;
1922 
1923 		if (cap->cpu_enable)
1924 			cap->cpu_enable(cap);
1925 	}
1926 	return 0;
1927 }
1928 
1929 /*
1930  * Run through the enabled capabilities and enable() it on all active
1931  * CPUs
1932  */
1933 static void __init enable_cpu_capabilities(u16 scope_mask)
1934 {
1935 	int i;
1936 	const struct arm64_cpu_capabilities *caps;
1937 	bool boot_scope;
1938 
1939 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1940 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
1941 
1942 	for (i = 0; i < ARM64_NCAPS; i++) {
1943 		unsigned int num;
1944 
1945 		caps = cpu_hwcaps_ptrs[i];
1946 		if (!caps || !(caps->type & scope_mask))
1947 			continue;
1948 		num = caps->capability;
1949 		if (!cpus_have_cap(num))
1950 			continue;
1951 
1952 		/* Ensure cpus_have_const_cap(num) works */
1953 		static_branch_enable(&cpu_hwcap_keys[num]);
1954 
1955 		if (boot_scope && caps->cpu_enable)
1956 			/*
1957 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
1958 			 * before any secondary CPU boots. Thus, each secondary
1959 			 * will enable the capability as appropriate via
1960 			 * check_local_cpu_capabilities(). The only exception is
1961 			 * the boot CPU, for which the capability must be
1962 			 * enabled here. This approach avoids costly
1963 			 * stop_machine() calls for this case.
1964 			 */
1965 			caps->cpu_enable(caps);
1966 	}
1967 
1968 	/*
1969 	 * For all non-boot scope capabilities, use stop_machine()
1970 	 * as it schedules the work allowing us to modify PSTATE,
1971 	 * instead of on_each_cpu() which uses an IPI, giving us a
1972 	 * PSTATE that disappears when we return.
1973 	 */
1974 	if (!boot_scope)
1975 		stop_machine(cpu_enable_non_boot_scope_capabilities,
1976 			     NULL, cpu_online_mask);
1977 }
1978 
1979 /*
1980  * Run through the list of capabilities to check for conflicts.
1981  * If the system has already detected a capability, take necessary
1982  * action on this CPU.
1983  *
1984  * Returns "false" on conflicts.
1985  */
1986 static bool verify_local_cpu_caps(u16 scope_mask)
1987 {
1988 	int i;
1989 	bool cpu_has_cap, system_has_cap;
1990 	const struct arm64_cpu_capabilities *caps;
1991 
1992 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1993 
1994 	for (i = 0; i < ARM64_NCAPS; i++) {
1995 		caps = cpu_hwcaps_ptrs[i];
1996 		if (!caps || !(caps->type & scope_mask))
1997 			continue;
1998 
1999 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2000 		system_has_cap = cpus_have_cap(caps->capability);
2001 
2002 		if (system_has_cap) {
2003 			/*
2004 			 * Check if the new CPU misses an advertised feature,
2005 			 * which is not safe to miss.
2006 			 */
2007 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2008 				break;
2009 			/*
2010 			 * We have to issue cpu_enable() irrespective of
2011 			 * whether the CPU has it or not, as it is enabeld
2012 			 * system wide. It is upto the call back to take
2013 			 * appropriate action on this CPU.
2014 			 */
2015 			if (caps->cpu_enable)
2016 				caps->cpu_enable(caps);
2017 		} else {
2018 			/*
2019 			 * Check if the CPU has this capability if it isn't
2020 			 * safe to have when the system doesn't.
2021 			 */
2022 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2023 				break;
2024 		}
2025 	}
2026 
2027 	if (i < ARM64_NCAPS) {
2028 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2029 			smp_processor_id(), caps->capability,
2030 			caps->desc, system_has_cap, cpu_has_cap);
2031 		return false;
2032 	}
2033 
2034 	return true;
2035 }
2036 
2037 /*
2038  * Check for CPU features that are used in early boot
2039  * based on the Boot CPU value.
2040  */
2041 static void check_early_cpu_features(void)
2042 {
2043 	verify_cpu_asid_bits();
2044 	/*
2045 	 * Early features are used by the kernel already. If there
2046 	 * is a conflict, we cannot proceed further.
2047 	 */
2048 	if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
2049 		cpu_panic_kernel();
2050 }
2051 
2052 static void
2053 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2054 {
2055 
2056 	for (; caps->matches; caps++)
2057 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2058 			pr_crit("CPU%d: missing HWCAP: %s\n",
2059 					smp_processor_id(), caps->desc);
2060 			cpu_die_early();
2061 		}
2062 }
2063 
2064 static void verify_sve_features(void)
2065 {
2066 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2067 	u64 zcr = read_zcr_features();
2068 
2069 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2070 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2071 
2072 	if (len < safe_len || sve_verify_vq_map()) {
2073 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
2074 			smp_processor_id());
2075 		cpu_die_early();
2076 	}
2077 
2078 	/* Add checks on other ZCR bits here if necessary */
2079 }
2080 
2081 
2082 /*
2083  * Run through the enabled system capabilities and enable() it on this CPU.
2084  * The capabilities were decided based on the available CPUs at the boot time.
2085  * Any new CPU should match the system wide status of the capability. If the
2086  * new CPU doesn't have a capability which the system now has enabled, we
2087  * cannot do anything to fix it up and could cause unexpected failures. So
2088  * we park the CPU.
2089  */
2090 static void verify_local_cpu_capabilities(void)
2091 {
2092 	/*
2093 	 * The capabilities with SCOPE_BOOT_CPU are checked from
2094 	 * check_early_cpu_features(), as they need to be verified
2095 	 * on all secondary CPUs.
2096 	 */
2097 	if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
2098 		cpu_die_early();
2099 
2100 	verify_local_elf_hwcaps(arm64_elf_hwcaps);
2101 
2102 	if (system_supports_32bit_el0())
2103 		verify_local_elf_hwcaps(compat_elf_hwcaps);
2104 
2105 	if (system_supports_sve())
2106 		verify_sve_features();
2107 }
2108 
2109 void check_local_cpu_capabilities(void)
2110 {
2111 	/*
2112 	 * All secondary CPUs should conform to the early CPU features
2113 	 * in use by the kernel based on boot CPU.
2114 	 */
2115 	check_early_cpu_features();
2116 
2117 	/*
2118 	 * If we haven't finalised the system capabilities, this CPU gets
2119 	 * a chance to update the errata work arounds and local features.
2120 	 * Otherwise, this CPU should verify that it has all the system
2121 	 * advertised capabilities.
2122 	 */
2123 	if (!system_capabilities_finalized())
2124 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
2125 	else
2126 		verify_local_cpu_capabilities();
2127 }
2128 
2129 static void __init setup_boot_cpu_capabilities(void)
2130 {
2131 	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2132 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
2133 	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2134 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
2135 }
2136 
2137 bool this_cpu_has_cap(unsigned int n)
2138 {
2139 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2140 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2141 
2142 		if (cap)
2143 			return cap->matches(cap, SCOPE_LOCAL_CPU);
2144 	}
2145 
2146 	return false;
2147 }
2148 
2149 void cpu_set_feature(unsigned int num)
2150 {
2151 	WARN_ON(num >= MAX_CPU_FEATURES);
2152 	elf_hwcap |= BIT(num);
2153 }
2154 EXPORT_SYMBOL_GPL(cpu_set_feature);
2155 
2156 bool cpu_have_feature(unsigned int num)
2157 {
2158 	WARN_ON(num >= MAX_CPU_FEATURES);
2159 	return elf_hwcap & BIT(num);
2160 }
2161 EXPORT_SYMBOL_GPL(cpu_have_feature);
2162 
2163 unsigned long cpu_get_elf_hwcap(void)
2164 {
2165 	/*
2166 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
2167 	 * note that for userspace compatibility we guarantee that bits 62
2168 	 * and 63 will always be returned as 0.
2169 	 */
2170 	return lower_32_bits(elf_hwcap);
2171 }
2172 
2173 unsigned long cpu_get_elf_hwcap2(void)
2174 {
2175 	return upper_32_bits(elf_hwcap);
2176 }
2177 
2178 static void __init setup_system_capabilities(void)
2179 {
2180 	/*
2181 	 * We have finalised the system-wide safe feature
2182 	 * registers, finalise the capabilities that depend
2183 	 * on it. Also enable all the available capabilities,
2184 	 * that are not enabled already.
2185 	 */
2186 	update_cpu_capabilities(SCOPE_SYSTEM);
2187 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2188 }
2189 
2190 void __init setup_cpu_features(void)
2191 {
2192 	u32 cwg;
2193 
2194 	setup_system_capabilities();
2195 	setup_elf_hwcaps(arm64_elf_hwcaps);
2196 
2197 	if (system_supports_32bit_el0())
2198 		setup_elf_hwcaps(compat_elf_hwcaps);
2199 
2200 	if (system_uses_ttbr0_pan())
2201 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2202 
2203 	sve_setup();
2204 	minsigstksz_setup();
2205 
2206 	/* Advertise that we have computed the system capabilities */
2207 	finalize_system_capabilities();
2208 
2209 	/*
2210 	 * Check for sane CTR_EL0.CWG value.
2211 	 */
2212 	cwg = cache_type_cwg();
2213 	if (!cwg)
2214 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
2215 			ARCH_DMA_MINALIGN);
2216 }
2217 
2218 static bool __maybe_unused
2219 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
2220 {
2221 	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
2222 }
2223 
2224 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2225 {
2226 	cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2227 }
2228 
2229 /*
2230  * We emulate only the following system register space.
2231  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2232  * See Table C5-6 System instruction encodings for System register accesses,
2233  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2234  */
2235 static inline bool __attribute_const__ is_emulated(u32 id)
2236 {
2237 	return (sys_reg_Op0(id) == 0x3 &&
2238 		sys_reg_CRn(id) == 0x0 &&
2239 		sys_reg_Op1(id) == 0x0 &&
2240 		(sys_reg_CRm(id) == 0 ||
2241 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2242 }
2243 
2244 /*
2245  * With CRm == 0, reg should be one of :
2246  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2247  */
2248 static inline int emulate_id_reg(u32 id, u64 *valp)
2249 {
2250 	switch (id) {
2251 	case SYS_MIDR_EL1:
2252 		*valp = read_cpuid_id();
2253 		break;
2254 	case SYS_MPIDR_EL1:
2255 		*valp = SYS_MPIDR_SAFE_VAL;
2256 		break;
2257 	case SYS_REVIDR_EL1:
2258 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
2259 		*valp = 0;
2260 		break;
2261 	default:
2262 		return -EINVAL;
2263 	}
2264 
2265 	return 0;
2266 }
2267 
2268 static int emulate_sys_reg(u32 id, u64 *valp)
2269 {
2270 	struct arm64_ftr_reg *regp;
2271 
2272 	if (!is_emulated(id))
2273 		return -EINVAL;
2274 
2275 	if (sys_reg_CRm(id) == 0)
2276 		return emulate_id_reg(id, valp);
2277 
2278 	regp = get_arm64_ftr_reg(id);
2279 	if (regp)
2280 		*valp = arm64_ftr_reg_user_value(regp);
2281 	else
2282 		/*
2283 		 * The untracked registers are either IMPLEMENTATION DEFINED
2284 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
2285 		 */
2286 		*valp = 0;
2287 	return 0;
2288 }
2289 
2290 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2291 {
2292 	int rc;
2293 	u64 val;
2294 
2295 	rc = emulate_sys_reg(sys_reg, &val);
2296 	if (!rc) {
2297 		pt_regs_write_reg(regs, rt, val);
2298 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2299 	}
2300 	return rc;
2301 }
2302 
2303 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2304 {
2305 	u32 sys_reg, rt;
2306 
2307 	/*
2308 	 * sys_reg values are defined as used in mrs/msr instruction.
2309 	 * shift the imm value to get the encoding.
2310 	 */
2311 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2312 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2313 	return do_emulate_mrs(regs, sys_reg, rt);
2314 }
2315 
2316 static struct undef_hook mrs_hook = {
2317 	.instr_mask = 0xfff00000,
2318 	.instr_val  = 0xd5300000,
2319 	.pstate_mask = PSR_AA32_MODE_MASK,
2320 	.pstate_val = PSR_MODE_EL0t,
2321 	.fn = emulate_mrs,
2322 };
2323 
2324 static int __init enable_mrs_emulation(void)
2325 {
2326 	register_undef_hook(&mrs_hook);
2327 	return 0;
2328 }
2329 
2330 core_initcall(enable_mrs_emulation);
2331 
2332 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2333 			  char *buf)
2334 {
2335 	if (__meltdown_safe)
2336 		return sprintf(buf, "Not affected\n");
2337 
2338 	if (arm64_kernel_unmapped_at_el0())
2339 		return sprintf(buf, "Mitigation: PTI\n");
2340 
2341 	return sprintf(buf, "Vulnerable\n");
2342 }
2343