1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Contains CPU feature definitions 4 * 5 * Copyright (C) 2015 ARM Ltd. 6 * 7 * A note for the weary kernel hacker: the code here is confusing and hard to 8 * follow! That's partly because it's solving a nasty problem, but also because 9 * there's a little bit of over-abstraction that tends to obscure what's going 10 * on behind a maze of helper functions and macros. 11 * 12 * The basic problem is that hardware folks have started gluing together CPUs 13 * with distinct architectural features; in some cases even creating SoCs where 14 * user-visible instructions are available only on a subset of the available 15 * cores. We try to address this by snapshotting the feature registers of the 16 * boot CPU and comparing these with the feature registers of each secondary 17 * CPU when bringing them up. If there is a mismatch, then we update the 18 * snapshot state to indicate the lowest-common denominator of the feature, 19 * known as the "safe" value. This snapshot state can be queried to view the 20 * "sanitised" value of a feature register. 21 * 22 * The sanitised register values are used to decide which capabilities we 23 * have in the system. These may be in the form of traditional "hwcaps" 24 * advertised to userspace or internal "cpucaps" which are used to configure 25 * things like alternative patching and static keys. While a feature mismatch 26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch 27 * may prevent a CPU from being onlined at all. 28 * 29 * Some implementation details worth remembering: 30 * 31 * - Mismatched features are *always* sanitised to a "safe" value, which 32 * usually indicates that the feature is not supported. 33 * 34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK" 35 * warning when onlining an offending CPU and the kernel will be tainted 36 * with TAINT_CPU_OUT_OF_SPEC. 37 * 38 * - Features marked as FTR_VISIBLE have their sanitised value visible to 39 * userspace. FTR_VISIBLE features in registers that are only visible 40 * to EL0 by trapping *must* have a corresponding HWCAP so that late 41 * onlining of CPUs cannot lead to features disappearing at runtime. 42 * 43 * - A "feature" is typically a 4-bit register field. A "capability" is the 44 * high-level description derived from the sanitised field value. 45 * 46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID 47 * scheme for fields in ID registers") to understand when feature fields 48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly). 49 * 50 * - KVM exposes its own view of the feature registers to guest operating 51 * systems regardless of FTR_VISIBLE. This is typically driven from the 52 * sanitised register values to allow virtual CPUs to be migrated between 53 * arbitrary physical CPUs, but some features not present on the host are 54 * also advertised and emulated. Look at sys_reg_descs[] for the gory 55 * details. 56 * 57 * - If the arm64_ftr_bits[] for a register has a missing field, then this 58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg(). 59 * This is stronger than FTR_HIDDEN and can be used to hide features from 60 * KVM guests. 61 */ 62 63 #define pr_fmt(fmt) "CPU features: " fmt 64 65 #include <linux/bsearch.h> 66 #include <linux/cpumask.h> 67 #include <linux/crash_dump.h> 68 #include <linux/sort.h> 69 #include <linux/stop_machine.h> 70 #include <linux/sysfs.h> 71 #include <linux/types.h> 72 #include <linux/minmax.h> 73 #include <linux/mm.h> 74 #include <linux/cpu.h> 75 #include <linux/kasan.h> 76 #include <linux/percpu.h> 77 78 #include <asm/cpu.h> 79 #include <asm/cpufeature.h> 80 #include <asm/cpu_ops.h> 81 #include <asm/fpsimd.h> 82 #include <asm/insn.h> 83 #include <asm/kvm_host.h> 84 #include <asm/mmu_context.h> 85 #include <asm/mte.h> 86 #include <asm/processor.h> 87 #include <asm/smp.h> 88 #include <asm/sysreg.h> 89 #include <asm/traps.h> 90 #include <asm/vectors.h> 91 #include <asm/virt.h> 92 93 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */ 94 static unsigned long elf_hwcap __read_mostly; 95 96 #ifdef CONFIG_COMPAT 97 #define COMPAT_ELF_HWCAP_DEFAULT \ 98 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\ 99 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\ 100 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\ 101 COMPAT_HWCAP_LPAE) 102 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT; 103 unsigned int compat_elf_hwcap2 __read_mostly; 104 #endif 105 106 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); 107 EXPORT_SYMBOL(cpu_hwcaps); 108 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS]; 109 110 /* Need also bit for ARM64_CB_PATCH */ 111 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE); 112 113 bool arm64_use_ng_mappings = false; 114 EXPORT_SYMBOL(arm64_use_ng_mappings); 115 116 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors; 117 118 /* 119 * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs 120 * support it? 121 */ 122 static bool __read_mostly allow_mismatched_32bit_el0; 123 124 /* 125 * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have 126 * seen at least one CPU capable of 32-bit EL0. 127 */ 128 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0); 129 130 /* 131 * Mask of CPUs supporting 32-bit EL0. 132 * Only valid if arm64_mismatched_32bit_el0 is enabled. 133 */ 134 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly; 135 136 /* 137 * Flag to indicate if we have computed the system wide 138 * capabilities based on the boot time active CPUs. This 139 * will be used to determine if a new booting CPU should 140 * go through the verification process to make sure that it 141 * supports the system capabilities, without using a hotplug 142 * notifier. This is also used to decide if we could use 143 * the fast path for checking constant CPU caps. 144 */ 145 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready); 146 EXPORT_SYMBOL(arm64_const_caps_ready); 147 static inline void finalize_system_capabilities(void) 148 { 149 static_branch_enable(&arm64_const_caps_ready); 150 } 151 152 void dump_cpu_features(void) 153 { 154 /* file-wide pr_fmt adds "CPU features: " prefix */ 155 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps); 156 } 157 158 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS); 159 EXPORT_SYMBOL(cpu_hwcap_keys); 160 161 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ 162 { \ 163 .sign = SIGNED, \ 164 .visible = VISIBLE, \ 165 .strict = STRICT, \ 166 .type = TYPE, \ 167 .shift = SHIFT, \ 168 .width = WIDTH, \ 169 .safe_val = SAFE_VAL, \ 170 } 171 172 /* Define a feature with unsigned values */ 173 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ 174 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) 175 176 /* Define a feature with a signed value */ 177 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ 178 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) 179 180 #define ARM64_FTR_END \ 181 { \ 182 .width = 0, \ 183 } 184 185 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap); 186 187 static bool __system_matches_cap(unsigned int n); 188 189 /* 190 * NOTE: Any changes to the visibility of features should be kept in 191 * sync with the documentation of the CPU feature register ABI. 192 */ 193 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = { 194 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0), 195 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0), 196 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0), 197 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0), 198 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0), 199 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0), 200 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0), 201 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0), 202 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0), 203 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0), 204 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0), 205 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0), 206 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0), 207 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0), 208 ARM64_FTR_END, 209 }; 210 211 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = { 212 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0), 213 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0), 214 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0), 215 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0), 216 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0), 217 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0), 218 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 219 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0), 220 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 221 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0), 222 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0), 223 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0), 224 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0), 225 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 226 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0), 227 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 228 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0), 229 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0), 230 ARM64_FTR_END, 231 }; 232 233 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = { 234 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64ISAR2_CLEARBHB_SHIFT, 4, 0), 235 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 236 FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_APA3_SHIFT, 4, 0), 237 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 238 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_GPA3_SHIFT, 4, 0), 239 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_RPRES_SHIFT, 4, 0), 240 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_WFXT_SHIFT, 4, 0), 241 ARM64_FTR_END, 242 }; 243 244 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = { 245 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0), 246 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0), 247 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0), 248 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0), 249 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0), 250 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0), 251 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 252 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0), 253 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0), 254 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0), 255 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI), 256 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI), 257 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0), 258 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0), 259 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY), 260 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY), 261 ARM64_FTR_END, 262 }; 263 264 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = { 265 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 266 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SME_SHIFT, 4, 0), 267 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0), 268 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0), 269 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE), 270 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI), 271 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI), 272 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI), 273 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0), 274 ARM64_FTR_END, 275 }; 276 277 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = { 278 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 279 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0), 280 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 281 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0), 282 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 283 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0), 284 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 285 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0), 286 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 287 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0), 288 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 289 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0), 290 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 291 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0), 292 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 293 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0), 294 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 295 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0), 296 ARM64_FTR_END, 297 }; 298 299 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = { 300 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 301 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_FA64_SHIFT, 1, 0), 302 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 303 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_I16I64_SHIFT, 4, 0), 304 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 305 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_F64F64_SHIFT, 1, 0), 306 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 307 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_I8I32_SHIFT, 4, 0), 308 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 309 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_F16F32_SHIFT, 1, 0), 310 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 311 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_B16F32_SHIFT, 1, 0), 312 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 313 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_F32F32_SHIFT, 1, 0), 314 ARM64_FTR_END, 315 }; 316 317 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = { 318 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0), 319 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0), 320 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0), 321 /* 322 * Page size not being supported at Stage-2 is not fatal. You 323 * just give up KVM if PAGE_SIZE isn't supported there. Go fix 324 * your favourite nesting hypervisor. 325 * 326 * There is a small corner case where the hypervisor explicitly 327 * advertises a given granule size at Stage-2 (value 2) on some 328 * vCPUs, and uses the fallback to Stage-1 (value 0) for other 329 * vCPUs. Although this is not forbidden by the architecture, it 330 * indicates that the hypervisor is being silly (or buggy). 331 * 332 * We make no effort to cope with this and pretend that if these 333 * fields are inconsistent across vCPUs, then it isn't worth 334 * trying to bring KVM up. 335 */ 336 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1), 337 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1), 338 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1), 339 /* 340 * We already refuse to boot CPUs that don't support our configured 341 * page size, so we can only detect mismatches for a page size other 342 * than the one we're currently using. Unfortunately, SoCs like this 343 * exist in the wild so, even though we don't like it, we'll have to go 344 * along with it and treat them as non-strict. 345 */ 346 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI), 347 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI), 348 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI), 349 350 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0), 351 /* Linux shouldn't care about secure memory */ 352 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0), 353 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0), 354 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0), 355 /* 356 * Differing PARange is fine as long as all peripherals and memory are mapped 357 * within the minimum PARange of all CPUs 358 */ 359 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0), 360 ARM64_FTR_END, 361 }; 362 363 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = { 364 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_AFP_SHIFT, 4, 0), 365 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0), 366 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0), 367 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0), 368 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0), 369 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0), 370 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0), 371 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0), 372 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0), 373 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0), 374 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0), 375 ARM64_FTR_END, 376 }; 377 378 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = { 379 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0), 380 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0), 381 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0), 382 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0), 383 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0), 384 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0), 385 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0), 386 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0), 387 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0), 388 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0), 389 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0), 390 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0), 391 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0), 392 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0), 393 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0), 394 ARM64_FTR_END, 395 }; 396 397 static const struct arm64_ftr_bits ftr_ctr[] = { 398 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */ 399 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1), 400 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1), 401 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0), 402 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0), 403 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1), 404 /* 405 * Linux can handle differing I-cache policies. Userspace JITs will 406 * make use of *minLine. 407 * If we have differing I-cache policies, report it as the weakest - VIPT. 408 */ 409 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT), /* L1Ip */ 410 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0), 411 ARM64_FTR_END, 412 }; 413 414 static struct arm64_ftr_override __ro_after_init no_override = { }; 415 416 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = { 417 .name = "SYS_CTR_EL0", 418 .ftr_bits = ftr_ctr, 419 .override = &no_override, 420 }; 421 422 static const struct arm64_ftr_bits ftr_id_mmfr0[] = { 423 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf), 424 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0), 425 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0), 426 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0), 427 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0), 428 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf), 429 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0), 430 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0), 431 ARM64_FTR_END, 432 }; 433 434 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = { 435 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0), 436 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0), 437 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0), 438 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0), 439 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0), 440 /* 441 * We can instantiate multiple PMU instances with different levels 442 * of support. 443 */ 444 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0), 445 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6), 446 ARM64_FTR_END, 447 }; 448 449 static const struct arm64_ftr_bits ftr_mvfr2[] = { 450 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0), 451 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0), 452 ARM64_FTR_END, 453 }; 454 455 static const struct arm64_ftr_bits ftr_dczid[] = { 456 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1), 457 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0), 458 ARM64_FTR_END, 459 }; 460 461 static const struct arm64_ftr_bits ftr_gmid[] = { 462 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, SYS_GMID_EL1_BS_SHIFT, 4, 0), 463 ARM64_FTR_END, 464 }; 465 466 static const struct arm64_ftr_bits ftr_id_isar0[] = { 467 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0), 468 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0), 469 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0), 470 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0), 471 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0), 472 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0), 473 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0), 474 ARM64_FTR_END, 475 }; 476 477 static const struct arm64_ftr_bits ftr_id_isar5[] = { 478 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0), 479 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0), 480 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0), 481 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0), 482 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0), 483 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0), 484 ARM64_FTR_END, 485 }; 486 487 static const struct arm64_ftr_bits ftr_id_mmfr4[] = { 488 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0), 489 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0), 490 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0), 491 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0), 492 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0), 493 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0), 494 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0), 495 496 /* 497 * SpecSEI = 1 indicates that the PE might generate an SError on an 498 * external abort on speculative read. It is safe to assume that an 499 * SError might be generated than it will not be. Hence it has been 500 * classified as FTR_HIGHER_SAFE. 501 */ 502 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0), 503 ARM64_FTR_END, 504 }; 505 506 static const struct arm64_ftr_bits ftr_id_isar4[] = { 507 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0), 508 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0), 509 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0), 510 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0), 511 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0), 512 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0), 513 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0), 514 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0), 515 ARM64_FTR_END, 516 }; 517 518 static const struct arm64_ftr_bits ftr_id_mmfr5[] = { 519 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0), 520 ARM64_FTR_END, 521 }; 522 523 static const struct arm64_ftr_bits ftr_id_isar6[] = { 524 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0), 525 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0), 526 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0), 527 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0), 528 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0), 529 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0), 530 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0), 531 ARM64_FTR_END, 532 }; 533 534 static const struct arm64_ftr_bits ftr_id_pfr0[] = { 535 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0), 536 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0), 537 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0), 538 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0), 539 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0), 540 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0), 541 ARM64_FTR_END, 542 }; 543 544 static const struct arm64_ftr_bits ftr_id_pfr1[] = { 545 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0), 546 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0), 547 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0), 548 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0), 549 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0), 550 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0), 551 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0), 552 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0), 553 ARM64_FTR_END, 554 }; 555 556 static const struct arm64_ftr_bits ftr_id_pfr2[] = { 557 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0), 558 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0), 559 ARM64_FTR_END, 560 }; 561 562 static const struct arm64_ftr_bits ftr_id_dfr0[] = { 563 /* [31:28] TraceFilt */ 564 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf), 565 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0), 566 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0), 567 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0), 568 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0), 569 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0), 570 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0), 571 ARM64_FTR_END, 572 }; 573 574 static const struct arm64_ftr_bits ftr_id_dfr1[] = { 575 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0), 576 ARM64_FTR_END, 577 }; 578 579 static const struct arm64_ftr_bits ftr_zcr[] = { 580 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 581 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_WIDTH, 0), /* LEN */ 582 ARM64_FTR_END, 583 }; 584 585 static const struct arm64_ftr_bits ftr_smcr[] = { 586 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 587 SMCR_ELx_LEN_SHIFT, SMCR_ELx_LEN_WIDTH, 0), /* LEN */ 588 ARM64_FTR_END, 589 }; 590 591 /* 592 * Common ftr bits for a 32bit register with all hidden, strict 593 * attributes, with 4bit feature fields and a default safe value of 594 * 0. Covers the following 32bit registers: 595 * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1] 596 */ 597 static const struct arm64_ftr_bits ftr_generic_32bits[] = { 598 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0), 599 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), 600 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), 601 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), 602 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), 603 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), 604 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), 605 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), 606 ARM64_FTR_END, 607 }; 608 609 /* Table for a single 32bit feature value */ 610 static const struct arm64_ftr_bits ftr_single32[] = { 611 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0), 612 ARM64_FTR_END, 613 }; 614 615 static const struct arm64_ftr_bits ftr_raz[] = { 616 ARM64_FTR_END, 617 }; 618 619 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \ 620 .sys_id = id, \ 621 .reg = &(struct arm64_ftr_reg){ \ 622 .name = id_str, \ 623 .override = (ovr), \ 624 .ftr_bits = &((table)[0]), \ 625 }} 626 627 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \ 628 __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr) 629 630 #define ARM64_FTR_REG(id, table) \ 631 __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override) 632 633 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override; 634 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override; 635 struct arm64_ftr_override __ro_after_init id_aa64isar1_override; 636 struct arm64_ftr_override __ro_after_init id_aa64isar2_override; 637 638 static const struct __ftr_reg_entry { 639 u32 sys_id; 640 struct arm64_ftr_reg *reg; 641 } arm64_ftr_regs[] = { 642 643 /* Op1 = 0, CRn = 0, CRm = 1 */ 644 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0), 645 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1), 646 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0), 647 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0), 648 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits), 649 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits), 650 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits), 651 652 /* Op1 = 0, CRn = 0, CRm = 2 */ 653 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0), 654 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits), 655 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits), 656 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits), 657 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4), 658 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5), 659 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4), 660 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6), 661 662 /* Op1 = 0, CRn = 0, CRm = 3 */ 663 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits), 664 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits), 665 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2), 666 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2), 667 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1), 668 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5), 669 670 /* Op1 = 0, CRn = 0, CRm = 4 */ 671 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0), 672 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1, 673 &id_aa64pfr1_override), 674 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0), 675 ARM64_FTR_REG(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0), 676 677 /* Op1 = 0, CRn = 0, CRm = 5 */ 678 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0), 679 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz), 680 681 /* Op1 = 0, CRn = 0, CRm = 6 */ 682 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0), 683 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1, 684 &id_aa64isar1_override), 685 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2, 686 &id_aa64isar2_override), 687 688 /* Op1 = 0, CRn = 0, CRm = 7 */ 689 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0), 690 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1, 691 &id_aa64mmfr1_override), 692 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2), 693 694 /* Op1 = 0, CRn = 1, CRm = 2 */ 695 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr), 696 ARM64_FTR_REG(SYS_SMCR_EL1, ftr_smcr), 697 698 /* Op1 = 1, CRn = 0, CRm = 0 */ 699 ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid), 700 701 /* Op1 = 3, CRn = 0, CRm = 0 */ 702 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 }, 703 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid), 704 705 /* Op1 = 3, CRn = 14, CRm = 0 */ 706 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32), 707 }; 708 709 static int search_cmp_ftr_reg(const void *id, const void *regp) 710 { 711 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id; 712 } 713 714 /* 715 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using 716 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the 717 * ascending order of sys_id, we use binary search to find a matching 718 * entry. 719 * 720 * returns - Upon success, matching ftr_reg entry for id. 721 * - NULL on failure. It is upto the caller to decide 722 * the impact of a failure. 723 */ 724 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id) 725 { 726 const struct __ftr_reg_entry *ret; 727 728 ret = bsearch((const void *)(unsigned long)sys_id, 729 arm64_ftr_regs, 730 ARRAY_SIZE(arm64_ftr_regs), 731 sizeof(arm64_ftr_regs[0]), 732 search_cmp_ftr_reg); 733 if (ret) 734 return ret->reg; 735 return NULL; 736 } 737 738 /* 739 * get_arm64_ftr_reg - Looks up a feature register entry using 740 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn(). 741 * 742 * returns - Upon success, matching ftr_reg entry for id. 743 * - NULL on failure but with an WARN_ON(). 744 */ 745 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id) 746 { 747 struct arm64_ftr_reg *reg; 748 749 reg = get_arm64_ftr_reg_nowarn(sys_id); 750 751 /* 752 * Requesting a non-existent register search is an error. Warn 753 * and let the caller handle it. 754 */ 755 WARN_ON(!reg); 756 return reg; 757 } 758 759 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg, 760 s64 ftr_val) 761 { 762 u64 mask = arm64_ftr_mask(ftrp); 763 764 reg &= ~mask; 765 reg |= (ftr_val << ftrp->shift) & mask; 766 return reg; 767 } 768 769 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, 770 s64 cur) 771 { 772 s64 ret = 0; 773 774 switch (ftrp->type) { 775 case FTR_EXACT: 776 ret = ftrp->safe_val; 777 break; 778 case FTR_LOWER_SAFE: 779 ret = min(new, cur); 780 break; 781 case FTR_HIGHER_OR_ZERO_SAFE: 782 if (!cur || !new) 783 break; 784 fallthrough; 785 case FTR_HIGHER_SAFE: 786 ret = max(new, cur); 787 break; 788 default: 789 BUG(); 790 } 791 792 return ret; 793 } 794 795 static void __init sort_ftr_regs(void) 796 { 797 unsigned int i; 798 799 for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) { 800 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg; 801 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits; 802 unsigned int j = 0; 803 804 /* 805 * Features here must be sorted in descending order with respect 806 * to their shift values and should not overlap with each other. 807 */ 808 for (; ftr_bits->width != 0; ftr_bits++, j++) { 809 unsigned int width = ftr_reg->ftr_bits[j].width; 810 unsigned int shift = ftr_reg->ftr_bits[j].shift; 811 unsigned int prev_shift; 812 813 WARN((shift + width) > 64, 814 "%s has invalid feature at shift %d\n", 815 ftr_reg->name, shift); 816 817 /* 818 * Skip the first feature. There is nothing to 819 * compare against for now. 820 */ 821 if (j == 0) 822 continue; 823 824 prev_shift = ftr_reg->ftr_bits[j - 1].shift; 825 WARN((shift + width) > prev_shift, 826 "%s has feature overlap at shift %d\n", 827 ftr_reg->name, shift); 828 } 829 830 /* 831 * Skip the first register. There is nothing to 832 * compare against for now. 833 */ 834 if (i == 0) 835 continue; 836 /* 837 * Registers here must be sorted in ascending order with respect 838 * to sys_id for subsequent binary search in get_arm64_ftr_reg() 839 * to work correctly. 840 */ 841 BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id); 842 } 843 } 844 845 /* 846 * Initialise the CPU feature register from Boot CPU values. 847 * Also initiliases the strict_mask for the register. 848 * Any bits that are not covered by an arm64_ftr_bits entry are considered 849 * RES0 for the system-wide value, and must strictly match. 850 */ 851 static void init_cpu_ftr_reg(u32 sys_reg, u64 new) 852 { 853 u64 val = 0; 854 u64 strict_mask = ~0x0ULL; 855 u64 user_mask = 0; 856 u64 valid_mask = 0; 857 858 const struct arm64_ftr_bits *ftrp; 859 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg); 860 861 if (!reg) 862 return; 863 864 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { 865 u64 ftr_mask = arm64_ftr_mask(ftrp); 866 s64 ftr_new = arm64_ftr_value(ftrp, new); 867 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val); 868 869 if ((ftr_mask & reg->override->mask) == ftr_mask) { 870 s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new); 871 char *str = NULL; 872 873 if (ftr_ovr != tmp) { 874 /* Unsafe, remove the override */ 875 reg->override->mask &= ~ftr_mask; 876 reg->override->val &= ~ftr_mask; 877 tmp = ftr_ovr; 878 str = "ignoring override"; 879 } else if (ftr_new != tmp) { 880 /* Override was valid */ 881 ftr_new = tmp; 882 str = "forced"; 883 } else if (ftr_ovr == tmp) { 884 /* Override was the safe value */ 885 str = "already set"; 886 } 887 888 if (str) 889 pr_warn("%s[%d:%d]: %s to %llx\n", 890 reg->name, 891 ftrp->shift + ftrp->width - 1, 892 ftrp->shift, str, tmp); 893 } else if ((ftr_mask & reg->override->val) == ftr_mask) { 894 reg->override->val &= ~ftr_mask; 895 pr_warn("%s[%d:%d]: impossible override, ignored\n", 896 reg->name, 897 ftrp->shift + ftrp->width - 1, 898 ftrp->shift); 899 } 900 901 val = arm64_ftr_set_value(ftrp, val, ftr_new); 902 903 valid_mask |= ftr_mask; 904 if (!ftrp->strict) 905 strict_mask &= ~ftr_mask; 906 if (ftrp->visible) 907 user_mask |= ftr_mask; 908 else 909 reg->user_val = arm64_ftr_set_value(ftrp, 910 reg->user_val, 911 ftrp->safe_val); 912 } 913 914 val &= valid_mask; 915 916 reg->sys_val = val; 917 reg->strict_mask = strict_mask; 918 reg->user_mask = user_mask; 919 } 920 921 extern const struct arm64_cpu_capabilities arm64_errata[]; 922 static const struct arm64_cpu_capabilities arm64_features[]; 923 924 static void __init 925 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps) 926 { 927 for (; caps->matches; caps++) { 928 if (WARN(caps->capability >= ARM64_NCAPS, 929 "Invalid capability %d\n", caps->capability)) 930 continue; 931 if (WARN(cpu_hwcaps_ptrs[caps->capability], 932 "Duplicate entry for capability %d\n", 933 caps->capability)) 934 continue; 935 cpu_hwcaps_ptrs[caps->capability] = caps; 936 } 937 } 938 939 static void __init init_cpu_hwcaps_indirect_list(void) 940 { 941 init_cpu_hwcaps_indirect_list_from_array(arm64_features); 942 init_cpu_hwcaps_indirect_list_from_array(arm64_errata); 943 } 944 945 static void __init setup_boot_cpu_capabilities(void); 946 947 static void init_32bit_cpu_features(struct cpuinfo_32bit *info) 948 { 949 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0); 950 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1); 951 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0); 952 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1); 953 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2); 954 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3); 955 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4); 956 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5); 957 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6); 958 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0); 959 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1); 960 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2); 961 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3); 962 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4); 963 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5); 964 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0); 965 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1); 966 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2); 967 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0); 968 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1); 969 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2); 970 } 971 972 void __init init_cpu_features(struct cpuinfo_arm64 *info) 973 { 974 /* Before we start using the tables, make sure it is sorted */ 975 sort_ftr_regs(); 976 977 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr); 978 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid); 979 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq); 980 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0); 981 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1); 982 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0); 983 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1); 984 init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2); 985 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0); 986 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1); 987 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2); 988 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0); 989 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1); 990 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0); 991 init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0); 992 993 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) 994 init_32bit_cpu_features(&info->aarch32); 995 996 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) { 997 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr); 998 vec_init_vq_map(ARM64_VEC_SVE); 999 } 1000 1001 if (id_aa64pfr1_sme(info->reg_id_aa64pfr1)) { 1002 init_cpu_ftr_reg(SYS_SMCR_EL1, info->reg_smcr); 1003 if (IS_ENABLED(CONFIG_ARM64_SME)) 1004 vec_init_vq_map(ARM64_VEC_SME); 1005 } 1006 1007 if (id_aa64pfr1_mte(info->reg_id_aa64pfr1)) 1008 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid); 1009 1010 /* 1011 * Initialize the indirect array of CPU hwcaps capabilities pointers 1012 * before we handle the boot CPU below. 1013 */ 1014 init_cpu_hwcaps_indirect_list(); 1015 1016 /* 1017 * Detect and enable early CPU capabilities based on the boot CPU, 1018 * after we have initialised the CPU feature infrastructure. 1019 */ 1020 setup_boot_cpu_capabilities(); 1021 } 1022 1023 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new) 1024 { 1025 const struct arm64_ftr_bits *ftrp; 1026 1027 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { 1028 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val); 1029 s64 ftr_new = arm64_ftr_value(ftrp, new); 1030 1031 if (ftr_cur == ftr_new) 1032 continue; 1033 /* Find a safe value */ 1034 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur); 1035 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new); 1036 } 1037 1038 } 1039 1040 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot) 1041 { 1042 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id); 1043 1044 if (!regp) 1045 return 0; 1046 1047 update_cpu_ftr_reg(regp, val); 1048 if ((boot & regp->strict_mask) == (val & regp->strict_mask)) 1049 return 0; 1050 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n", 1051 regp->name, boot, cpu, val); 1052 return 1; 1053 } 1054 1055 static void relax_cpu_ftr_reg(u32 sys_id, int field) 1056 { 1057 const struct arm64_ftr_bits *ftrp; 1058 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id); 1059 1060 if (!regp) 1061 return; 1062 1063 for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) { 1064 if (ftrp->shift == field) { 1065 regp->strict_mask &= ~arm64_ftr_mask(ftrp); 1066 break; 1067 } 1068 } 1069 1070 /* Bogus field? */ 1071 WARN_ON(!ftrp->width); 1072 } 1073 1074 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info, 1075 struct cpuinfo_arm64 *boot) 1076 { 1077 static bool boot_cpu_32bit_regs_overridden = false; 1078 1079 if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden) 1080 return; 1081 1082 if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0)) 1083 return; 1084 1085 boot->aarch32 = info->aarch32; 1086 init_32bit_cpu_features(&boot->aarch32); 1087 boot_cpu_32bit_regs_overridden = true; 1088 } 1089 1090 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info, 1091 struct cpuinfo_32bit *boot) 1092 { 1093 int taint = 0; 1094 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 1095 1096 /* 1097 * If we don't have AArch32 at EL1, then relax the strictness of 1098 * EL1-dependent register fields to avoid spurious sanity check fails. 1099 */ 1100 if (!id_aa64pfr0_32bit_el1(pfr0)) { 1101 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT); 1102 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT); 1103 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT); 1104 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT); 1105 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT); 1106 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT); 1107 } 1108 1109 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu, 1110 info->reg_id_dfr0, boot->reg_id_dfr0); 1111 taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu, 1112 info->reg_id_dfr1, boot->reg_id_dfr1); 1113 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu, 1114 info->reg_id_isar0, boot->reg_id_isar0); 1115 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu, 1116 info->reg_id_isar1, boot->reg_id_isar1); 1117 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu, 1118 info->reg_id_isar2, boot->reg_id_isar2); 1119 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu, 1120 info->reg_id_isar3, boot->reg_id_isar3); 1121 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu, 1122 info->reg_id_isar4, boot->reg_id_isar4); 1123 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu, 1124 info->reg_id_isar5, boot->reg_id_isar5); 1125 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu, 1126 info->reg_id_isar6, boot->reg_id_isar6); 1127 1128 /* 1129 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and 1130 * ACTLR formats could differ across CPUs and therefore would have to 1131 * be trapped for virtualization anyway. 1132 */ 1133 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu, 1134 info->reg_id_mmfr0, boot->reg_id_mmfr0); 1135 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu, 1136 info->reg_id_mmfr1, boot->reg_id_mmfr1); 1137 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu, 1138 info->reg_id_mmfr2, boot->reg_id_mmfr2); 1139 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu, 1140 info->reg_id_mmfr3, boot->reg_id_mmfr3); 1141 taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu, 1142 info->reg_id_mmfr4, boot->reg_id_mmfr4); 1143 taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu, 1144 info->reg_id_mmfr5, boot->reg_id_mmfr5); 1145 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu, 1146 info->reg_id_pfr0, boot->reg_id_pfr0); 1147 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu, 1148 info->reg_id_pfr1, boot->reg_id_pfr1); 1149 taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu, 1150 info->reg_id_pfr2, boot->reg_id_pfr2); 1151 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu, 1152 info->reg_mvfr0, boot->reg_mvfr0); 1153 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu, 1154 info->reg_mvfr1, boot->reg_mvfr1); 1155 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu, 1156 info->reg_mvfr2, boot->reg_mvfr2); 1157 1158 return taint; 1159 } 1160 1161 /* 1162 * Update system wide CPU feature registers with the values from a 1163 * non-boot CPU. Also performs SANITY checks to make sure that there 1164 * aren't any insane variations from that of the boot CPU. 1165 */ 1166 void update_cpu_features(int cpu, 1167 struct cpuinfo_arm64 *info, 1168 struct cpuinfo_arm64 *boot) 1169 { 1170 int taint = 0; 1171 1172 /* 1173 * The kernel can handle differing I-cache policies, but otherwise 1174 * caches should look identical. Userspace JITs will make use of 1175 * *minLine. 1176 */ 1177 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu, 1178 info->reg_ctr, boot->reg_ctr); 1179 1180 /* 1181 * Userspace may perform DC ZVA instructions. Mismatched block sizes 1182 * could result in too much or too little memory being zeroed if a 1183 * process is preempted and migrated between CPUs. 1184 */ 1185 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu, 1186 info->reg_dczid, boot->reg_dczid); 1187 1188 /* If different, timekeeping will be broken (especially with KVM) */ 1189 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu, 1190 info->reg_cntfrq, boot->reg_cntfrq); 1191 1192 /* 1193 * The kernel uses self-hosted debug features and expects CPUs to 1194 * support identical debug features. We presently need CTX_CMPs, WRPs, 1195 * and BRPs to be identical. 1196 * ID_AA64DFR1 is currently RES0. 1197 */ 1198 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu, 1199 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0); 1200 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu, 1201 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1); 1202 /* 1203 * Even in big.LITTLE, processors should be identical instruction-set 1204 * wise. 1205 */ 1206 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu, 1207 info->reg_id_aa64isar0, boot->reg_id_aa64isar0); 1208 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu, 1209 info->reg_id_aa64isar1, boot->reg_id_aa64isar1); 1210 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu, 1211 info->reg_id_aa64isar2, boot->reg_id_aa64isar2); 1212 1213 /* 1214 * Differing PARange support is fine as long as all peripherals and 1215 * memory are mapped within the minimum PARange of all CPUs. 1216 * Linux should not care about secure memory. 1217 */ 1218 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu, 1219 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0); 1220 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu, 1221 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1); 1222 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu, 1223 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2); 1224 1225 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu, 1226 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0); 1227 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu, 1228 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1); 1229 1230 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu, 1231 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0); 1232 1233 taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu, 1234 info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0); 1235 1236 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) { 1237 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu, 1238 info->reg_zcr, boot->reg_zcr); 1239 1240 /* Probe vector lengths, unless we already gave up on SVE */ 1241 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) && 1242 !system_capabilities_finalized()) 1243 vec_update_vq_map(ARM64_VEC_SVE); 1244 } 1245 1246 if (id_aa64pfr1_sme(info->reg_id_aa64pfr1)) { 1247 taint |= check_update_ftr_reg(SYS_SMCR_EL1, cpu, 1248 info->reg_smcr, boot->reg_smcr); 1249 1250 /* Probe vector lengths, unless we already gave up on SME */ 1251 if (id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1)) && 1252 !system_capabilities_finalized()) 1253 vec_update_vq_map(ARM64_VEC_SME); 1254 } 1255 1256 /* 1257 * The kernel uses the LDGM/STGM instructions and the number of tags 1258 * they read/write depends on the GMID_EL1.BS field. Check that the 1259 * value is the same on all CPUs. 1260 */ 1261 if (IS_ENABLED(CONFIG_ARM64_MTE) && 1262 id_aa64pfr1_mte(info->reg_id_aa64pfr1)) { 1263 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu, 1264 info->reg_gmid, boot->reg_gmid); 1265 } 1266 1267 /* 1268 * If we don't have AArch32 at all then skip the checks entirely 1269 * as the register values may be UNKNOWN and we're not going to be 1270 * using them for anything. 1271 * 1272 * This relies on a sanitised view of the AArch64 ID registers 1273 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last. 1274 */ 1275 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) { 1276 lazy_init_32bit_cpu_features(info, boot); 1277 taint |= update_32bit_cpu_features(cpu, &info->aarch32, 1278 &boot->aarch32); 1279 } 1280 1281 /* 1282 * Mismatched CPU features are a recipe for disaster. Don't even 1283 * pretend to support them. 1284 */ 1285 if (taint) { 1286 pr_warn_once("Unsupported CPU feature variation detected.\n"); 1287 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 1288 } 1289 } 1290 1291 u64 read_sanitised_ftr_reg(u32 id) 1292 { 1293 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id); 1294 1295 if (!regp) 1296 return 0; 1297 return regp->sys_val; 1298 } 1299 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg); 1300 1301 #define read_sysreg_case(r) \ 1302 case r: val = read_sysreg_s(r); break; 1303 1304 /* 1305 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated. 1306 * Read the system register on the current CPU 1307 */ 1308 u64 __read_sysreg_by_encoding(u32 sys_id) 1309 { 1310 struct arm64_ftr_reg *regp; 1311 u64 val; 1312 1313 switch (sys_id) { 1314 read_sysreg_case(SYS_ID_PFR0_EL1); 1315 read_sysreg_case(SYS_ID_PFR1_EL1); 1316 read_sysreg_case(SYS_ID_PFR2_EL1); 1317 read_sysreg_case(SYS_ID_DFR0_EL1); 1318 read_sysreg_case(SYS_ID_DFR1_EL1); 1319 read_sysreg_case(SYS_ID_MMFR0_EL1); 1320 read_sysreg_case(SYS_ID_MMFR1_EL1); 1321 read_sysreg_case(SYS_ID_MMFR2_EL1); 1322 read_sysreg_case(SYS_ID_MMFR3_EL1); 1323 read_sysreg_case(SYS_ID_MMFR4_EL1); 1324 read_sysreg_case(SYS_ID_MMFR5_EL1); 1325 read_sysreg_case(SYS_ID_ISAR0_EL1); 1326 read_sysreg_case(SYS_ID_ISAR1_EL1); 1327 read_sysreg_case(SYS_ID_ISAR2_EL1); 1328 read_sysreg_case(SYS_ID_ISAR3_EL1); 1329 read_sysreg_case(SYS_ID_ISAR4_EL1); 1330 read_sysreg_case(SYS_ID_ISAR5_EL1); 1331 read_sysreg_case(SYS_ID_ISAR6_EL1); 1332 read_sysreg_case(SYS_MVFR0_EL1); 1333 read_sysreg_case(SYS_MVFR1_EL1); 1334 read_sysreg_case(SYS_MVFR2_EL1); 1335 1336 read_sysreg_case(SYS_ID_AA64PFR0_EL1); 1337 read_sysreg_case(SYS_ID_AA64PFR1_EL1); 1338 read_sysreg_case(SYS_ID_AA64ZFR0_EL1); 1339 read_sysreg_case(SYS_ID_AA64SMFR0_EL1); 1340 read_sysreg_case(SYS_ID_AA64DFR0_EL1); 1341 read_sysreg_case(SYS_ID_AA64DFR1_EL1); 1342 read_sysreg_case(SYS_ID_AA64MMFR0_EL1); 1343 read_sysreg_case(SYS_ID_AA64MMFR1_EL1); 1344 read_sysreg_case(SYS_ID_AA64MMFR2_EL1); 1345 read_sysreg_case(SYS_ID_AA64ISAR0_EL1); 1346 read_sysreg_case(SYS_ID_AA64ISAR1_EL1); 1347 read_sysreg_case(SYS_ID_AA64ISAR2_EL1); 1348 1349 read_sysreg_case(SYS_CNTFRQ_EL0); 1350 read_sysreg_case(SYS_CTR_EL0); 1351 read_sysreg_case(SYS_DCZID_EL0); 1352 1353 default: 1354 BUG(); 1355 return 0; 1356 } 1357 1358 regp = get_arm64_ftr_reg(sys_id); 1359 if (regp) { 1360 val &= ~regp->override->mask; 1361 val |= (regp->override->val & regp->override->mask); 1362 } 1363 1364 return val; 1365 } 1366 1367 #include <linux/irqchip/arm-gic-v3.h> 1368 1369 static bool 1370 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry) 1371 { 1372 int val = cpuid_feature_extract_field_width(reg, entry->field_pos, 1373 entry->field_width, 1374 entry->sign); 1375 1376 return val >= entry->min_field_value; 1377 } 1378 1379 static bool 1380 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope) 1381 { 1382 u64 val; 1383 1384 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible()); 1385 if (scope == SCOPE_SYSTEM) 1386 val = read_sanitised_ftr_reg(entry->sys_reg); 1387 else 1388 val = __read_sysreg_by_encoding(entry->sys_reg); 1389 1390 return feature_matches(val, entry); 1391 } 1392 1393 const struct cpumask *system_32bit_el0_cpumask(void) 1394 { 1395 if (!system_supports_32bit_el0()) 1396 return cpu_none_mask; 1397 1398 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 1399 return cpu_32bit_el0_mask; 1400 1401 return cpu_possible_mask; 1402 } 1403 1404 static int __init parse_32bit_el0_param(char *str) 1405 { 1406 allow_mismatched_32bit_el0 = true; 1407 return 0; 1408 } 1409 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param); 1410 1411 static ssize_t aarch32_el0_show(struct device *dev, 1412 struct device_attribute *attr, char *buf) 1413 { 1414 const struct cpumask *mask = system_32bit_el0_cpumask(); 1415 1416 return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask)); 1417 } 1418 static const DEVICE_ATTR_RO(aarch32_el0); 1419 1420 static int __init aarch32_el0_sysfs_init(void) 1421 { 1422 if (!allow_mismatched_32bit_el0) 1423 return 0; 1424 1425 return device_create_file(cpu_subsys.dev_root, &dev_attr_aarch32_el0); 1426 } 1427 device_initcall(aarch32_el0_sysfs_init); 1428 1429 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope) 1430 { 1431 if (!has_cpuid_feature(entry, scope)) 1432 return allow_mismatched_32bit_el0; 1433 1434 if (scope == SCOPE_SYSTEM) 1435 pr_info("detected: 32-bit EL0 Support\n"); 1436 1437 return true; 1438 } 1439 1440 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope) 1441 { 1442 bool has_sre; 1443 1444 if (!has_cpuid_feature(entry, scope)) 1445 return false; 1446 1447 has_sre = gic_enable_sre(); 1448 if (!has_sre) 1449 pr_warn_once("%s present but disabled by higher exception level\n", 1450 entry->desc); 1451 1452 return has_sre; 1453 } 1454 1455 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused) 1456 { 1457 u32 midr = read_cpuid_id(); 1458 1459 /* Cavium ThunderX pass 1.x and 2.x */ 1460 return midr_is_cpu_model_range(midr, MIDR_THUNDERX, 1461 MIDR_CPU_VAR_REV(0, 0), 1462 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK)); 1463 } 1464 1465 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused) 1466 { 1467 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 1468 1469 return cpuid_feature_extract_signed_field(pfr0, 1470 ID_AA64PFR0_FP_SHIFT) < 0; 1471 } 1472 1473 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry, 1474 int scope) 1475 { 1476 u64 ctr; 1477 1478 if (scope == SCOPE_SYSTEM) 1479 ctr = arm64_ftr_reg_ctrel0.sys_val; 1480 else 1481 ctr = read_cpuid_effective_cachetype(); 1482 1483 return ctr & BIT(CTR_IDC_SHIFT); 1484 } 1485 1486 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused) 1487 { 1488 /* 1489 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively 1490 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses 1491 * to the CTR_EL0 on this CPU and emulate it with the real/safe 1492 * value. 1493 */ 1494 if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT))) 1495 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0); 1496 } 1497 1498 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry, 1499 int scope) 1500 { 1501 u64 ctr; 1502 1503 if (scope == SCOPE_SYSTEM) 1504 ctr = arm64_ftr_reg_ctrel0.sys_val; 1505 else 1506 ctr = read_cpuid_cachetype(); 1507 1508 return ctr & BIT(CTR_DIC_SHIFT); 1509 } 1510 1511 static bool __maybe_unused 1512 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope) 1513 { 1514 /* 1515 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP 1516 * may share TLB entries with a CPU stuck in the crashed 1517 * kernel. 1518 */ 1519 if (is_kdump_kernel()) 1520 return false; 1521 1522 if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP)) 1523 return false; 1524 1525 return has_cpuid_feature(entry, scope); 1526 } 1527 1528 /* 1529 * This check is triggered during the early boot before the cpufeature 1530 * is initialised. Checking the status on the local CPU allows the boot 1531 * CPU to detect the need for non-global mappings and thus avoiding a 1532 * pagetable re-write after all the CPUs are booted. This check will be 1533 * anyway run on individual CPUs, allowing us to get the consistent 1534 * state once the SMP CPUs are up and thus make the switch to non-global 1535 * mappings if required. 1536 */ 1537 bool kaslr_requires_kpti(void) 1538 { 1539 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE)) 1540 return false; 1541 1542 /* 1543 * E0PD does a similar job to KPTI so can be used instead 1544 * where available. 1545 */ 1546 if (IS_ENABLED(CONFIG_ARM64_E0PD)) { 1547 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1); 1548 if (cpuid_feature_extract_unsigned_field(mmfr2, 1549 ID_AA64MMFR2_E0PD_SHIFT)) 1550 return false; 1551 } 1552 1553 /* 1554 * Systems affected by Cavium erratum 24756 are incompatible 1555 * with KPTI. 1556 */ 1557 if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) { 1558 extern const struct midr_range cavium_erratum_27456_cpus[]; 1559 1560 if (is_midr_in_range_list(read_cpuid_id(), 1561 cavium_erratum_27456_cpus)) 1562 return false; 1563 } 1564 1565 return kaslr_offset() > 0; 1566 } 1567 1568 static bool __meltdown_safe = true; 1569 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */ 1570 1571 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry, 1572 int scope) 1573 { 1574 /* List of CPUs that are not vulnerable and don't need KPTI */ 1575 static const struct midr_range kpti_safe_list[] = { 1576 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2), 1577 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN), 1578 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53), 1579 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35), 1580 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53), 1581 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55), 1582 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57), 1583 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72), 1584 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73), 1585 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110), 1586 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL), 1587 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD), 1588 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER), 1589 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER), 1590 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER), 1591 { /* sentinel */ } 1592 }; 1593 char const *str = "kpti command line option"; 1594 bool meltdown_safe; 1595 1596 meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list); 1597 1598 /* Defer to CPU feature registers */ 1599 if (has_cpuid_feature(entry, scope)) 1600 meltdown_safe = true; 1601 1602 if (!meltdown_safe) 1603 __meltdown_safe = false; 1604 1605 /* 1606 * For reasons that aren't entirely clear, enabling KPTI on Cavium 1607 * ThunderX leads to apparent I-cache corruption of kernel text, which 1608 * ends as well as you might imagine. Don't even try. We cannot rely 1609 * on the cpus_have_*cap() helpers here to detect the CPU erratum 1610 * because cpucap detection order may change. However, since we know 1611 * affected CPUs are always in a homogeneous configuration, it is 1612 * safe to rely on this_cpu_has_cap() here. 1613 */ 1614 if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) { 1615 str = "ARM64_WORKAROUND_CAVIUM_27456"; 1616 __kpti_forced = -1; 1617 } 1618 1619 /* Useful for KASLR robustness */ 1620 if (kaslr_requires_kpti()) { 1621 if (!__kpti_forced) { 1622 str = "KASLR"; 1623 __kpti_forced = 1; 1624 } 1625 } 1626 1627 if (cpu_mitigations_off() && !__kpti_forced) { 1628 str = "mitigations=off"; 1629 __kpti_forced = -1; 1630 } 1631 1632 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) { 1633 pr_info_once("kernel page table isolation disabled by kernel configuration\n"); 1634 return false; 1635 } 1636 1637 /* Forced? */ 1638 if (__kpti_forced) { 1639 pr_info_once("kernel page table isolation forced %s by %s\n", 1640 __kpti_forced > 0 ? "ON" : "OFF", str); 1641 return __kpti_forced > 0; 1642 } 1643 1644 return !meltdown_safe; 1645 } 1646 1647 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0 1648 static void __nocfi 1649 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused) 1650 { 1651 typedef void (kpti_remap_fn)(int, int, phys_addr_t); 1652 extern kpti_remap_fn idmap_kpti_install_ng_mappings; 1653 kpti_remap_fn *remap_fn; 1654 1655 int cpu = smp_processor_id(); 1656 1657 if (__this_cpu_read(this_cpu_vector) == vectors) { 1658 const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI); 1659 1660 __this_cpu_write(this_cpu_vector, v); 1661 } 1662 1663 /* 1664 * We don't need to rewrite the page-tables if either we've done 1665 * it already or we have KASLR enabled and therefore have not 1666 * created any global mappings at all. 1667 */ 1668 if (arm64_use_ng_mappings) 1669 return; 1670 1671 remap_fn = (void *)__pa_symbol(function_nocfi(idmap_kpti_install_ng_mappings)); 1672 1673 cpu_install_idmap(); 1674 remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir)); 1675 cpu_uninstall_idmap(); 1676 1677 if (!cpu) 1678 arm64_use_ng_mappings = true; 1679 } 1680 #else 1681 static void 1682 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused) 1683 { 1684 } 1685 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */ 1686 1687 static int __init parse_kpti(char *str) 1688 { 1689 bool enabled; 1690 int ret = strtobool(str, &enabled); 1691 1692 if (ret) 1693 return ret; 1694 1695 __kpti_forced = enabled ? 1 : -1; 1696 return 0; 1697 } 1698 early_param("kpti", parse_kpti); 1699 1700 #ifdef CONFIG_ARM64_HW_AFDBM 1701 static inline void __cpu_enable_hw_dbm(void) 1702 { 1703 u64 tcr = read_sysreg(tcr_el1) | TCR_HD; 1704 1705 write_sysreg(tcr, tcr_el1); 1706 isb(); 1707 local_flush_tlb_all(); 1708 } 1709 1710 static bool cpu_has_broken_dbm(void) 1711 { 1712 /* List of CPUs which have broken DBM support. */ 1713 static const struct midr_range cpus[] = { 1714 #ifdef CONFIG_ARM64_ERRATUM_1024718 1715 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55), 1716 /* Kryo4xx Silver (rdpe => r1p0) */ 1717 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe), 1718 #endif 1719 #ifdef CONFIG_ARM64_ERRATUM_2051678 1720 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2), 1721 #endif 1722 {}, 1723 }; 1724 1725 return is_midr_in_range_list(read_cpuid_id(), cpus); 1726 } 1727 1728 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap) 1729 { 1730 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) && 1731 !cpu_has_broken_dbm(); 1732 } 1733 1734 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap) 1735 { 1736 if (cpu_can_use_dbm(cap)) 1737 __cpu_enable_hw_dbm(); 1738 } 1739 1740 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap, 1741 int __unused) 1742 { 1743 static bool detected = false; 1744 /* 1745 * DBM is a non-conflicting feature. i.e, the kernel can safely 1746 * run a mix of CPUs with and without the feature. So, we 1747 * unconditionally enable the capability to allow any late CPU 1748 * to use the feature. We only enable the control bits on the 1749 * CPU, if it actually supports. 1750 * 1751 * We have to make sure we print the "feature" detection only 1752 * when at least one CPU actually uses it. So check if this CPU 1753 * can actually use it and print the message exactly once. 1754 * 1755 * This is safe as all CPUs (including secondary CPUs - due to the 1756 * LOCAL_CPU scope - and the hotplugged CPUs - via verification) 1757 * goes through the "matches" check exactly once. Also if a CPU 1758 * matches the criteria, it is guaranteed that the CPU will turn 1759 * the DBM on, as the capability is unconditionally enabled. 1760 */ 1761 if (!detected && cpu_can_use_dbm(cap)) { 1762 detected = true; 1763 pr_info("detected: Hardware dirty bit management\n"); 1764 } 1765 1766 return true; 1767 } 1768 1769 #endif 1770 1771 #ifdef CONFIG_ARM64_AMU_EXTN 1772 1773 /* 1774 * The "amu_cpus" cpumask only signals that the CPU implementation for the 1775 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide 1776 * information regarding all the events that it supports. When a CPU bit is 1777 * set in the cpumask, the user of this feature can only rely on the presence 1778 * of the 4 fixed counters for that CPU. But this does not guarantee that the 1779 * counters are enabled or access to these counters is enabled by code 1780 * executed at higher exception levels (firmware). 1781 */ 1782 static struct cpumask amu_cpus __read_mostly; 1783 1784 bool cpu_has_amu_feat(int cpu) 1785 { 1786 return cpumask_test_cpu(cpu, &amu_cpus); 1787 } 1788 1789 int get_cpu_with_amu_feat(void) 1790 { 1791 return cpumask_any(&amu_cpus); 1792 } 1793 1794 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap) 1795 { 1796 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) { 1797 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n", 1798 smp_processor_id()); 1799 cpumask_set_cpu(smp_processor_id(), &amu_cpus); 1800 update_freq_counters_refs(); 1801 } 1802 } 1803 1804 static bool has_amu(const struct arm64_cpu_capabilities *cap, 1805 int __unused) 1806 { 1807 /* 1808 * The AMU extension is a non-conflicting feature: the kernel can 1809 * safely run a mix of CPUs with and without support for the 1810 * activity monitors extension. Therefore, unconditionally enable 1811 * the capability to allow any late CPU to use the feature. 1812 * 1813 * With this feature unconditionally enabled, the cpu_enable 1814 * function will be called for all CPUs that match the criteria, 1815 * including secondary and hotplugged, marking this feature as 1816 * present on that respective CPU. The enable function will also 1817 * print a detection message. 1818 */ 1819 1820 return true; 1821 } 1822 #else 1823 int get_cpu_with_amu_feat(void) 1824 { 1825 return nr_cpu_ids; 1826 } 1827 #endif 1828 1829 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused) 1830 { 1831 return is_kernel_in_hyp_mode(); 1832 } 1833 1834 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused) 1835 { 1836 /* 1837 * Copy register values that aren't redirected by hardware. 1838 * 1839 * Before code patching, we only set tpidr_el1, all CPUs need to copy 1840 * this value to tpidr_el2 before we patch the code. Once we've done 1841 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to 1842 * do anything here. 1843 */ 1844 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN)) 1845 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2); 1846 } 1847 1848 #ifdef CONFIG_ARM64_PAN 1849 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused) 1850 { 1851 /* 1852 * We modify PSTATE. This won't work from irq context as the PSTATE 1853 * is discarded once we return from the exception. 1854 */ 1855 WARN_ON_ONCE(in_interrupt()); 1856 1857 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0); 1858 set_pstate_pan(1); 1859 } 1860 #endif /* CONFIG_ARM64_PAN */ 1861 1862 #ifdef CONFIG_ARM64_RAS_EXTN 1863 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused) 1864 { 1865 /* Firmware may have left a deferred SError in this register. */ 1866 write_sysreg_s(0, SYS_DISR_EL1); 1867 } 1868 #endif /* CONFIG_ARM64_RAS_EXTN */ 1869 1870 #ifdef CONFIG_ARM64_PTR_AUTH 1871 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope) 1872 { 1873 int boot_val, sec_val; 1874 1875 /* We don't expect to be called with SCOPE_SYSTEM */ 1876 WARN_ON(scope == SCOPE_SYSTEM); 1877 /* 1878 * The ptr-auth feature levels are not intercompatible with lower 1879 * levels. Hence we must match ptr-auth feature level of the secondary 1880 * CPUs with that of the boot CPU. The level of boot cpu is fetched 1881 * from the sanitised register whereas direct register read is done for 1882 * the secondary CPUs. 1883 * The sanitised feature state is guaranteed to match that of the 1884 * boot CPU as a mismatched secondary CPU is parked before it gets 1885 * a chance to update the state, with the capability. 1886 */ 1887 boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg), 1888 entry->field_pos, entry->sign); 1889 if (scope & SCOPE_BOOT_CPU) 1890 return boot_val >= entry->min_field_value; 1891 /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */ 1892 sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg), 1893 entry->field_pos, entry->sign); 1894 return (sec_val >= entry->min_field_value) && (sec_val == boot_val); 1895 } 1896 1897 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry, 1898 int scope) 1899 { 1900 bool api = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope); 1901 bool apa = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope); 1902 bool apa3 = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope); 1903 1904 return apa || apa3 || api; 1905 } 1906 1907 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry, 1908 int __unused) 1909 { 1910 bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF); 1911 bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5); 1912 bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3); 1913 1914 return gpa || gpa3 || gpi; 1915 } 1916 #endif /* CONFIG_ARM64_PTR_AUTH */ 1917 1918 #ifdef CONFIG_ARM64_E0PD 1919 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap) 1920 { 1921 if (this_cpu_has_cap(ARM64_HAS_E0PD)) 1922 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1); 1923 } 1924 #endif /* CONFIG_ARM64_E0PD */ 1925 1926 #ifdef CONFIG_ARM64_PSEUDO_NMI 1927 static bool enable_pseudo_nmi; 1928 1929 static int __init early_enable_pseudo_nmi(char *p) 1930 { 1931 return strtobool(p, &enable_pseudo_nmi); 1932 } 1933 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi); 1934 1935 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry, 1936 int scope) 1937 { 1938 return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope); 1939 } 1940 #endif 1941 1942 #ifdef CONFIG_ARM64_BTI 1943 static void bti_enable(const struct arm64_cpu_capabilities *__unused) 1944 { 1945 /* 1946 * Use of X16/X17 for tail-calls and trampolines that jump to 1947 * function entry points using BR is a requirement for 1948 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI. 1949 * So, be strict and forbid other BRs using other registers to 1950 * jump onto a PACIxSP instruction: 1951 */ 1952 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1); 1953 isb(); 1954 } 1955 #endif /* CONFIG_ARM64_BTI */ 1956 1957 #ifdef CONFIG_ARM64_MTE 1958 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap) 1959 { 1960 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0); 1961 isb(); 1962 1963 /* 1964 * Clear the tags in the zero page. This needs to be done via the 1965 * linear map which has the Tagged attribute. 1966 */ 1967 if (!test_and_set_bit(PG_mte_tagged, &ZERO_PAGE(0)->flags)) 1968 mte_clear_page_tags(lm_alias(empty_zero_page)); 1969 1970 kasan_init_hw_tags_cpu(); 1971 } 1972 #endif /* CONFIG_ARM64_MTE */ 1973 1974 #ifdef CONFIG_KVM 1975 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused) 1976 { 1977 if (kvm_get_mode() != KVM_MODE_PROTECTED) 1978 return false; 1979 1980 if (is_kernel_in_hyp_mode()) { 1981 pr_warn("Protected KVM not available with VHE\n"); 1982 return false; 1983 } 1984 1985 return true; 1986 } 1987 #endif /* CONFIG_KVM */ 1988 1989 /* Internal helper functions to match cpu capability type */ 1990 static bool 1991 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap) 1992 { 1993 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU); 1994 } 1995 1996 static bool 1997 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap) 1998 { 1999 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU); 2000 } 2001 2002 static bool 2003 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap) 2004 { 2005 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT); 2006 } 2007 2008 static const struct arm64_cpu_capabilities arm64_features[] = { 2009 { 2010 .desc = "GIC system register CPU interface", 2011 .capability = ARM64_HAS_SYSREG_GIC_CPUIF, 2012 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 2013 .matches = has_useable_gicv3_cpuif, 2014 .sys_reg = SYS_ID_AA64PFR0_EL1, 2015 .field_pos = ID_AA64PFR0_GIC_SHIFT, 2016 .field_width = 4, 2017 .sign = FTR_UNSIGNED, 2018 .min_field_value = 1, 2019 }, 2020 { 2021 .desc = "Enhanced Counter Virtualization", 2022 .capability = ARM64_HAS_ECV, 2023 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2024 .matches = has_cpuid_feature, 2025 .sys_reg = SYS_ID_AA64MMFR0_EL1, 2026 .field_pos = ID_AA64MMFR0_ECV_SHIFT, 2027 .field_width = 4, 2028 .sign = FTR_UNSIGNED, 2029 .min_field_value = 1, 2030 }, 2031 #ifdef CONFIG_ARM64_PAN 2032 { 2033 .desc = "Privileged Access Never", 2034 .capability = ARM64_HAS_PAN, 2035 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2036 .matches = has_cpuid_feature, 2037 .sys_reg = SYS_ID_AA64MMFR1_EL1, 2038 .field_pos = ID_AA64MMFR1_PAN_SHIFT, 2039 .field_width = 4, 2040 .sign = FTR_UNSIGNED, 2041 .min_field_value = 1, 2042 .cpu_enable = cpu_enable_pan, 2043 }, 2044 #endif /* CONFIG_ARM64_PAN */ 2045 #ifdef CONFIG_ARM64_EPAN 2046 { 2047 .desc = "Enhanced Privileged Access Never", 2048 .capability = ARM64_HAS_EPAN, 2049 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2050 .matches = has_cpuid_feature, 2051 .sys_reg = SYS_ID_AA64MMFR1_EL1, 2052 .field_pos = ID_AA64MMFR1_PAN_SHIFT, 2053 .field_width = 4, 2054 .sign = FTR_UNSIGNED, 2055 .min_field_value = 3, 2056 }, 2057 #endif /* CONFIG_ARM64_EPAN */ 2058 #ifdef CONFIG_ARM64_LSE_ATOMICS 2059 { 2060 .desc = "LSE atomic instructions", 2061 .capability = ARM64_HAS_LSE_ATOMICS, 2062 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2063 .matches = has_cpuid_feature, 2064 .sys_reg = SYS_ID_AA64ISAR0_EL1, 2065 .field_pos = ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 2066 .field_width = 4, 2067 .sign = FTR_UNSIGNED, 2068 .min_field_value = 2, 2069 }, 2070 #endif /* CONFIG_ARM64_LSE_ATOMICS */ 2071 { 2072 .desc = "Software prefetching using PRFM", 2073 .capability = ARM64_HAS_NO_HW_PREFETCH, 2074 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, 2075 .matches = has_no_hw_prefetch, 2076 }, 2077 { 2078 .desc = "Virtualization Host Extensions", 2079 .capability = ARM64_HAS_VIRT_HOST_EXTN, 2080 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 2081 .matches = runs_at_el2, 2082 .cpu_enable = cpu_copy_el2regs, 2083 }, 2084 { 2085 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE, 2086 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2087 .matches = has_32bit_el0, 2088 .sys_reg = SYS_ID_AA64PFR0_EL1, 2089 .sign = FTR_UNSIGNED, 2090 .field_pos = ID_AA64PFR0_EL0_SHIFT, 2091 .field_width = 4, 2092 .min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT, 2093 }, 2094 #ifdef CONFIG_KVM 2095 { 2096 .desc = "32-bit EL1 Support", 2097 .capability = ARM64_HAS_32BIT_EL1, 2098 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2099 .matches = has_cpuid_feature, 2100 .sys_reg = SYS_ID_AA64PFR0_EL1, 2101 .sign = FTR_UNSIGNED, 2102 .field_pos = ID_AA64PFR0_EL1_SHIFT, 2103 .field_width = 4, 2104 .min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT, 2105 }, 2106 { 2107 .desc = "Protected KVM", 2108 .capability = ARM64_KVM_PROTECTED_MODE, 2109 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2110 .matches = is_kvm_protected_mode, 2111 }, 2112 #endif 2113 { 2114 .desc = "Kernel page table isolation (KPTI)", 2115 .capability = ARM64_UNMAP_KERNEL_AT_EL0, 2116 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE, 2117 /* 2118 * The ID feature fields below are used to indicate that 2119 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for 2120 * more details. 2121 */ 2122 .sys_reg = SYS_ID_AA64PFR0_EL1, 2123 .field_pos = ID_AA64PFR0_CSV3_SHIFT, 2124 .field_width = 4, 2125 .min_field_value = 1, 2126 .matches = unmap_kernel_at_el0, 2127 .cpu_enable = kpti_install_ng_mappings, 2128 }, 2129 { 2130 /* FP/SIMD is not implemented */ 2131 .capability = ARM64_HAS_NO_FPSIMD, 2132 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE, 2133 .min_field_value = 0, 2134 .matches = has_no_fpsimd, 2135 }, 2136 #ifdef CONFIG_ARM64_PMEM 2137 { 2138 .desc = "Data cache clean to Point of Persistence", 2139 .capability = ARM64_HAS_DCPOP, 2140 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2141 .matches = has_cpuid_feature, 2142 .sys_reg = SYS_ID_AA64ISAR1_EL1, 2143 .field_pos = ID_AA64ISAR1_DPB_SHIFT, 2144 .field_width = 4, 2145 .min_field_value = 1, 2146 }, 2147 { 2148 .desc = "Data cache clean to Point of Deep Persistence", 2149 .capability = ARM64_HAS_DCPODP, 2150 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2151 .matches = has_cpuid_feature, 2152 .sys_reg = SYS_ID_AA64ISAR1_EL1, 2153 .sign = FTR_UNSIGNED, 2154 .field_pos = ID_AA64ISAR1_DPB_SHIFT, 2155 .field_width = 4, 2156 .min_field_value = 2, 2157 }, 2158 #endif 2159 #ifdef CONFIG_ARM64_SVE 2160 { 2161 .desc = "Scalable Vector Extension", 2162 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2163 .capability = ARM64_SVE, 2164 .sys_reg = SYS_ID_AA64PFR0_EL1, 2165 .sign = FTR_UNSIGNED, 2166 .field_pos = ID_AA64PFR0_SVE_SHIFT, 2167 .field_width = 4, 2168 .min_field_value = ID_AA64PFR0_SVE, 2169 .matches = has_cpuid_feature, 2170 .cpu_enable = sve_kernel_enable, 2171 }, 2172 #endif /* CONFIG_ARM64_SVE */ 2173 #ifdef CONFIG_ARM64_RAS_EXTN 2174 { 2175 .desc = "RAS Extension Support", 2176 .capability = ARM64_HAS_RAS_EXTN, 2177 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2178 .matches = has_cpuid_feature, 2179 .sys_reg = SYS_ID_AA64PFR0_EL1, 2180 .sign = FTR_UNSIGNED, 2181 .field_pos = ID_AA64PFR0_RAS_SHIFT, 2182 .field_width = 4, 2183 .min_field_value = ID_AA64PFR0_RAS_V1, 2184 .cpu_enable = cpu_clear_disr, 2185 }, 2186 #endif /* CONFIG_ARM64_RAS_EXTN */ 2187 #ifdef CONFIG_ARM64_AMU_EXTN 2188 { 2189 /* 2190 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y. 2191 * Therefore, don't provide .desc as we don't want the detection 2192 * message to be shown until at least one CPU is detected to 2193 * support the feature. 2194 */ 2195 .capability = ARM64_HAS_AMU_EXTN, 2196 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, 2197 .matches = has_amu, 2198 .sys_reg = SYS_ID_AA64PFR0_EL1, 2199 .sign = FTR_UNSIGNED, 2200 .field_pos = ID_AA64PFR0_AMU_SHIFT, 2201 .field_width = 4, 2202 .min_field_value = ID_AA64PFR0_AMU, 2203 .cpu_enable = cpu_amu_enable, 2204 }, 2205 #endif /* CONFIG_ARM64_AMU_EXTN */ 2206 { 2207 .desc = "Data cache clean to the PoU not required for I/D coherence", 2208 .capability = ARM64_HAS_CACHE_IDC, 2209 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2210 .matches = has_cache_idc, 2211 .cpu_enable = cpu_emulate_effective_ctr, 2212 }, 2213 { 2214 .desc = "Instruction cache invalidation not required for I/D coherence", 2215 .capability = ARM64_HAS_CACHE_DIC, 2216 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2217 .matches = has_cache_dic, 2218 }, 2219 { 2220 .desc = "Stage-2 Force Write-Back", 2221 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2222 .capability = ARM64_HAS_STAGE2_FWB, 2223 .sys_reg = SYS_ID_AA64MMFR2_EL1, 2224 .sign = FTR_UNSIGNED, 2225 .field_pos = ID_AA64MMFR2_FWB_SHIFT, 2226 .field_width = 4, 2227 .min_field_value = 1, 2228 .matches = has_cpuid_feature, 2229 }, 2230 { 2231 .desc = "ARMv8.4 Translation Table Level", 2232 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2233 .capability = ARM64_HAS_ARMv8_4_TTL, 2234 .sys_reg = SYS_ID_AA64MMFR2_EL1, 2235 .sign = FTR_UNSIGNED, 2236 .field_pos = ID_AA64MMFR2_TTL_SHIFT, 2237 .field_width = 4, 2238 .min_field_value = 1, 2239 .matches = has_cpuid_feature, 2240 }, 2241 { 2242 .desc = "TLB range maintenance instructions", 2243 .capability = ARM64_HAS_TLB_RANGE, 2244 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2245 .matches = has_cpuid_feature, 2246 .sys_reg = SYS_ID_AA64ISAR0_EL1, 2247 .field_pos = ID_AA64ISAR0_EL1_TLB_SHIFT, 2248 .field_width = 4, 2249 .sign = FTR_UNSIGNED, 2250 .min_field_value = ID_AA64ISAR0_EL1_TLB_RANGE, 2251 }, 2252 #ifdef CONFIG_ARM64_HW_AFDBM 2253 { 2254 /* 2255 * Since we turn this on always, we don't want the user to 2256 * think that the feature is available when it may not be. 2257 * So hide the description. 2258 * 2259 * .desc = "Hardware pagetable Dirty Bit Management", 2260 * 2261 */ 2262 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, 2263 .capability = ARM64_HW_DBM, 2264 .sys_reg = SYS_ID_AA64MMFR1_EL1, 2265 .sign = FTR_UNSIGNED, 2266 .field_pos = ID_AA64MMFR1_HADBS_SHIFT, 2267 .field_width = 4, 2268 .min_field_value = 2, 2269 .matches = has_hw_dbm, 2270 .cpu_enable = cpu_enable_hw_dbm, 2271 }, 2272 #endif 2273 { 2274 .desc = "CRC32 instructions", 2275 .capability = ARM64_HAS_CRC32, 2276 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2277 .matches = has_cpuid_feature, 2278 .sys_reg = SYS_ID_AA64ISAR0_EL1, 2279 .field_pos = ID_AA64ISAR0_EL1_CRC32_SHIFT, 2280 .field_width = 4, 2281 .min_field_value = 1, 2282 }, 2283 { 2284 .desc = "Speculative Store Bypassing Safe (SSBS)", 2285 .capability = ARM64_SSBS, 2286 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2287 .matches = has_cpuid_feature, 2288 .sys_reg = SYS_ID_AA64PFR1_EL1, 2289 .field_pos = ID_AA64PFR1_SSBS_SHIFT, 2290 .field_width = 4, 2291 .sign = FTR_UNSIGNED, 2292 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY, 2293 }, 2294 #ifdef CONFIG_ARM64_CNP 2295 { 2296 .desc = "Common not Private translations", 2297 .capability = ARM64_HAS_CNP, 2298 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2299 .matches = has_useable_cnp, 2300 .sys_reg = SYS_ID_AA64MMFR2_EL1, 2301 .sign = FTR_UNSIGNED, 2302 .field_pos = ID_AA64MMFR2_CNP_SHIFT, 2303 .field_width = 4, 2304 .min_field_value = 1, 2305 .cpu_enable = cpu_enable_cnp, 2306 }, 2307 #endif 2308 { 2309 .desc = "Speculation barrier (SB)", 2310 .capability = ARM64_HAS_SB, 2311 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2312 .matches = has_cpuid_feature, 2313 .sys_reg = SYS_ID_AA64ISAR1_EL1, 2314 .field_pos = ID_AA64ISAR1_SB_SHIFT, 2315 .field_width = 4, 2316 .sign = FTR_UNSIGNED, 2317 .min_field_value = 1, 2318 }, 2319 #ifdef CONFIG_ARM64_PTR_AUTH 2320 { 2321 .desc = "Address authentication (architected QARMA5 algorithm)", 2322 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5, 2323 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, 2324 .sys_reg = SYS_ID_AA64ISAR1_EL1, 2325 .sign = FTR_UNSIGNED, 2326 .field_pos = ID_AA64ISAR1_APA_SHIFT, 2327 .field_width = 4, 2328 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED, 2329 .matches = has_address_auth_cpucap, 2330 }, 2331 { 2332 .desc = "Address authentication (architected QARMA3 algorithm)", 2333 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3, 2334 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, 2335 .sys_reg = SYS_ID_AA64ISAR2_EL1, 2336 .sign = FTR_UNSIGNED, 2337 .field_pos = ID_AA64ISAR2_APA3_SHIFT, 2338 .field_width = 4, 2339 .min_field_value = ID_AA64ISAR2_APA3_ARCHITECTED, 2340 .matches = has_address_auth_cpucap, 2341 }, 2342 { 2343 .desc = "Address authentication (IMP DEF algorithm)", 2344 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF, 2345 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, 2346 .sys_reg = SYS_ID_AA64ISAR1_EL1, 2347 .sign = FTR_UNSIGNED, 2348 .field_pos = ID_AA64ISAR1_API_SHIFT, 2349 .field_width = 4, 2350 .min_field_value = ID_AA64ISAR1_API_IMP_DEF, 2351 .matches = has_address_auth_cpucap, 2352 }, 2353 { 2354 .capability = ARM64_HAS_ADDRESS_AUTH, 2355 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, 2356 .matches = has_address_auth_metacap, 2357 }, 2358 { 2359 .desc = "Generic authentication (architected QARMA5 algorithm)", 2360 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5, 2361 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2362 .sys_reg = SYS_ID_AA64ISAR1_EL1, 2363 .sign = FTR_UNSIGNED, 2364 .field_pos = ID_AA64ISAR1_GPA_SHIFT, 2365 .field_width = 4, 2366 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED, 2367 .matches = has_cpuid_feature, 2368 }, 2369 { 2370 .desc = "Generic authentication (architected QARMA3 algorithm)", 2371 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3, 2372 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2373 .sys_reg = SYS_ID_AA64ISAR2_EL1, 2374 .sign = FTR_UNSIGNED, 2375 .field_pos = ID_AA64ISAR2_GPA3_SHIFT, 2376 .field_width = 4, 2377 .min_field_value = ID_AA64ISAR2_GPA3_ARCHITECTED, 2378 .matches = has_cpuid_feature, 2379 }, 2380 { 2381 .desc = "Generic authentication (IMP DEF algorithm)", 2382 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF, 2383 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2384 .sys_reg = SYS_ID_AA64ISAR1_EL1, 2385 .sign = FTR_UNSIGNED, 2386 .field_pos = ID_AA64ISAR1_GPI_SHIFT, 2387 .field_width = 4, 2388 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF, 2389 .matches = has_cpuid_feature, 2390 }, 2391 { 2392 .capability = ARM64_HAS_GENERIC_AUTH, 2393 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2394 .matches = has_generic_auth, 2395 }, 2396 #endif /* CONFIG_ARM64_PTR_AUTH */ 2397 #ifdef CONFIG_ARM64_PSEUDO_NMI 2398 { 2399 /* 2400 * Depends on having GICv3 2401 */ 2402 .desc = "IRQ priority masking", 2403 .capability = ARM64_HAS_IRQ_PRIO_MASKING, 2404 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 2405 .matches = can_use_gic_priorities, 2406 .sys_reg = SYS_ID_AA64PFR0_EL1, 2407 .field_pos = ID_AA64PFR0_GIC_SHIFT, 2408 .field_width = 4, 2409 .sign = FTR_UNSIGNED, 2410 .min_field_value = 1, 2411 }, 2412 #endif 2413 #ifdef CONFIG_ARM64_E0PD 2414 { 2415 .desc = "E0PD", 2416 .capability = ARM64_HAS_E0PD, 2417 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2418 .sys_reg = SYS_ID_AA64MMFR2_EL1, 2419 .sign = FTR_UNSIGNED, 2420 .field_width = 4, 2421 .field_pos = ID_AA64MMFR2_E0PD_SHIFT, 2422 .matches = has_cpuid_feature, 2423 .min_field_value = 1, 2424 .cpu_enable = cpu_enable_e0pd, 2425 }, 2426 #endif 2427 #ifdef CONFIG_ARCH_RANDOM 2428 { 2429 .desc = "Random Number Generator", 2430 .capability = ARM64_HAS_RNG, 2431 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2432 .matches = has_cpuid_feature, 2433 .sys_reg = SYS_ID_AA64ISAR0_EL1, 2434 .field_pos = ID_AA64ISAR0_EL1_RNDR_SHIFT, 2435 .field_width = 4, 2436 .sign = FTR_UNSIGNED, 2437 .min_field_value = 1, 2438 }, 2439 #endif 2440 #ifdef CONFIG_ARM64_BTI 2441 { 2442 .desc = "Branch Target Identification", 2443 .capability = ARM64_BTI, 2444 #ifdef CONFIG_ARM64_BTI_KERNEL 2445 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 2446 #else 2447 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2448 #endif 2449 .matches = has_cpuid_feature, 2450 .cpu_enable = bti_enable, 2451 .sys_reg = SYS_ID_AA64PFR1_EL1, 2452 .field_pos = ID_AA64PFR1_BT_SHIFT, 2453 .field_width = 4, 2454 .min_field_value = ID_AA64PFR1_BT_BTI, 2455 .sign = FTR_UNSIGNED, 2456 }, 2457 #endif 2458 #ifdef CONFIG_ARM64_MTE 2459 { 2460 .desc = "Memory Tagging Extension", 2461 .capability = ARM64_MTE, 2462 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 2463 .matches = has_cpuid_feature, 2464 .sys_reg = SYS_ID_AA64PFR1_EL1, 2465 .field_pos = ID_AA64PFR1_MTE_SHIFT, 2466 .field_width = 4, 2467 .min_field_value = ID_AA64PFR1_MTE, 2468 .sign = FTR_UNSIGNED, 2469 .cpu_enable = cpu_enable_mte, 2470 }, 2471 { 2472 .desc = "Asymmetric MTE Tag Check Fault", 2473 .capability = ARM64_MTE_ASYMM, 2474 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, 2475 .matches = has_cpuid_feature, 2476 .sys_reg = SYS_ID_AA64PFR1_EL1, 2477 .field_pos = ID_AA64PFR1_MTE_SHIFT, 2478 .field_width = 4, 2479 .min_field_value = ID_AA64PFR1_MTE_ASYMM, 2480 .sign = FTR_UNSIGNED, 2481 }, 2482 #endif /* CONFIG_ARM64_MTE */ 2483 { 2484 .desc = "RCpc load-acquire (LDAPR)", 2485 .capability = ARM64_HAS_LDAPR, 2486 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2487 .sys_reg = SYS_ID_AA64ISAR1_EL1, 2488 .sign = FTR_UNSIGNED, 2489 .field_pos = ID_AA64ISAR1_LRCPC_SHIFT, 2490 .field_width = 4, 2491 .matches = has_cpuid_feature, 2492 .min_field_value = 1, 2493 }, 2494 #ifdef CONFIG_ARM64_SME 2495 { 2496 .desc = "Scalable Matrix Extension", 2497 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2498 .capability = ARM64_SME, 2499 .sys_reg = SYS_ID_AA64PFR1_EL1, 2500 .sign = FTR_UNSIGNED, 2501 .field_pos = ID_AA64PFR1_SME_SHIFT, 2502 .field_width = 4, 2503 .min_field_value = ID_AA64PFR1_SME, 2504 .matches = has_cpuid_feature, 2505 .cpu_enable = sme_kernel_enable, 2506 }, 2507 /* FA64 should be sorted after the base SME capability */ 2508 { 2509 .desc = "FA64", 2510 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2511 .capability = ARM64_SME_FA64, 2512 .sys_reg = SYS_ID_AA64SMFR0_EL1, 2513 .sign = FTR_UNSIGNED, 2514 .field_pos = ID_AA64SMFR0_FA64_SHIFT, 2515 .field_width = 1, 2516 .min_field_value = ID_AA64SMFR0_FA64, 2517 .matches = has_cpuid_feature, 2518 .cpu_enable = fa64_kernel_enable, 2519 }, 2520 #endif /* CONFIG_ARM64_SME */ 2521 { 2522 .desc = "WFx with timeout", 2523 .capability = ARM64_HAS_WFXT, 2524 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2525 .sys_reg = SYS_ID_AA64ISAR2_EL1, 2526 .sign = FTR_UNSIGNED, 2527 .field_pos = ID_AA64ISAR2_WFXT_SHIFT, 2528 .field_width = 4, 2529 .matches = has_cpuid_feature, 2530 .min_field_value = ID_AA64ISAR2_WFXT_SUPPORTED, 2531 }, 2532 {}, 2533 }; 2534 2535 #define HWCAP_CPUID_MATCH(reg, field, width, s, min_value) \ 2536 .matches = has_cpuid_feature, \ 2537 .sys_reg = reg, \ 2538 .field_pos = field, \ 2539 .field_width = width, \ 2540 .sign = s, \ 2541 .min_field_value = min_value, 2542 2543 #define __HWCAP_CAP(name, cap_type, cap) \ 2544 .desc = name, \ 2545 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \ 2546 .hwcap_type = cap_type, \ 2547 .hwcap = cap, \ 2548 2549 #define HWCAP_CAP(reg, field, width, s, min_value, cap_type, cap) \ 2550 { \ 2551 __HWCAP_CAP(#cap, cap_type, cap) \ 2552 HWCAP_CPUID_MATCH(reg, field, width, s, min_value) \ 2553 } 2554 2555 #define HWCAP_MULTI_CAP(list, cap_type, cap) \ 2556 { \ 2557 __HWCAP_CAP(#cap, cap_type, cap) \ 2558 .matches = cpucap_multi_entry_cap_matches, \ 2559 .match_list = list, \ 2560 } 2561 2562 #define HWCAP_CAP_MATCH(match, cap_type, cap) \ 2563 { \ 2564 __HWCAP_CAP(#cap, cap_type, cap) \ 2565 .matches = match, \ 2566 } 2567 2568 #ifdef CONFIG_ARM64_PTR_AUTH 2569 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = { 2570 { 2571 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT, 2572 4, FTR_UNSIGNED, 2573 ID_AA64ISAR1_APA_ARCHITECTED) 2574 }, 2575 { 2576 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_APA3_SHIFT, 2577 4, FTR_UNSIGNED, ID_AA64ISAR2_APA3_ARCHITECTED) 2578 }, 2579 { 2580 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT, 2581 4, FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF) 2582 }, 2583 {}, 2584 }; 2585 2586 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = { 2587 { 2588 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT, 2589 4, FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED) 2590 }, 2591 { 2592 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_GPA3_SHIFT, 2593 4, FTR_UNSIGNED, ID_AA64ISAR2_GPA3_ARCHITECTED) 2594 }, 2595 { 2596 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT, 2597 4, FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF) 2598 }, 2599 {}, 2600 }; 2601 #endif 2602 2603 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = { 2604 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL), 2605 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES), 2606 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1), 2607 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2), 2608 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512), 2609 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32), 2610 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS), 2611 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM), 2612 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3), 2613 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3), 2614 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4), 2615 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_DP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP), 2616 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM), 2617 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM), 2618 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2), 2619 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG), 2620 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP), 2621 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP), 2622 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD), 2623 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP), 2624 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT), 2625 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP), 2626 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP), 2627 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT), 2628 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA), 2629 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC), 2630 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC), 2631 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT), 2632 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB), 2633 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16), 2634 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH), 2635 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM), 2636 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT), 2637 #ifdef CONFIG_ARM64_SVE 2638 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE), 2639 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2), 2640 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES), 2641 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL), 2642 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM), 2643 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16), 2644 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3), 2645 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4), 2646 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM), 2647 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM), 2648 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM), 2649 #endif 2650 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS), 2651 #ifdef CONFIG_ARM64_BTI 2652 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI), 2653 #endif 2654 #ifdef CONFIG_ARM64_PTR_AUTH 2655 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA), 2656 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG), 2657 #endif 2658 #ifdef CONFIG_ARM64_MTE 2659 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE), 2660 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_MTE_ASYMM, CAP_HWCAP, KERNEL_HWCAP_MTE3), 2661 #endif /* CONFIG_ARM64_MTE */ 2662 HWCAP_CAP(SYS_ID_AA64MMFR0_EL1, ID_AA64MMFR0_ECV_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ECV), 2663 HWCAP_CAP(SYS_ID_AA64MMFR1_EL1, ID_AA64MMFR1_AFP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AFP), 2664 HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_RPRES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RPRES), 2665 HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_WFXT_SHIFT, 4, FTR_UNSIGNED, ID_AA64ISAR2_WFXT_SUPPORTED, CAP_HWCAP, KERNEL_HWCAP_WFXT), 2666 #ifdef CONFIG_ARM64_SME 2667 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SME_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_SME, CAP_HWCAP, KERNEL_HWCAP_SME), 2668 HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_FA64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_FA64, CAP_HWCAP, KERNEL_HWCAP_SME_FA64), 2669 HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_I16I64_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_I16I64, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64), 2670 HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_F64F64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_F64F64, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64), 2671 HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_I8I32_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_I8I32, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32), 2672 HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_F16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_F16F32, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32), 2673 HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_B16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_B16F32, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32), 2674 HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_F32F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_F32F32, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32), 2675 #endif /* CONFIG_ARM64_SME */ 2676 {}, 2677 }; 2678 2679 #ifdef CONFIG_COMPAT 2680 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope) 2681 { 2682 /* 2683 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available, 2684 * in line with that of arm32 as in vfp_init(). We make sure that the 2685 * check is future proof, by making sure value is non-zero. 2686 */ 2687 u32 mvfr1; 2688 2689 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible()); 2690 if (scope == SCOPE_SYSTEM) 2691 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1); 2692 else 2693 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1); 2694 2695 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) && 2696 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) && 2697 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT); 2698 } 2699 #endif 2700 2701 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = { 2702 #ifdef CONFIG_COMPAT 2703 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON), 2704 HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4), 2705 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */ 2706 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP), 2707 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3), 2708 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL), 2709 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES), 2710 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1), 2711 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2), 2712 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32), 2713 #endif 2714 {}, 2715 }; 2716 2717 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap) 2718 { 2719 switch (cap->hwcap_type) { 2720 case CAP_HWCAP: 2721 cpu_set_feature(cap->hwcap); 2722 break; 2723 #ifdef CONFIG_COMPAT 2724 case CAP_COMPAT_HWCAP: 2725 compat_elf_hwcap |= (u32)cap->hwcap; 2726 break; 2727 case CAP_COMPAT_HWCAP2: 2728 compat_elf_hwcap2 |= (u32)cap->hwcap; 2729 break; 2730 #endif 2731 default: 2732 WARN_ON(1); 2733 break; 2734 } 2735 } 2736 2737 /* Check if we have a particular HWCAP enabled */ 2738 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap) 2739 { 2740 bool rc; 2741 2742 switch (cap->hwcap_type) { 2743 case CAP_HWCAP: 2744 rc = cpu_have_feature(cap->hwcap); 2745 break; 2746 #ifdef CONFIG_COMPAT 2747 case CAP_COMPAT_HWCAP: 2748 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0; 2749 break; 2750 case CAP_COMPAT_HWCAP2: 2751 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0; 2752 break; 2753 #endif 2754 default: 2755 WARN_ON(1); 2756 rc = false; 2757 } 2758 2759 return rc; 2760 } 2761 2762 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps) 2763 { 2764 /* We support emulation of accesses to CPU ID feature registers */ 2765 cpu_set_named_feature(CPUID); 2766 for (; hwcaps->matches; hwcaps++) 2767 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps))) 2768 cap_set_elf_hwcap(hwcaps); 2769 } 2770 2771 static void update_cpu_capabilities(u16 scope_mask) 2772 { 2773 int i; 2774 const struct arm64_cpu_capabilities *caps; 2775 2776 scope_mask &= ARM64_CPUCAP_SCOPE_MASK; 2777 for (i = 0; i < ARM64_NCAPS; i++) { 2778 caps = cpu_hwcaps_ptrs[i]; 2779 if (!caps || !(caps->type & scope_mask) || 2780 cpus_have_cap(caps->capability) || 2781 !caps->matches(caps, cpucap_default_scope(caps))) 2782 continue; 2783 2784 if (caps->desc) 2785 pr_info("detected: %s\n", caps->desc); 2786 cpus_set_cap(caps->capability); 2787 2788 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU)) 2789 set_bit(caps->capability, boot_capabilities); 2790 } 2791 } 2792 2793 /* 2794 * Enable all the available capabilities on this CPU. The capabilities 2795 * with BOOT_CPU scope are handled separately and hence skipped here. 2796 */ 2797 static int cpu_enable_non_boot_scope_capabilities(void *__unused) 2798 { 2799 int i; 2800 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU; 2801 2802 for_each_available_cap(i) { 2803 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i]; 2804 2805 if (WARN_ON(!cap)) 2806 continue; 2807 2808 if (!(cap->type & non_boot_scope)) 2809 continue; 2810 2811 if (cap->cpu_enable) 2812 cap->cpu_enable(cap); 2813 } 2814 return 0; 2815 } 2816 2817 /* 2818 * Run through the enabled capabilities and enable() it on all active 2819 * CPUs 2820 */ 2821 static void __init enable_cpu_capabilities(u16 scope_mask) 2822 { 2823 int i; 2824 const struct arm64_cpu_capabilities *caps; 2825 bool boot_scope; 2826 2827 scope_mask &= ARM64_CPUCAP_SCOPE_MASK; 2828 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU); 2829 2830 for (i = 0; i < ARM64_NCAPS; i++) { 2831 unsigned int num; 2832 2833 caps = cpu_hwcaps_ptrs[i]; 2834 if (!caps || !(caps->type & scope_mask)) 2835 continue; 2836 num = caps->capability; 2837 if (!cpus_have_cap(num)) 2838 continue; 2839 2840 /* Ensure cpus_have_const_cap(num) works */ 2841 static_branch_enable(&cpu_hwcap_keys[num]); 2842 2843 if (boot_scope && caps->cpu_enable) 2844 /* 2845 * Capabilities with SCOPE_BOOT_CPU scope are finalised 2846 * before any secondary CPU boots. Thus, each secondary 2847 * will enable the capability as appropriate via 2848 * check_local_cpu_capabilities(). The only exception is 2849 * the boot CPU, for which the capability must be 2850 * enabled here. This approach avoids costly 2851 * stop_machine() calls for this case. 2852 */ 2853 caps->cpu_enable(caps); 2854 } 2855 2856 /* 2857 * For all non-boot scope capabilities, use stop_machine() 2858 * as it schedules the work allowing us to modify PSTATE, 2859 * instead of on_each_cpu() which uses an IPI, giving us a 2860 * PSTATE that disappears when we return. 2861 */ 2862 if (!boot_scope) 2863 stop_machine(cpu_enable_non_boot_scope_capabilities, 2864 NULL, cpu_online_mask); 2865 } 2866 2867 /* 2868 * Run through the list of capabilities to check for conflicts. 2869 * If the system has already detected a capability, take necessary 2870 * action on this CPU. 2871 */ 2872 static void verify_local_cpu_caps(u16 scope_mask) 2873 { 2874 int i; 2875 bool cpu_has_cap, system_has_cap; 2876 const struct arm64_cpu_capabilities *caps; 2877 2878 scope_mask &= ARM64_CPUCAP_SCOPE_MASK; 2879 2880 for (i = 0; i < ARM64_NCAPS; i++) { 2881 caps = cpu_hwcaps_ptrs[i]; 2882 if (!caps || !(caps->type & scope_mask)) 2883 continue; 2884 2885 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU); 2886 system_has_cap = cpus_have_cap(caps->capability); 2887 2888 if (system_has_cap) { 2889 /* 2890 * Check if the new CPU misses an advertised feature, 2891 * which is not safe to miss. 2892 */ 2893 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps)) 2894 break; 2895 /* 2896 * We have to issue cpu_enable() irrespective of 2897 * whether the CPU has it or not, as it is enabeld 2898 * system wide. It is upto the call back to take 2899 * appropriate action on this CPU. 2900 */ 2901 if (caps->cpu_enable) 2902 caps->cpu_enable(caps); 2903 } else { 2904 /* 2905 * Check if the CPU has this capability if it isn't 2906 * safe to have when the system doesn't. 2907 */ 2908 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps)) 2909 break; 2910 } 2911 } 2912 2913 if (i < ARM64_NCAPS) { 2914 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n", 2915 smp_processor_id(), caps->capability, 2916 caps->desc, system_has_cap, cpu_has_cap); 2917 2918 if (cpucap_panic_on_conflict(caps)) 2919 cpu_panic_kernel(); 2920 else 2921 cpu_die_early(); 2922 } 2923 } 2924 2925 /* 2926 * Check for CPU features that are used in early boot 2927 * based on the Boot CPU value. 2928 */ 2929 static void check_early_cpu_features(void) 2930 { 2931 verify_cpu_asid_bits(); 2932 2933 verify_local_cpu_caps(SCOPE_BOOT_CPU); 2934 } 2935 2936 static void 2937 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps) 2938 { 2939 2940 for (; caps->matches; caps++) 2941 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) { 2942 pr_crit("CPU%d: missing HWCAP: %s\n", 2943 smp_processor_id(), caps->desc); 2944 cpu_die_early(); 2945 } 2946 } 2947 2948 static void verify_local_elf_hwcaps(void) 2949 { 2950 __verify_local_elf_hwcaps(arm64_elf_hwcaps); 2951 2952 if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1))) 2953 __verify_local_elf_hwcaps(compat_elf_hwcaps); 2954 } 2955 2956 static void verify_sve_features(void) 2957 { 2958 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); 2959 u64 zcr = read_zcr_features(); 2960 2961 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK; 2962 unsigned int len = zcr & ZCR_ELx_LEN_MASK; 2963 2964 if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) { 2965 pr_crit("CPU%d: SVE: vector length support mismatch\n", 2966 smp_processor_id()); 2967 cpu_die_early(); 2968 } 2969 2970 /* Add checks on other ZCR bits here if necessary */ 2971 } 2972 2973 static void verify_sme_features(void) 2974 { 2975 u64 safe_smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1); 2976 u64 smcr = read_smcr_features(); 2977 2978 unsigned int safe_len = safe_smcr & SMCR_ELx_LEN_MASK; 2979 unsigned int len = smcr & SMCR_ELx_LEN_MASK; 2980 2981 if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SME)) { 2982 pr_crit("CPU%d: SME: vector length support mismatch\n", 2983 smp_processor_id()); 2984 cpu_die_early(); 2985 } 2986 2987 /* Add checks on other SMCR bits here if necessary */ 2988 } 2989 2990 static void verify_hyp_capabilities(void) 2991 { 2992 u64 safe_mmfr1, mmfr0, mmfr1; 2993 int parange, ipa_max; 2994 unsigned int safe_vmid_bits, vmid_bits; 2995 2996 if (!IS_ENABLED(CONFIG_KVM)) 2997 return; 2998 2999 safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 3000 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1); 3001 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1); 3002 3003 /* Verify VMID bits */ 3004 safe_vmid_bits = get_vmid_bits(safe_mmfr1); 3005 vmid_bits = get_vmid_bits(mmfr1); 3006 if (vmid_bits < safe_vmid_bits) { 3007 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id()); 3008 cpu_die_early(); 3009 } 3010 3011 /* Verify IPA range */ 3012 parange = cpuid_feature_extract_unsigned_field(mmfr0, 3013 ID_AA64MMFR0_PARANGE_SHIFT); 3014 ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange); 3015 if (ipa_max < get_kvm_ipa_limit()) { 3016 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id()); 3017 cpu_die_early(); 3018 } 3019 } 3020 3021 /* 3022 * Run through the enabled system capabilities and enable() it on this CPU. 3023 * The capabilities were decided based on the available CPUs at the boot time. 3024 * Any new CPU should match the system wide status of the capability. If the 3025 * new CPU doesn't have a capability which the system now has enabled, we 3026 * cannot do anything to fix it up and could cause unexpected failures. So 3027 * we park the CPU. 3028 */ 3029 static void verify_local_cpu_capabilities(void) 3030 { 3031 /* 3032 * The capabilities with SCOPE_BOOT_CPU are checked from 3033 * check_early_cpu_features(), as they need to be verified 3034 * on all secondary CPUs. 3035 */ 3036 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU); 3037 verify_local_elf_hwcaps(); 3038 3039 if (system_supports_sve()) 3040 verify_sve_features(); 3041 3042 if (system_supports_sme()) 3043 verify_sme_features(); 3044 3045 if (is_hyp_mode_available()) 3046 verify_hyp_capabilities(); 3047 } 3048 3049 void check_local_cpu_capabilities(void) 3050 { 3051 /* 3052 * All secondary CPUs should conform to the early CPU features 3053 * in use by the kernel based on boot CPU. 3054 */ 3055 check_early_cpu_features(); 3056 3057 /* 3058 * If we haven't finalised the system capabilities, this CPU gets 3059 * a chance to update the errata work arounds and local features. 3060 * Otherwise, this CPU should verify that it has all the system 3061 * advertised capabilities. 3062 */ 3063 if (!system_capabilities_finalized()) 3064 update_cpu_capabilities(SCOPE_LOCAL_CPU); 3065 else 3066 verify_local_cpu_capabilities(); 3067 } 3068 3069 static void __init setup_boot_cpu_capabilities(void) 3070 { 3071 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */ 3072 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU); 3073 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */ 3074 enable_cpu_capabilities(SCOPE_BOOT_CPU); 3075 } 3076 3077 bool this_cpu_has_cap(unsigned int n) 3078 { 3079 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) { 3080 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n]; 3081 3082 if (cap) 3083 return cap->matches(cap, SCOPE_LOCAL_CPU); 3084 } 3085 3086 return false; 3087 } 3088 EXPORT_SYMBOL_GPL(this_cpu_has_cap); 3089 3090 /* 3091 * This helper function is used in a narrow window when, 3092 * - The system wide safe registers are set with all the SMP CPUs and, 3093 * - The SYSTEM_FEATURE cpu_hwcaps may not have been set. 3094 * In all other cases cpus_have_{const_}cap() should be used. 3095 */ 3096 static bool __maybe_unused __system_matches_cap(unsigned int n) 3097 { 3098 if (n < ARM64_NCAPS) { 3099 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n]; 3100 3101 if (cap) 3102 return cap->matches(cap, SCOPE_SYSTEM); 3103 } 3104 return false; 3105 } 3106 3107 void cpu_set_feature(unsigned int num) 3108 { 3109 WARN_ON(num >= MAX_CPU_FEATURES); 3110 elf_hwcap |= BIT(num); 3111 } 3112 EXPORT_SYMBOL_GPL(cpu_set_feature); 3113 3114 bool cpu_have_feature(unsigned int num) 3115 { 3116 WARN_ON(num >= MAX_CPU_FEATURES); 3117 return elf_hwcap & BIT(num); 3118 } 3119 EXPORT_SYMBOL_GPL(cpu_have_feature); 3120 3121 unsigned long cpu_get_elf_hwcap(void) 3122 { 3123 /* 3124 * We currently only populate the first 32 bits of AT_HWCAP. Please 3125 * note that for userspace compatibility we guarantee that bits 62 3126 * and 63 will always be returned as 0. 3127 */ 3128 return lower_32_bits(elf_hwcap); 3129 } 3130 3131 unsigned long cpu_get_elf_hwcap2(void) 3132 { 3133 return upper_32_bits(elf_hwcap); 3134 } 3135 3136 static void __init setup_system_capabilities(void) 3137 { 3138 /* 3139 * We have finalised the system-wide safe feature 3140 * registers, finalise the capabilities that depend 3141 * on it. Also enable all the available capabilities, 3142 * that are not enabled already. 3143 */ 3144 update_cpu_capabilities(SCOPE_SYSTEM); 3145 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU); 3146 } 3147 3148 void __init setup_cpu_features(void) 3149 { 3150 u32 cwg; 3151 3152 setup_system_capabilities(); 3153 setup_elf_hwcaps(arm64_elf_hwcaps); 3154 3155 if (system_supports_32bit_el0()) 3156 setup_elf_hwcaps(compat_elf_hwcaps); 3157 3158 if (system_uses_ttbr0_pan()) 3159 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n"); 3160 3161 sve_setup(); 3162 sme_setup(); 3163 minsigstksz_setup(); 3164 3165 /* Advertise that we have computed the system capabilities */ 3166 finalize_system_capabilities(); 3167 3168 /* 3169 * Check for sane CTR_EL0.CWG value. 3170 */ 3171 cwg = cache_type_cwg(); 3172 if (!cwg) 3173 pr_warn("No Cache Writeback Granule information, assuming %d\n", 3174 ARCH_DMA_MINALIGN); 3175 } 3176 3177 static int enable_mismatched_32bit_el0(unsigned int cpu) 3178 { 3179 /* 3180 * The first 32-bit-capable CPU we detected and so can no longer 3181 * be offlined by userspace. -1 indicates we haven't yet onlined 3182 * a 32-bit-capable CPU. 3183 */ 3184 static int lucky_winner = -1; 3185 3186 struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu); 3187 bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0); 3188 3189 if (cpu_32bit) { 3190 cpumask_set_cpu(cpu, cpu_32bit_el0_mask); 3191 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0); 3192 } 3193 3194 if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit) 3195 return 0; 3196 3197 if (lucky_winner >= 0) 3198 return 0; 3199 3200 /* 3201 * We've detected a mismatch. We need to keep one of our CPUs with 3202 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting 3203 * every CPU in the system for a 32-bit task. 3204 */ 3205 lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask, 3206 cpu_active_mask); 3207 get_cpu_device(lucky_winner)->offline_disabled = true; 3208 setup_elf_hwcaps(compat_elf_hwcaps); 3209 pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n", 3210 cpu, lucky_winner); 3211 return 0; 3212 } 3213 3214 static int __init init_32bit_el0_mask(void) 3215 { 3216 if (!allow_mismatched_32bit_el0) 3217 return 0; 3218 3219 if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL)) 3220 return -ENOMEM; 3221 3222 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 3223 "arm64/mismatched_32bit_el0:online", 3224 enable_mismatched_32bit_el0, NULL); 3225 } 3226 subsys_initcall_sync(init_32bit_el0_mask); 3227 3228 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap) 3229 { 3230 cpu_replace_ttbr1(lm_alias(swapper_pg_dir)); 3231 } 3232 3233 /* 3234 * We emulate only the following system register space. 3235 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7] 3236 * See Table C5-6 System instruction encodings for System register accesses, 3237 * ARMv8 ARM(ARM DDI 0487A.f) for more details. 3238 */ 3239 static inline bool __attribute_const__ is_emulated(u32 id) 3240 { 3241 return (sys_reg_Op0(id) == 0x3 && 3242 sys_reg_CRn(id) == 0x0 && 3243 sys_reg_Op1(id) == 0x0 && 3244 (sys_reg_CRm(id) == 0 || 3245 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7)))); 3246 } 3247 3248 /* 3249 * With CRm == 0, reg should be one of : 3250 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1. 3251 */ 3252 static inline int emulate_id_reg(u32 id, u64 *valp) 3253 { 3254 switch (id) { 3255 case SYS_MIDR_EL1: 3256 *valp = read_cpuid_id(); 3257 break; 3258 case SYS_MPIDR_EL1: 3259 *valp = SYS_MPIDR_SAFE_VAL; 3260 break; 3261 case SYS_REVIDR_EL1: 3262 /* IMPLEMENTATION DEFINED values are emulated with 0 */ 3263 *valp = 0; 3264 break; 3265 default: 3266 return -EINVAL; 3267 } 3268 3269 return 0; 3270 } 3271 3272 static int emulate_sys_reg(u32 id, u64 *valp) 3273 { 3274 struct arm64_ftr_reg *regp; 3275 3276 if (!is_emulated(id)) 3277 return -EINVAL; 3278 3279 if (sys_reg_CRm(id) == 0) 3280 return emulate_id_reg(id, valp); 3281 3282 regp = get_arm64_ftr_reg_nowarn(id); 3283 if (regp) 3284 *valp = arm64_ftr_reg_user_value(regp); 3285 else 3286 /* 3287 * The untracked registers are either IMPLEMENTATION DEFINED 3288 * (e.g, ID_AFR0_EL1) or reserved RAZ. 3289 */ 3290 *valp = 0; 3291 return 0; 3292 } 3293 3294 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt) 3295 { 3296 int rc; 3297 u64 val; 3298 3299 rc = emulate_sys_reg(sys_reg, &val); 3300 if (!rc) { 3301 pt_regs_write_reg(regs, rt, val); 3302 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 3303 } 3304 return rc; 3305 } 3306 3307 static int emulate_mrs(struct pt_regs *regs, u32 insn) 3308 { 3309 u32 sys_reg, rt; 3310 3311 /* 3312 * sys_reg values are defined as used in mrs/msr instruction. 3313 * shift the imm value to get the encoding. 3314 */ 3315 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5; 3316 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn); 3317 return do_emulate_mrs(regs, sys_reg, rt); 3318 } 3319 3320 static struct undef_hook mrs_hook = { 3321 .instr_mask = 0xffff0000, 3322 .instr_val = 0xd5380000, 3323 .pstate_mask = PSR_AA32_MODE_MASK, 3324 .pstate_val = PSR_MODE_EL0t, 3325 .fn = emulate_mrs, 3326 }; 3327 3328 static int __init enable_mrs_emulation(void) 3329 { 3330 register_undef_hook(&mrs_hook); 3331 return 0; 3332 } 3333 3334 core_initcall(enable_mrs_emulation); 3335 3336 enum mitigation_state arm64_get_meltdown_state(void) 3337 { 3338 if (__meltdown_safe) 3339 return SPECTRE_UNAFFECTED; 3340 3341 if (arm64_kernel_unmapped_at_el0()) 3342 return SPECTRE_MITIGATED; 3343 3344 return SPECTRE_VULNERABLE; 3345 } 3346 3347 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, 3348 char *buf) 3349 { 3350 switch (arm64_get_meltdown_state()) { 3351 case SPECTRE_UNAFFECTED: 3352 return sprintf(buf, "Not affected\n"); 3353 3354 case SPECTRE_MITIGATED: 3355 return sprintf(buf, "Mitigation: PTI\n"); 3356 3357 default: 3358 return sprintf(buf, "Vulnerable\n"); 3359 } 3360 } 3361