xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision cfaa3210)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62 
63 #define pr_fmt(fmt) "CPU features: " fmt
64 
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/sort.h>
69 #include <linux/stop_machine.h>
70 #include <linux/sysfs.h>
71 #include <linux/types.h>
72 #include <linux/minmax.h>
73 #include <linux/mm.h>
74 #include <linux/cpu.h>
75 #include <linux/kasan.h>
76 #include <linux/percpu.h>
77 
78 #include <asm/cpu.h>
79 #include <asm/cpufeature.h>
80 #include <asm/cpu_ops.h>
81 #include <asm/fpsimd.h>
82 #include <asm/hwcap.h>
83 #include <asm/insn.h>
84 #include <asm/kvm_host.h>
85 #include <asm/mmu_context.h>
86 #include <asm/mte.h>
87 #include <asm/processor.h>
88 #include <asm/smp.h>
89 #include <asm/sysreg.h>
90 #include <asm/traps.h>
91 #include <asm/vectors.h>
92 #include <asm/virt.h>
93 
94 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
95 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
96 
97 #ifdef CONFIG_COMPAT
98 #define COMPAT_ELF_HWCAP_DEFAULT	\
99 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
100 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
101 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
102 				 COMPAT_HWCAP_LPAE)
103 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
104 unsigned int compat_elf_hwcap2 __read_mostly;
105 #endif
106 
107 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
108 EXPORT_SYMBOL(cpu_hwcaps);
109 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
110 
111 /* Need also bit for ARM64_CB_PATCH */
112 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
113 
114 bool arm64_use_ng_mappings = false;
115 EXPORT_SYMBOL(arm64_use_ng_mappings);
116 
117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
118 
119 /*
120  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
121  * support it?
122  */
123 static bool __read_mostly allow_mismatched_32bit_el0;
124 
125 /*
126  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
127  * seen at least one CPU capable of 32-bit EL0.
128  */
129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
130 
131 /*
132  * Mask of CPUs supporting 32-bit EL0.
133  * Only valid if arm64_mismatched_32bit_el0 is enabled.
134  */
135 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
136 
137 /*
138  * Flag to indicate if we have computed the system wide
139  * capabilities based on the boot time active CPUs. This
140  * will be used to determine if a new booting CPU should
141  * go through the verification process to make sure that it
142  * supports the system capabilities, without using a hotplug
143  * notifier. This is also used to decide if we could use
144  * the fast path for checking constant CPU caps.
145  */
146 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
147 EXPORT_SYMBOL(arm64_const_caps_ready);
148 static inline void finalize_system_capabilities(void)
149 {
150 	static_branch_enable(&arm64_const_caps_ready);
151 }
152 
153 void dump_cpu_features(void)
154 {
155 	/* file-wide pr_fmt adds "CPU features: " prefix */
156 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
157 }
158 
159 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
160 EXPORT_SYMBOL(cpu_hwcap_keys);
161 
162 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
163 	{						\
164 		.sign = SIGNED,				\
165 		.visible = VISIBLE,			\
166 		.strict = STRICT,			\
167 		.type = TYPE,				\
168 		.shift = SHIFT,				\
169 		.width = WIDTH,				\
170 		.safe_val = SAFE_VAL,			\
171 	}
172 
173 /* Define a feature with unsigned values */
174 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
175 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
176 
177 /* Define a feature with a signed value */
178 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
179 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
180 
181 #define ARM64_FTR_END					\
182 	{						\
183 		.width = 0,				\
184 	}
185 
186 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
187 
188 static bool __system_matches_cap(unsigned int n);
189 
190 /*
191  * NOTE: Any changes to the visibility of features should be kept in
192  * sync with the documentation of the CPU feature register ABI.
193  */
194 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
195 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
196 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
197 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
198 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
199 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
200 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
201 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
202 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
203 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
204 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
205 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
206 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
207 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
208 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
209 	ARM64_FTR_END,
210 };
211 
212 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
213 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
214 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
215 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
216 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
217 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
218 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
219 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
220 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
221 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
222 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
223 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
224 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
225 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
226 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
227 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
228 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
229 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
230 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
231 	ARM64_FTR_END,
232 };
233 
234 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
235 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
236 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
237 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
238 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
239 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
240 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
241 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
242 	ARM64_FTR_END,
243 };
244 
245 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
246 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
247 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
248 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
249 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
250 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
251 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
252 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
253 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
254 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
255 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
256 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
257 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
258 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
259 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
260 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
261 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
262 	ARM64_FTR_END,
263 };
264 
265 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
266 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
267 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
268 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
269 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
270 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
271 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
272 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
273 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
274 				    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
275 	ARM64_FTR_END,
276 };
277 
278 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
279 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
280 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
281 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
282 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
283 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
284 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
285 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
286 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
287 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
288 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
289 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
290 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
291 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
292 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
293 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
294 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
295 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
296 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
297 	ARM64_FTR_END,
298 };
299 
300 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
301 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
302 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
303 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
304 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
305 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
306 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
307 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
308 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
309 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
310 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
311 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
312 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
313 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
314 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
315 	ARM64_FTR_END,
316 };
317 
318 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
319 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
320 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
321 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
322 	/*
323 	 * Page size not being supported at Stage-2 is not fatal. You
324 	 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
325 	 * your favourite nesting hypervisor.
326 	 *
327 	 * There is a small corner case where the hypervisor explicitly
328 	 * advertises a given granule size at Stage-2 (value 2) on some
329 	 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
330 	 * vCPUs. Although this is not forbidden by the architecture, it
331 	 * indicates that the hypervisor is being silly (or buggy).
332 	 *
333 	 * We make no effort to cope with this and pretend that if these
334 	 * fields are inconsistent across vCPUs, then it isn't worth
335 	 * trying to bring KVM up.
336 	 */
337 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
338 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
339 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
340 	/*
341 	 * We already refuse to boot CPUs that don't support our configured
342 	 * page size, so we can only detect mismatches for a page size other
343 	 * than the one we're currently using. Unfortunately, SoCs like this
344 	 * exist in the wild so, even though we don't like it, we'll have to go
345 	 * along with it and treat them as non-strict.
346 	 */
347 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
348 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
349 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
350 
351 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
352 	/* Linux shouldn't care about secure memory */
353 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
354 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
355 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
356 	/*
357 	 * Differing PARange is fine as long as all peripherals and memory are mapped
358 	 * within the minimum PARange of all CPUs
359 	 */
360 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
361 	ARM64_FTR_END,
362 };
363 
364 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
365 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
366 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
367 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
368 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
369 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
370 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
371 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
372 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
373 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
374 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
375 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
376 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
377 	ARM64_FTR_END,
378 };
379 
380 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
381 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
382 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
383 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
384 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
385 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
386 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
387 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
388 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
389 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
390 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
391 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
392 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
393 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
394 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
395 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
396 	ARM64_FTR_END,
397 };
398 
399 static const struct arm64_ftr_bits ftr_ctr[] = {
400 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
401 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
402 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
403 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
404 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
405 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
406 	/*
407 	 * Linux can handle differing I-cache policies. Userspace JITs will
408 	 * make use of *minLine.
409 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
410 	 */
411 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),	/* L1Ip */
412 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
413 	ARM64_FTR_END,
414 };
415 
416 static struct arm64_ftr_override __ro_after_init no_override = { };
417 
418 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
419 	.name		= "SYS_CTR_EL0",
420 	.ftr_bits	= ftr_ctr,
421 	.override	= &no_override,
422 };
423 
424 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
425 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
426 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
427 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
428 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
429 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
430 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
431 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
432 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
433 	ARM64_FTR_END,
434 };
435 
436 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
437 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
438 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
439 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
440 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
441 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
442 	/*
443 	 * We can instantiate multiple PMU instances with different levels
444 	 * of support.
445 	 */
446 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
447 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
448 	ARM64_FTR_END,
449 };
450 
451 static const struct arm64_ftr_bits ftr_mvfr2[] = {
452 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
453 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
454 	ARM64_FTR_END,
455 };
456 
457 static const struct arm64_ftr_bits ftr_dczid[] = {
458 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
459 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
460 	ARM64_FTR_END,
461 };
462 
463 static const struct arm64_ftr_bits ftr_gmid[] = {
464 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
465 	ARM64_FTR_END,
466 };
467 
468 static const struct arm64_ftr_bits ftr_id_isar0[] = {
469 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
470 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
471 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
472 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
473 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
474 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
475 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
476 	ARM64_FTR_END,
477 };
478 
479 static const struct arm64_ftr_bits ftr_id_isar5[] = {
480 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
481 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
482 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
483 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
484 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
485 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
486 	ARM64_FTR_END,
487 };
488 
489 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
490 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
491 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
492 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
493 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
494 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
495 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
496 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
497 
498 	/*
499 	 * SpecSEI = 1 indicates that the PE might generate an SError on an
500 	 * external abort on speculative read. It is safe to assume that an
501 	 * SError might be generated than it will not be. Hence it has been
502 	 * classified as FTR_HIGHER_SAFE.
503 	 */
504 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
505 	ARM64_FTR_END,
506 };
507 
508 static const struct arm64_ftr_bits ftr_id_isar4[] = {
509 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
510 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
511 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
512 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
513 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
514 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
515 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
516 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
517 	ARM64_FTR_END,
518 };
519 
520 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
521 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
522 	ARM64_FTR_END,
523 };
524 
525 static const struct arm64_ftr_bits ftr_id_isar6[] = {
526 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
527 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
528 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
529 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
530 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
531 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
532 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
533 	ARM64_FTR_END,
534 };
535 
536 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
537 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
538 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
539 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
540 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
541 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
542 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
543 	ARM64_FTR_END,
544 };
545 
546 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
547 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
548 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
549 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
550 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
551 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
552 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
553 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
554 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
555 	ARM64_FTR_END,
556 };
557 
558 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
559 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
560 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
561 	ARM64_FTR_END,
562 };
563 
564 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
565 	/* [31:28] TraceFilt */
566 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_PERFMON_SHIFT, 4, 0),
567 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
568 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
569 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
570 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
571 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
572 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
573 	ARM64_FTR_END,
574 };
575 
576 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
577 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
578 	ARM64_FTR_END,
579 };
580 
581 static const struct arm64_ftr_bits ftr_zcr[] = {
582 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
583 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_WIDTH, 0),	/* LEN */
584 	ARM64_FTR_END,
585 };
586 
587 static const struct arm64_ftr_bits ftr_smcr[] = {
588 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
589 		SMCR_ELx_LEN_SHIFT, SMCR_ELx_LEN_WIDTH, 0),	/* LEN */
590 	ARM64_FTR_END,
591 };
592 
593 /*
594  * Common ftr bits for a 32bit register with all hidden, strict
595  * attributes, with 4bit feature fields and a default safe value of
596  * 0. Covers the following 32bit registers:
597  * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
598  */
599 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
600 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
601 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
602 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
603 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
604 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
605 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
606 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
607 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
608 	ARM64_FTR_END,
609 };
610 
611 /* Table for a single 32bit feature value */
612 static const struct arm64_ftr_bits ftr_single32[] = {
613 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
614 	ARM64_FTR_END,
615 };
616 
617 static const struct arm64_ftr_bits ftr_raz[] = {
618 	ARM64_FTR_END,
619 };
620 
621 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {	\
622 		.sys_id = id,					\
623 		.reg = 	&(struct arm64_ftr_reg){		\
624 			.name = id_str,				\
625 			.override = (ovr),			\
626 			.ftr_bits = &((table)[0]),		\
627 	}}
628 
629 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)	\
630 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
631 
632 #define ARM64_FTR_REG(id, table)		\
633 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
634 
635 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
636 struct arm64_ftr_override __ro_after_init id_aa64pfr0_override;
637 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
638 struct arm64_ftr_override __ro_after_init id_aa64zfr0_override;
639 struct arm64_ftr_override __ro_after_init id_aa64smfr0_override;
640 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
641 struct arm64_ftr_override __ro_after_init id_aa64isar2_override;
642 
643 static const struct __ftr_reg_entry {
644 	u32			sys_id;
645 	struct arm64_ftr_reg 	*reg;
646 } arm64_ftr_regs[] = {
647 
648 	/* Op1 = 0, CRn = 0, CRm = 1 */
649 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
650 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
651 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
652 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
653 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
654 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
655 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
656 
657 	/* Op1 = 0, CRn = 0, CRm = 2 */
658 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
659 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
660 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
661 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
662 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
663 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
664 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
665 	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
666 
667 	/* Op1 = 0, CRn = 0, CRm = 3 */
668 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
669 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
670 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
671 	ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
672 	ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
673 	ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
674 
675 	/* Op1 = 0, CRn = 0, CRm = 4 */
676 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
677 			       &id_aa64pfr0_override),
678 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
679 			       &id_aa64pfr1_override),
680 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
681 			       &id_aa64zfr0_override),
682 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
683 			       &id_aa64smfr0_override),
684 
685 	/* Op1 = 0, CRn = 0, CRm = 5 */
686 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
687 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
688 
689 	/* Op1 = 0, CRn = 0, CRm = 6 */
690 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
691 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
692 			       &id_aa64isar1_override),
693 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
694 			       &id_aa64isar2_override),
695 
696 	/* Op1 = 0, CRn = 0, CRm = 7 */
697 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
698 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
699 			       &id_aa64mmfr1_override),
700 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
701 
702 	/* Op1 = 0, CRn = 1, CRm = 2 */
703 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
704 	ARM64_FTR_REG(SYS_SMCR_EL1, ftr_smcr),
705 
706 	/* Op1 = 1, CRn = 0, CRm = 0 */
707 	ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
708 
709 	/* Op1 = 3, CRn = 0, CRm = 0 */
710 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
711 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
712 
713 	/* Op1 = 3, CRn = 14, CRm = 0 */
714 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
715 };
716 
717 static int search_cmp_ftr_reg(const void *id, const void *regp)
718 {
719 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
720 }
721 
722 /*
723  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
724  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
725  * ascending order of sys_id, we use binary search to find a matching
726  * entry.
727  *
728  * returns - Upon success,  matching ftr_reg entry for id.
729  *         - NULL on failure. It is upto the caller to decide
730  *	     the impact of a failure.
731  */
732 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
733 {
734 	const struct __ftr_reg_entry *ret;
735 
736 	ret = bsearch((const void *)(unsigned long)sys_id,
737 			arm64_ftr_regs,
738 			ARRAY_SIZE(arm64_ftr_regs),
739 			sizeof(arm64_ftr_regs[0]),
740 			search_cmp_ftr_reg);
741 	if (ret)
742 		return ret->reg;
743 	return NULL;
744 }
745 
746 /*
747  * get_arm64_ftr_reg - Looks up a feature register entry using
748  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
749  *
750  * returns - Upon success,  matching ftr_reg entry for id.
751  *         - NULL on failure but with an WARN_ON().
752  */
753 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
754 {
755 	struct arm64_ftr_reg *reg;
756 
757 	reg = get_arm64_ftr_reg_nowarn(sys_id);
758 
759 	/*
760 	 * Requesting a non-existent register search is an error. Warn
761 	 * and let the caller handle it.
762 	 */
763 	WARN_ON(!reg);
764 	return reg;
765 }
766 
767 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
768 			       s64 ftr_val)
769 {
770 	u64 mask = arm64_ftr_mask(ftrp);
771 
772 	reg &= ~mask;
773 	reg |= (ftr_val << ftrp->shift) & mask;
774 	return reg;
775 }
776 
777 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
778 				s64 cur)
779 {
780 	s64 ret = 0;
781 
782 	switch (ftrp->type) {
783 	case FTR_EXACT:
784 		ret = ftrp->safe_val;
785 		break;
786 	case FTR_LOWER_SAFE:
787 		ret = min(new, cur);
788 		break;
789 	case FTR_HIGHER_OR_ZERO_SAFE:
790 		if (!cur || !new)
791 			break;
792 		fallthrough;
793 	case FTR_HIGHER_SAFE:
794 		ret = max(new, cur);
795 		break;
796 	default:
797 		BUG();
798 	}
799 
800 	return ret;
801 }
802 
803 static void __init sort_ftr_regs(void)
804 {
805 	unsigned int i;
806 
807 	for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
808 		const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
809 		const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
810 		unsigned int j = 0;
811 
812 		/*
813 		 * Features here must be sorted in descending order with respect
814 		 * to their shift values and should not overlap with each other.
815 		 */
816 		for (; ftr_bits->width != 0; ftr_bits++, j++) {
817 			unsigned int width = ftr_reg->ftr_bits[j].width;
818 			unsigned int shift = ftr_reg->ftr_bits[j].shift;
819 			unsigned int prev_shift;
820 
821 			WARN((shift  + width) > 64,
822 				"%s has invalid feature at shift %d\n",
823 				ftr_reg->name, shift);
824 
825 			/*
826 			 * Skip the first feature. There is nothing to
827 			 * compare against for now.
828 			 */
829 			if (j == 0)
830 				continue;
831 
832 			prev_shift = ftr_reg->ftr_bits[j - 1].shift;
833 			WARN((shift + width) > prev_shift,
834 				"%s has feature overlap at shift %d\n",
835 				ftr_reg->name, shift);
836 		}
837 
838 		/*
839 		 * Skip the first register. There is nothing to
840 		 * compare against for now.
841 		 */
842 		if (i == 0)
843 			continue;
844 		/*
845 		 * Registers here must be sorted in ascending order with respect
846 		 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
847 		 * to work correctly.
848 		 */
849 		BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
850 	}
851 }
852 
853 /*
854  * Initialise the CPU feature register from Boot CPU values.
855  * Also initiliases the strict_mask for the register.
856  * Any bits that are not covered by an arm64_ftr_bits entry are considered
857  * RES0 for the system-wide value, and must strictly match.
858  */
859 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
860 {
861 	u64 val = 0;
862 	u64 strict_mask = ~0x0ULL;
863 	u64 user_mask = 0;
864 	u64 valid_mask = 0;
865 
866 	const struct arm64_ftr_bits *ftrp;
867 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
868 
869 	if (!reg)
870 		return;
871 
872 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
873 		u64 ftr_mask = arm64_ftr_mask(ftrp);
874 		s64 ftr_new = arm64_ftr_value(ftrp, new);
875 		s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
876 
877 		if ((ftr_mask & reg->override->mask) == ftr_mask) {
878 			s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
879 			char *str = NULL;
880 
881 			if (ftr_ovr != tmp) {
882 				/* Unsafe, remove the override */
883 				reg->override->mask &= ~ftr_mask;
884 				reg->override->val &= ~ftr_mask;
885 				tmp = ftr_ovr;
886 				str = "ignoring override";
887 			} else if (ftr_new != tmp) {
888 				/* Override was valid */
889 				ftr_new = tmp;
890 				str = "forced";
891 			} else if (ftr_ovr == tmp) {
892 				/* Override was the safe value */
893 				str = "already set";
894 			}
895 
896 			if (str)
897 				pr_warn("%s[%d:%d]: %s to %llx\n",
898 					reg->name,
899 					ftrp->shift + ftrp->width - 1,
900 					ftrp->shift, str, tmp);
901 		} else if ((ftr_mask & reg->override->val) == ftr_mask) {
902 			reg->override->val &= ~ftr_mask;
903 			pr_warn("%s[%d:%d]: impossible override, ignored\n",
904 				reg->name,
905 				ftrp->shift + ftrp->width - 1,
906 				ftrp->shift);
907 		}
908 
909 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
910 
911 		valid_mask |= ftr_mask;
912 		if (!ftrp->strict)
913 			strict_mask &= ~ftr_mask;
914 		if (ftrp->visible)
915 			user_mask |= ftr_mask;
916 		else
917 			reg->user_val = arm64_ftr_set_value(ftrp,
918 							    reg->user_val,
919 							    ftrp->safe_val);
920 	}
921 
922 	val &= valid_mask;
923 
924 	reg->sys_val = val;
925 	reg->strict_mask = strict_mask;
926 	reg->user_mask = user_mask;
927 }
928 
929 extern const struct arm64_cpu_capabilities arm64_errata[];
930 static const struct arm64_cpu_capabilities arm64_features[];
931 
932 static void __init
933 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
934 {
935 	for (; caps->matches; caps++) {
936 		if (WARN(caps->capability >= ARM64_NCAPS,
937 			"Invalid capability %d\n", caps->capability))
938 			continue;
939 		if (WARN(cpu_hwcaps_ptrs[caps->capability],
940 			"Duplicate entry for capability %d\n",
941 			caps->capability))
942 			continue;
943 		cpu_hwcaps_ptrs[caps->capability] = caps;
944 	}
945 }
946 
947 static void __init init_cpu_hwcaps_indirect_list(void)
948 {
949 	init_cpu_hwcaps_indirect_list_from_array(arm64_features);
950 	init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
951 }
952 
953 static void __init setup_boot_cpu_capabilities(void);
954 
955 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
956 {
957 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
958 	init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
959 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
960 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
961 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
962 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
963 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
964 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
965 	init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
966 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
967 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
968 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
969 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
970 	init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
971 	init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
972 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
973 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
974 	init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
975 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
976 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
977 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
978 }
979 
980 void __init init_cpu_features(struct cpuinfo_arm64 *info)
981 {
982 	/* Before we start using the tables, make sure it is sorted */
983 	sort_ftr_regs();
984 
985 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
986 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
987 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
988 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
989 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
990 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
991 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
992 	init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
993 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
994 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
995 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
996 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
997 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
998 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
999 	init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1000 
1001 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1002 		init_32bit_cpu_features(&info->aarch32);
1003 
1004 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1005 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1006 		info->reg_zcr = read_zcr_features();
1007 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
1008 		vec_init_vq_map(ARM64_VEC_SVE);
1009 	}
1010 
1011 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1012 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1013 		info->reg_smcr = read_smcr_features();
1014 		/*
1015 		 * We mask out SMPS since even if the hardware
1016 		 * supports priorities the kernel does not at present
1017 		 * and we block access to them.
1018 		 */
1019 		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1020 		init_cpu_ftr_reg(SYS_SMCR_EL1, info->reg_smcr);
1021 		vec_init_vq_map(ARM64_VEC_SME);
1022 	}
1023 
1024 	if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1025 		init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1026 
1027 	/*
1028 	 * Initialize the indirect array of CPU hwcaps capabilities pointers
1029 	 * before we handle the boot CPU below.
1030 	 */
1031 	init_cpu_hwcaps_indirect_list();
1032 
1033 	/*
1034 	 * Detect and enable early CPU capabilities based on the boot CPU,
1035 	 * after we have initialised the CPU feature infrastructure.
1036 	 */
1037 	setup_boot_cpu_capabilities();
1038 }
1039 
1040 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1041 {
1042 	const struct arm64_ftr_bits *ftrp;
1043 
1044 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1045 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1046 		s64 ftr_new = arm64_ftr_value(ftrp, new);
1047 
1048 		if (ftr_cur == ftr_new)
1049 			continue;
1050 		/* Find a safe value */
1051 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1052 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1053 	}
1054 
1055 }
1056 
1057 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1058 {
1059 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1060 
1061 	if (!regp)
1062 		return 0;
1063 
1064 	update_cpu_ftr_reg(regp, val);
1065 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1066 		return 0;
1067 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1068 			regp->name, boot, cpu, val);
1069 	return 1;
1070 }
1071 
1072 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1073 {
1074 	const struct arm64_ftr_bits *ftrp;
1075 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1076 
1077 	if (!regp)
1078 		return;
1079 
1080 	for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1081 		if (ftrp->shift == field) {
1082 			regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1083 			break;
1084 		}
1085 	}
1086 
1087 	/* Bogus field? */
1088 	WARN_ON(!ftrp->width);
1089 }
1090 
1091 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1092 					 struct cpuinfo_arm64 *boot)
1093 {
1094 	static bool boot_cpu_32bit_regs_overridden = false;
1095 
1096 	if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1097 		return;
1098 
1099 	if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1100 		return;
1101 
1102 	boot->aarch32 = info->aarch32;
1103 	init_32bit_cpu_features(&boot->aarch32);
1104 	boot_cpu_32bit_regs_overridden = true;
1105 }
1106 
1107 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1108 				     struct cpuinfo_32bit *boot)
1109 {
1110 	int taint = 0;
1111 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1112 
1113 	/*
1114 	 * If we don't have AArch32 at EL1, then relax the strictness of
1115 	 * EL1-dependent register fields to avoid spurious sanity check fails.
1116 	 */
1117 	if (!id_aa64pfr0_32bit_el1(pfr0)) {
1118 		relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
1119 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
1120 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
1121 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
1122 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
1123 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
1124 	}
1125 
1126 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1127 				      info->reg_id_dfr0, boot->reg_id_dfr0);
1128 	taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1129 				      info->reg_id_dfr1, boot->reg_id_dfr1);
1130 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1131 				      info->reg_id_isar0, boot->reg_id_isar0);
1132 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1133 				      info->reg_id_isar1, boot->reg_id_isar1);
1134 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1135 				      info->reg_id_isar2, boot->reg_id_isar2);
1136 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1137 				      info->reg_id_isar3, boot->reg_id_isar3);
1138 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1139 				      info->reg_id_isar4, boot->reg_id_isar4);
1140 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1141 				      info->reg_id_isar5, boot->reg_id_isar5);
1142 	taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1143 				      info->reg_id_isar6, boot->reg_id_isar6);
1144 
1145 	/*
1146 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1147 	 * ACTLR formats could differ across CPUs and therefore would have to
1148 	 * be trapped for virtualization anyway.
1149 	 */
1150 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1151 				      info->reg_id_mmfr0, boot->reg_id_mmfr0);
1152 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1153 				      info->reg_id_mmfr1, boot->reg_id_mmfr1);
1154 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1155 				      info->reg_id_mmfr2, boot->reg_id_mmfr2);
1156 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1157 				      info->reg_id_mmfr3, boot->reg_id_mmfr3);
1158 	taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1159 				      info->reg_id_mmfr4, boot->reg_id_mmfr4);
1160 	taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1161 				      info->reg_id_mmfr5, boot->reg_id_mmfr5);
1162 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1163 				      info->reg_id_pfr0, boot->reg_id_pfr0);
1164 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1165 				      info->reg_id_pfr1, boot->reg_id_pfr1);
1166 	taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1167 				      info->reg_id_pfr2, boot->reg_id_pfr2);
1168 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1169 				      info->reg_mvfr0, boot->reg_mvfr0);
1170 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1171 				      info->reg_mvfr1, boot->reg_mvfr1);
1172 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1173 				      info->reg_mvfr2, boot->reg_mvfr2);
1174 
1175 	return taint;
1176 }
1177 
1178 /*
1179  * Update system wide CPU feature registers with the values from a
1180  * non-boot CPU. Also performs SANITY checks to make sure that there
1181  * aren't any insane variations from that of the boot CPU.
1182  */
1183 void update_cpu_features(int cpu,
1184 			 struct cpuinfo_arm64 *info,
1185 			 struct cpuinfo_arm64 *boot)
1186 {
1187 	int taint = 0;
1188 
1189 	/*
1190 	 * The kernel can handle differing I-cache policies, but otherwise
1191 	 * caches should look identical. Userspace JITs will make use of
1192 	 * *minLine.
1193 	 */
1194 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1195 				      info->reg_ctr, boot->reg_ctr);
1196 
1197 	/*
1198 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1199 	 * could result in too much or too little memory being zeroed if a
1200 	 * process is preempted and migrated between CPUs.
1201 	 */
1202 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1203 				      info->reg_dczid, boot->reg_dczid);
1204 
1205 	/* If different, timekeeping will be broken (especially with KVM) */
1206 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1207 				      info->reg_cntfrq, boot->reg_cntfrq);
1208 
1209 	/*
1210 	 * The kernel uses self-hosted debug features and expects CPUs to
1211 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
1212 	 * and BRPs to be identical.
1213 	 * ID_AA64DFR1 is currently RES0.
1214 	 */
1215 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1216 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1217 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1218 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1219 	/*
1220 	 * Even in big.LITTLE, processors should be identical instruction-set
1221 	 * wise.
1222 	 */
1223 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1224 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1225 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1226 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1227 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1228 				      info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1229 
1230 	/*
1231 	 * Differing PARange support is fine as long as all peripherals and
1232 	 * memory are mapped within the minimum PARange of all CPUs.
1233 	 * Linux should not care about secure memory.
1234 	 */
1235 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1236 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1237 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1238 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1239 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1240 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1241 
1242 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1243 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1244 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1245 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1246 
1247 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1248 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1249 
1250 	taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1251 				      info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1252 
1253 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1254 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1255 		info->reg_zcr = read_zcr_features();
1256 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1257 					info->reg_zcr, boot->reg_zcr);
1258 
1259 		/* Probe vector lengths */
1260 		if (!system_capabilities_finalized())
1261 			vec_update_vq_map(ARM64_VEC_SVE);
1262 	}
1263 
1264 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1265 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1266 		info->reg_smcr = read_smcr_features();
1267 		/*
1268 		 * We mask out SMPS since even if the hardware
1269 		 * supports priorities the kernel does not at present
1270 		 * and we block access to them.
1271 		 */
1272 		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1273 		taint |= check_update_ftr_reg(SYS_SMCR_EL1, cpu,
1274 					info->reg_smcr, boot->reg_smcr);
1275 
1276 		/* Probe vector lengths */
1277 		if (!system_capabilities_finalized())
1278 			vec_update_vq_map(ARM64_VEC_SME);
1279 	}
1280 
1281 	/*
1282 	 * The kernel uses the LDGM/STGM instructions and the number of tags
1283 	 * they read/write depends on the GMID_EL1.BS field. Check that the
1284 	 * value is the same on all CPUs.
1285 	 */
1286 	if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1287 	    id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1288 		taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1289 					      info->reg_gmid, boot->reg_gmid);
1290 	}
1291 
1292 	/*
1293 	 * If we don't have AArch32 at all then skip the checks entirely
1294 	 * as the register values may be UNKNOWN and we're not going to be
1295 	 * using them for anything.
1296 	 *
1297 	 * This relies on a sanitised view of the AArch64 ID registers
1298 	 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1299 	 */
1300 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1301 		lazy_init_32bit_cpu_features(info, boot);
1302 		taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1303 						   &boot->aarch32);
1304 	}
1305 
1306 	/*
1307 	 * Mismatched CPU features are a recipe for disaster. Don't even
1308 	 * pretend to support them.
1309 	 */
1310 	if (taint) {
1311 		pr_warn_once("Unsupported CPU feature variation detected.\n");
1312 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1313 	}
1314 }
1315 
1316 u64 read_sanitised_ftr_reg(u32 id)
1317 {
1318 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1319 
1320 	if (!regp)
1321 		return 0;
1322 	return regp->sys_val;
1323 }
1324 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1325 
1326 #define read_sysreg_case(r)	\
1327 	case r:		val = read_sysreg_s(r); break;
1328 
1329 /*
1330  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1331  * Read the system register on the current CPU
1332  */
1333 u64 __read_sysreg_by_encoding(u32 sys_id)
1334 {
1335 	struct arm64_ftr_reg *regp;
1336 	u64 val;
1337 
1338 	switch (sys_id) {
1339 	read_sysreg_case(SYS_ID_PFR0_EL1);
1340 	read_sysreg_case(SYS_ID_PFR1_EL1);
1341 	read_sysreg_case(SYS_ID_PFR2_EL1);
1342 	read_sysreg_case(SYS_ID_DFR0_EL1);
1343 	read_sysreg_case(SYS_ID_DFR1_EL1);
1344 	read_sysreg_case(SYS_ID_MMFR0_EL1);
1345 	read_sysreg_case(SYS_ID_MMFR1_EL1);
1346 	read_sysreg_case(SYS_ID_MMFR2_EL1);
1347 	read_sysreg_case(SYS_ID_MMFR3_EL1);
1348 	read_sysreg_case(SYS_ID_MMFR4_EL1);
1349 	read_sysreg_case(SYS_ID_MMFR5_EL1);
1350 	read_sysreg_case(SYS_ID_ISAR0_EL1);
1351 	read_sysreg_case(SYS_ID_ISAR1_EL1);
1352 	read_sysreg_case(SYS_ID_ISAR2_EL1);
1353 	read_sysreg_case(SYS_ID_ISAR3_EL1);
1354 	read_sysreg_case(SYS_ID_ISAR4_EL1);
1355 	read_sysreg_case(SYS_ID_ISAR5_EL1);
1356 	read_sysreg_case(SYS_ID_ISAR6_EL1);
1357 	read_sysreg_case(SYS_MVFR0_EL1);
1358 	read_sysreg_case(SYS_MVFR1_EL1);
1359 	read_sysreg_case(SYS_MVFR2_EL1);
1360 
1361 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1362 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1363 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1364 	read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1365 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1366 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1367 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1368 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1369 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1370 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1371 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1372 	read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1373 
1374 	read_sysreg_case(SYS_CNTFRQ_EL0);
1375 	read_sysreg_case(SYS_CTR_EL0);
1376 	read_sysreg_case(SYS_DCZID_EL0);
1377 
1378 	default:
1379 		BUG();
1380 		return 0;
1381 	}
1382 
1383 	regp  = get_arm64_ftr_reg(sys_id);
1384 	if (regp) {
1385 		val &= ~regp->override->mask;
1386 		val |= (regp->override->val & regp->override->mask);
1387 	}
1388 
1389 	return val;
1390 }
1391 
1392 #include <linux/irqchip/arm-gic-v3.h>
1393 
1394 static bool
1395 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1396 {
1397 	int val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1398 						    entry->field_width,
1399 						    entry->sign);
1400 
1401 	return val >= entry->min_field_value;
1402 }
1403 
1404 static bool
1405 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1406 {
1407 	u64 val;
1408 
1409 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1410 	if (scope == SCOPE_SYSTEM)
1411 		val = read_sanitised_ftr_reg(entry->sys_reg);
1412 	else
1413 		val = __read_sysreg_by_encoding(entry->sys_reg);
1414 
1415 	return feature_matches(val, entry);
1416 }
1417 
1418 const struct cpumask *system_32bit_el0_cpumask(void)
1419 {
1420 	if (!system_supports_32bit_el0())
1421 		return cpu_none_mask;
1422 
1423 	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1424 		return cpu_32bit_el0_mask;
1425 
1426 	return cpu_possible_mask;
1427 }
1428 
1429 static int __init parse_32bit_el0_param(char *str)
1430 {
1431 	allow_mismatched_32bit_el0 = true;
1432 	return 0;
1433 }
1434 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1435 
1436 static ssize_t aarch32_el0_show(struct device *dev,
1437 				struct device_attribute *attr, char *buf)
1438 {
1439 	const struct cpumask *mask = system_32bit_el0_cpumask();
1440 
1441 	return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1442 }
1443 static const DEVICE_ATTR_RO(aarch32_el0);
1444 
1445 static int __init aarch32_el0_sysfs_init(void)
1446 {
1447 	if (!allow_mismatched_32bit_el0)
1448 		return 0;
1449 
1450 	return device_create_file(cpu_subsys.dev_root, &dev_attr_aarch32_el0);
1451 }
1452 device_initcall(aarch32_el0_sysfs_init);
1453 
1454 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1455 {
1456 	if (!has_cpuid_feature(entry, scope))
1457 		return allow_mismatched_32bit_el0;
1458 
1459 	if (scope == SCOPE_SYSTEM)
1460 		pr_info("detected: 32-bit EL0 Support\n");
1461 
1462 	return true;
1463 }
1464 
1465 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1466 {
1467 	bool has_sre;
1468 
1469 	if (!has_cpuid_feature(entry, scope))
1470 		return false;
1471 
1472 	has_sre = gic_enable_sre();
1473 	if (!has_sre)
1474 		pr_warn_once("%s present but disabled by higher exception level\n",
1475 			     entry->desc);
1476 
1477 	return has_sre;
1478 }
1479 
1480 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1481 {
1482 	u32 midr = read_cpuid_id();
1483 
1484 	/* Cavium ThunderX pass 1.x and 2.x */
1485 	return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1486 		MIDR_CPU_VAR_REV(0, 0),
1487 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1488 }
1489 
1490 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1491 {
1492 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1493 
1494 	return cpuid_feature_extract_signed_field(pfr0,
1495 					ID_AA64PFR0_EL1_FP_SHIFT) < 0;
1496 }
1497 
1498 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1499 			  int scope)
1500 {
1501 	u64 ctr;
1502 
1503 	if (scope == SCOPE_SYSTEM)
1504 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1505 	else
1506 		ctr = read_cpuid_effective_cachetype();
1507 
1508 	return ctr & BIT(CTR_EL0_IDC_SHIFT);
1509 }
1510 
1511 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1512 {
1513 	/*
1514 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1515 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1516 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1517 	 * value.
1518 	 */
1519 	if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1520 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1521 }
1522 
1523 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1524 			  int scope)
1525 {
1526 	u64 ctr;
1527 
1528 	if (scope == SCOPE_SYSTEM)
1529 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1530 	else
1531 		ctr = read_cpuid_cachetype();
1532 
1533 	return ctr & BIT(CTR_EL0_DIC_SHIFT);
1534 }
1535 
1536 static bool __maybe_unused
1537 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1538 {
1539 	/*
1540 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1541 	 * may share TLB entries with a CPU stuck in the crashed
1542 	 * kernel.
1543 	 */
1544 	if (is_kdump_kernel())
1545 		return false;
1546 
1547 	if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1548 		return false;
1549 
1550 	return has_cpuid_feature(entry, scope);
1551 }
1552 
1553 /*
1554  * This check is triggered during the early boot before the cpufeature
1555  * is initialised. Checking the status on the local CPU allows the boot
1556  * CPU to detect the need for non-global mappings and thus avoiding a
1557  * pagetable re-write after all the CPUs are booted. This check will be
1558  * anyway run on individual CPUs, allowing us to get the consistent
1559  * state once the SMP CPUs are up and thus make the switch to non-global
1560  * mappings if required.
1561  */
1562 bool kaslr_requires_kpti(void)
1563 {
1564 	if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1565 		return false;
1566 
1567 	/*
1568 	 * E0PD does a similar job to KPTI so can be used instead
1569 	 * where available.
1570 	 */
1571 	if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1572 		u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1573 		if (cpuid_feature_extract_unsigned_field(mmfr2,
1574 						ID_AA64MMFR2_EL1_E0PD_SHIFT))
1575 			return false;
1576 	}
1577 
1578 	/*
1579 	 * Systems affected by Cavium erratum 24756 are incompatible
1580 	 * with KPTI.
1581 	 */
1582 	if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1583 		extern const struct midr_range cavium_erratum_27456_cpus[];
1584 
1585 		if (is_midr_in_range_list(read_cpuid_id(),
1586 					  cavium_erratum_27456_cpus))
1587 			return false;
1588 	}
1589 
1590 	return kaslr_offset() > 0;
1591 }
1592 
1593 static bool __meltdown_safe = true;
1594 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1595 
1596 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1597 				int scope)
1598 {
1599 	/* List of CPUs that are not vulnerable and don't need KPTI */
1600 	static const struct midr_range kpti_safe_list[] = {
1601 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1602 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1603 		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1604 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1605 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1606 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1607 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1608 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1609 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1610 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1611 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1612 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1613 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1614 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1615 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1616 		{ /* sentinel */ }
1617 	};
1618 	char const *str = "kpti command line option";
1619 	bool meltdown_safe;
1620 
1621 	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1622 
1623 	/* Defer to CPU feature registers */
1624 	if (has_cpuid_feature(entry, scope))
1625 		meltdown_safe = true;
1626 
1627 	if (!meltdown_safe)
1628 		__meltdown_safe = false;
1629 
1630 	/*
1631 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1632 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
1633 	 * ends as well as you might imagine. Don't even try. We cannot rely
1634 	 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1635 	 * because cpucap detection order may change. However, since we know
1636 	 * affected CPUs are always in a homogeneous configuration, it is
1637 	 * safe to rely on this_cpu_has_cap() here.
1638 	 */
1639 	if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1640 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1641 		__kpti_forced = -1;
1642 	}
1643 
1644 	/* Useful for KASLR robustness */
1645 	if (kaslr_requires_kpti()) {
1646 		if (!__kpti_forced) {
1647 			str = "KASLR";
1648 			__kpti_forced = 1;
1649 		}
1650 	}
1651 
1652 	if (cpu_mitigations_off() && !__kpti_forced) {
1653 		str = "mitigations=off";
1654 		__kpti_forced = -1;
1655 	}
1656 
1657 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1658 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1659 		return false;
1660 	}
1661 
1662 	/* Forced? */
1663 	if (__kpti_forced) {
1664 		pr_info_once("kernel page table isolation forced %s by %s\n",
1665 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1666 		return __kpti_forced > 0;
1667 	}
1668 
1669 	return !meltdown_safe;
1670 }
1671 
1672 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1673 #define KPTI_NG_TEMP_VA		(-(1UL << PMD_SHIFT))
1674 
1675 extern
1676 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1677 			     phys_addr_t size, pgprot_t prot,
1678 			     phys_addr_t (*pgtable_alloc)(int), int flags);
1679 
1680 static phys_addr_t kpti_ng_temp_alloc;
1681 
1682 static phys_addr_t kpti_ng_pgd_alloc(int shift)
1683 {
1684 	kpti_ng_temp_alloc -= PAGE_SIZE;
1685 	return kpti_ng_temp_alloc;
1686 }
1687 
1688 static void __nocfi
1689 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1690 {
1691 	typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1692 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1693 	kpti_remap_fn *remap_fn;
1694 
1695 	int cpu = smp_processor_id();
1696 	int levels = CONFIG_PGTABLE_LEVELS;
1697 	int order = order_base_2(levels);
1698 	u64 kpti_ng_temp_pgd_pa = 0;
1699 	pgd_t *kpti_ng_temp_pgd;
1700 	u64 alloc = 0;
1701 
1702 	if (__this_cpu_read(this_cpu_vector) == vectors) {
1703 		const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1704 
1705 		__this_cpu_write(this_cpu_vector, v);
1706 	}
1707 
1708 	/*
1709 	 * We don't need to rewrite the page-tables if either we've done
1710 	 * it already or we have KASLR enabled and therefore have not
1711 	 * created any global mappings at all.
1712 	 */
1713 	if (arm64_use_ng_mappings)
1714 		return;
1715 
1716 	remap_fn = (void *)__pa_symbol(function_nocfi(idmap_kpti_install_ng_mappings));
1717 
1718 	if (!cpu) {
1719 		alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1720 		kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1721 		kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1722 
1723 		//
1724 		// Create a minimal page table hierarchy that permits us to map
1725 		// the swapper page tables temporarily as we traverse them.
1726 		//
1727 		// The physical pages are laid out as follows:
1728 		//
1729 		// +--------+-/-------+-/------ +-\\--------+
1730 		// :  PTE[] : | PMD[] : | PUD[] : || PGD[]  :
1731 		// +--------+-\-------+-\------ +-//--------+
1732 		//      ^
1733 		// The first page is mapped into this hierarchy at a PMD_SHIFT
1734 		// aligned virtual address, so that we can manipulate the PTE
1735 		// level entries while the mapping is active. The first entry
1736 		// covers the PTE[] page itself, the remaining entries are free
1737 		// to be used as a ad-hoc fixmap.
1738 		//
1739 		create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1740 					KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1741 					kpti_ng_pgd_alloc, 0);
1742 	}
1743 
1744 	cpu_install_idmap();
1745 	remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1746 	cpu_uninstall_idmap();
1747 
1748 	if (!cpu) {
1749 		free_pages(alloc, order);
1750 		arm64_use_ng_mappings = true;
1751 	}
1752 }
1753 #else
1754 static void
1755 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1756 {
1757 }
1758 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1759 
1760 static int __init parse_kpti(char *str)
1761 {
1762 	bool enabled;
1763 	int ret = strtobool(str, &enabled);
1764 
1765 	if (ret)
1766 		return ret;
1767 
1768 	__kpti_forced = enabled ? 1 : -1;
1769 	return 0;
1770 }
1771 early_param("kpti", parse_kpti);
1772 
1773 #ifdef CONFIG_ARM64_HW_AFDBM
1774 static inline void __cpu_enable_hw_dbm(void)
1775 {
1776 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1777 
1778 	write_sysreg(tcr, tcr_el1);
1779 	isb();
1780 	local_flush_tlb_all();
1781 }
1782 
1783 static bool cpu_has_broken_dbm(void)
1784 {
1785 	/* List of CPUs which have broken DBM support. */
1786 	static const struct midr_range cpus[] = {
1787 #ifdef CONFIG_ARM64_ERRATUM_1024718
1788 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1789 		/* Kryo4xx Silver (rdpe => r1p0) */
1790 		MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1791 #endif
1792 #ifdef CONFIG_ARM64_ERRATUM_2051678
1793 		MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1794 #endif
1795 		{},
1796 	};
1797 
1798 	return is_midr_in_range_list(read_cpuid_id(), cpus);
1799 }
1800 
1801 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1802 {
1803 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1804 	       !cpu_has_broken_dbm();
1805 }
1806 
1807 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1808 {
1809 	if (cpu_can_use_dbm(cap))
1810 		__cpu_enable_hw_dbm();
1811 }
1812 
1813 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1814 		       int __unused)
1815 {
1816 	static bool detected = false;
1817 	/*
1818 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
1819 	 * run a mix of CPUs with and without the feature. So, we
1820 	 * unconditionally enable the capability to allow any late CPU
1821 	 * to use the feature. We only enable the control bits on the
1822 	 * CPU, if it actually supports.
1823 	 *
1824 	 * We have to make sure we print the "feature" detection only
1825 	 * when at least one CPU actually uses it. So check if this CPU
1826 	 * can actually use it and print the message exactly once.
1827 	 *
1828 	 * This is safe as all CPUs (including secondary CPUs - due to the
1829 	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1830 	 * goes through the "matches" check exactly once. Also if a CPU
1831 	 * matches the criteria, it is guaranteed that the CPU will turn
1832 	 * the DBM on, as the capability is unconditionally enabled.
1833 	 */
1834 	if (!detected && cpu_can_use_dbm(cap)) {
1835 		detected = true;
1836 		pr_info("detected: Hardware dirty bit management\n");
1837 	}
1838 
1839 	return true;
1840 }
1841 
1842 #endif
1843 
1844 #ifdef CONFIG_ARM64_AMU_EXTN
1845 
1846 /*
1847  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1848  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1849  * information regarding all the events that it supports. When a CPU bit is
1850  * set in the cpumask, the user of this feature can only rely on the presence
1851  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1852  * counters are enabled or access to these counters is enabled by code
1853  * executed at higher exception levels (firmware).
1854  */
1855 static struct cpumask amu_cpus __read_mostly;
1856 
1857 bool cpu_has_amu_feat(int cpu)
1858 {
1859 	return cpumask_test_cpu(cpu, &amu_cpus);
1860 }
1861 
1862 int get_cpu_with_amu_feat(void)
1863 {
1864 	return cpumask_any(&amu_cpus);
1865 }
1866 
1867 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1868 {
1869 	if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1870 		pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1871 			smp_processor_id());
1872 		cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1873 
1874 		/* 0 reference values signal broken/disabled counters */
1875 		if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
1876 			update_freq_counters_refs();
1877 	}
1878 }
1879 
1880 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1881 		    int __unused)
1882 {
1883 	/*
1884 	 * The AMU extension is a non-conflicting feature: the kernel can
1885 	 * safely run a mix of CPUs with and without support for the
1886 	 * activity monitors extension. Therefore, unconditionally enable
1887 	 * the capability to allow any late CPU to use the feature.
1888 	 *
1889 	 * With this feature unconditionally enabled, the cpu_enable
1890 	 * function will be called for all CPUs that match the criteria,
1891 	 * including secondary and hotplugged, marking this feature as
1892 	 * present on that respective CPU. The enable function will also
1893 	 * print a detection message.
1894 	 */
1895 
1896 	return true;
1897 }
1898 #else
1899 int get_cpu_with_amu_feat(void)
1900 {
1901 	return nr_cpu_ids;
1902 }
1903 #endif
1904 
1905 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1906 {
1907 	return is_kernel_in_hyp_mode();
1908 }
1909 
1910 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1911 {
1912 	/*
1913 	 * Copy register values that aren't redirected by hardware.
1914 	 *
1915 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1916 	 * this value to tpidr_el2 before we patch the code. Once we've done
1917 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1918 	 * do anything here.
1919 	 */
1920 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1921 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1922 }
1923 
1924 #ifdef CONFIG_ARM64_PAN
1925 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1926 {
1927 	/*
1928 	 * We modify PSTATE. This won't work from irq context as the PSTATE
1929 	 * is discarded once we return from the exception.
1930 	 */
1931 	WARN_ON_ONCE(in_interrupt());
1932 
1933 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1934 	set_pstate_pan(1);
1935 }
1936 #endif /* CONFIG_ARM64_PAN */
1937 
1938 #ifdef CONFIG_ARM64_RAS_EXTN
1939 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1940 {
1941 	/* Firmware may have left a deferred SError in this register. */
1942 	write_sysreg_s(0, SYS_DISR_EL1);
1943 }
1944 #endif /* CONFIG_ARM64_RAS_EXTN */
1945 
1946 #ifdef CONFIG_ARM64_PTR_AUTH
1947 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1948 {
1949 	int boot_val, sec_val;
1950 
1951 	/* We don't expect to be called with SCOPE_SYSTEM */
1952 	WARN_ON(scope == SCOPE_SYSTEM);
1953 	/*
1954 	 * The ptr-auth feature levels are not intercompatible with lower
1955 	 * levels. Hence we must match ptr-auth feature level of the secondary
1956 	 * CPUs with that of the boot CPU. The level of boot cpu is fetched
1957 	 * from the sanitised register whereas direct register read is done for
1958 	 * the secondary CPUs.
1959 	 * The sanitised feature state is guaranteed to match that of the
1960 	 * boot CPU as a mismatched secondary CPU is parked before it gets
1961 	 * a chance to update the state, with the capability.
1962 	 */
1963 	boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1964 					       entry->field_pos, entry->sign);
1965 	if (scope & SCOPE_BOOT_CPU)
1966 		return boot_val >= entry->min_field_value;
1967 	/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1968 	sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1969 					      entry->field_pos, entry->sign);
1970 	return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
1971 }
1972 
1973 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1974 				     int scope)
1975 {
1976 	bool api = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1977 	bool apa = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
1978 	bool apa3 = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
1979 
1980 	return apa || apa3 || api;
1981 }
1982 
1983 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1984 			     int __unused)
1985 {
1986 	bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1987 	bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
1988 	bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
1989 
1990 	return gpa || gpa3 || gpi;
1991 }
1992 #endif /* CONFIG_ARM64_PTR_AUTH */
1993 
1994 #ifdef CONFIG_ARM64_E0PD
1995 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1996 {
1997 	if (this_cpu_has_cap(ARM64_HAS_E0PD))
1998 		sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1999 }
2000 #endif /* CONFIG_ARM64_E0PD */
2001 
2002 #ifdef CONFIG_ARM64_PSEUDO_NMI
2003 static bool enable_pseudo_nmi;
2004 
2005 static int __init early_enable_pseudo_nmi(char *p)
2006 {
2007 	return strtobool(p, &enable_pseudo_nmi);
2008 }
2009 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
2010 
2011 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2012 				   int scope)
2013 {
2014 	return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
2015 }
2016 #endif
2017 
2018 #ifdef CONFIG_ARM64_BTI
2019 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2020 {
2021 	/*
2022 	 * Use of X16/X17 for tail-calls and trampolines that jump to
2023 	 * function entry points using BR is a requirement for
2024 	 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2025 	 * So, be strict and forbid other BRs using other registers to
2026 	 * jump onto a PACIxSP instruction:
2027 	 */
2028 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2029 	isb();
2030 }
2031 #endif /* CONFIG_ARM64_BTI */
2032 
2033 #ifdef CONFIG_ARM64_MTE
2034 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2035 {
2036 	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2037 	isb();
2038 
2039 	/*
2040 	 * Clear the tags in the zero page. This needs to be done via the
2041 	 * linear map which has the Tagged attribute.
2042 	 */
2043 	if (!test_and_set_bit(PG_mte_tagged, &ZERO_PAGE(0)->flags))
2044 		mte_clear_page_tags(lm_alias(empty_zero_page));
2045 
2046 	kasan_init_hw_tags_cpu();
2047 }
2048 #endif /* CONFIG_ARM64_MTE */
2049 
2050 static void elf_hwcap_fixup(void)
2051 {
2052 #ifdef CONFIG_ARM64_ERRATUM_1742098
2053 	if (cpus_have_const_cap(ARM64_WORKAROUND_1742098))
2054 		compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2055 #endif /* ARM64_ERRATUM_1742098 */
2056 }
2057 
2058 #ifdef CONFIG_KVM
2059 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2060 {
2061 	return kvm_get_mode() == KVM_MODE_PROTECTED;
2062 }
2063 #endif /* CONFIG_KVM */
2064 
2065 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2066 {
2067 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2068 }
2069 
2070 /* Internal helper functions to match cpu capability type */
2071 static bool
2072 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2073 {
2074 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2075 }
2076 
2077 static bool
2078 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2079 {
2080 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2081 }
2082 
2083 static bool
2084 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2085 {
2086 	return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2087 }
2088 
2089 static const struct arm64_cpu_capabilities arm64_features[] = {
2090 	{
2091 		.desc = "GIC system register CPU interface",
2092 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
2093 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2094 		.matches = has_useable_gicv3_cpuif,
2095 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2096 		.field_pos = ID_AA64PFR0_EL1_GIC_SHIFT,
2097 		.field_width = 4,
2098 		.sign = FTR_UNSIGNED,
2099 		.min_field_value = 1,
2100 	},
2101 	{
2102 		.desc = "Enhanced Counter Virtualization",
2103 		.capability = ARM64_HAS_ECV,
2104 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2105 		.matches = has_cpuid_feature,
2106 		.sys_reg = SYS_ID_AA64MMFR0_EL1,
2107 		.field_pos = ID_AA64MMFR0_EL1_ECV_SHIFT,
2108 		.field_width = 4,
2109 		.sign = FTR_UNSIGNED,
2110 		.min_field_value = 1,
2111 	},
2112 #ifdef CONFIG_ARM64_PAN
2113 	{
2114 		.desc = "Privileged Access Never",
2115 		.capability = ARM64_HAS_PAN,
2116 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2117 		.matches = has_cpuid_feature,
2118 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2119 		.field_pos = ID_AA64MMFR1_EL1_PAN_SHIFT,
2120 		.field_width = 4,
2121 		.sign = FTR_UNSIGNED,
2122 		.min_field_value = 1,
2123 		.cpu_enable = cpu_enable_pan,
2124 	},
2125 #endif /* CONFIG_ARM64_PAN */
2126 #ifdef CONFIG_ARM64_EPAN
2127 	{
2128 		.desc = "Enhanced Privileged Access Never",
2129 		.capability = ARM64_HAS_EPAN,
2130 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2131 		.matches = has_cpuid_feature,
2132 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2133 		.field_pos = ID_AA64MMFR1_EL1_PAN_SHIFT,
2134 		.field_width = 4,
2135 		.sign = FTR_UNSIGNED,
2136 		.min_field_value = 3,
2137 	},
2138 #endif /* CONFIG_ARM64_EPAN */
2139 #ifdef CONFIG_ARM64_LSE_ATOMICS
2140 	{
2141 		.desc = "LSE atomic instructions",
2142 		.capability = ARM64_HAS_LSE_ATOMICS,
2143 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2144 		.matches = has_cpuid_feature,
2145 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2146 		.field_pos = ID_AA64ISAR0_EL1_ATOMIC_SHIFT,
2147 		.field_width = 4,
2148 		.sign = FTR_UNSIGNED,
2149 		.min_field_value = 2,
2150 	},
2151 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2152 	{
2153 		.desc = "Software prefetching using PRFM",
2154 		.capability = ARM64_HAS_NO_HW_PREFETCH,
2155 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2156 		.matches = has_no_hw_prefetch,
2157 	},
2158 	{
2159 		.desc = "Virtualization Host Extensions",
2160 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
2161 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2162 		.matches = runs_at_el2,
2163 		.cpu_enable = cpu_copy_el2regs,
2164 	},
2165 	{
2166 		.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2167 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2168 		.matches = has_32bit_el0,
2169 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2170 		.sign = FTR_UNSIGNED,
2171 		.field_pos = ID_AA64PFR0_EL1_EL0_SHIFT,
2172 		.field_width = 4,
2173 		.min_field_value = ID_AA64PFR0_EL1_ELx_32BIT_64BIT,
2174 	},
2175 #ifdef CONFIG_KVM
2176 	{
2177 		.desc = "32-bit EL1 Support",
2178 		.capability = ARM64_HAS_32BIT_EL1,
2179 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2180 		.matches = has_cpuid_feature,
2181 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2182 		.sign = FTR_UNSIGNED,
2183 		.field_pos = ID_AA64PFR0_EL1_EL1_SHIFT,
2184 		.field_width = 4,
2185 		.min_field_value = ID_AA64PFR0_EL1_ELx_32BIT_64BIT,
2186 	},
2187 	{
2188 		.desc = "Protected KVM",
2189 		.capability = ARM64_KVM_PROTECTED_MODE,
2190 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2191 		.matches = is_kvm_protected_mode,
2192 	},
2193 #endif
2194 	{
2195 		.desc = "Kernel page table isolation (KPTI)",
2196 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
2197 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2198 		/*
2199 		 * The ID feature fields below are used to indicate that
2200 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2201 		 * more details.
2202 		 */
2203 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2204 		.field_pos = ID_AA64PFR0_EL1_CSV3_SHIFT,
2205 		.field_width = 4,
2206 		.min_field_value = 1,
2207 		.matches = unmap_kernel_at_el0,
2208 		.cpu_enable = kpti_install_ng_mappings,
2209 	},
2210 	{
2211 		/* FP/SIMD is not implemented */
2212 		.capability = ARM64_HAS_NO_FPSIMD,
2213 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2214 		.min_field_value = 0,
2215 		.matches = has_no_fpsimd,
2216 	},
2217 #ifdef CONFIG_ARM64_PMEM
2218 	{
2219 		.desc = "Data cache clean to Point of Persistence",
2220 		.capability = ARM64_HAS_DCPOP,
2221 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2222 		.matches = has_cpuid_feature,
2223 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2224 		.field_pos = ID_AA64ISAR1_EL1_DPB_SHIFT,
2225 		.field_width = 4,
2226 		.min_field_value = 1,
2227 	},
2228 	{
2229 		.desc = "Data cache clean to Point of Deep Persistence",
2230 		.capability = ARM64_HAS_DCPODP,
2231 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2232 		.matches = has_cpuid_feature,
2233 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2234 		.sign = FTR_UNSIGNED,
2235 		.field_pos = ID_AA64ISAR1_EL1_DPB_SHIFT,
2236 		.field_width = 4,
2237 		.min_field_value = 2,
2238 	},
2239 #endif
2240 #ifdef CONFIG_ARM64_SVE
2241 	{
2242 		.desc = "Scalable Vector Extension",
2243 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2244 		.capability = ARM64_SVE,
2245 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2246 		.sign = FTR_UNSIGNED,
2247 		.field_pos = ID_AA64PFR0_EL1_SVE_SHIFT,
2248 		.field_width = 4,
2249 		.min_field_value = ID_AA64PFR0_EL1_SVE_IMP,
2250 		.matches = has_cpuid_feature,
2251 		.cpu_enable = sve_kernel_enable,
2252 	},
2253 #endif /* CONFIG_ARM64_SVE */
2254 #ifdef CONFIG_ARM64_RAS_EXTN
2255 	{
2256 		.desc = "RAS Extension Support",
2257 		.capability = ARM64_HAS_RAS_EXTN,
2258 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2259 		.matches = has_cpuid_feature,
2260 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2261 		.sign = FTR_UNSIGNED,
2262 		.field_pos = ID_AA64PFR0_EL1_RAS_SHIFT,
2263 		.field_width = 4,
2264 		.min_field_value = ID_AA64PFR0_EL1_RAS_IMP,
2265 		.cpu_enable = cpu_clear_disr,
2266 	},
2267 #endif /* CONFIG_ARM64_RAS_EXTN */
2268 #ifdef CONFIG_ARM64_AMU_EXTN
2269 	{
2270 		/*
2271 		 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
2272 		 * Therefore, don't provide .desc as we don't want the detection
2273 		 * message to be shown until at least one CPU is detected to
2274 		 * support the feature.
2275 		 */
2276 		.capability = ARM64_HAS_AMU_EXTN,
2277 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2278 		.matches = has_amu,
2279 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2280 		.sign = FTR_UNSIGNED,
2281 		.field_pos = ID_AA64PFR0_EL1_AMU_SHIFT,
2282 		.field_width = 4,
2283 		.min_field_value = ID_AA64PFR0_EL1_AMU_IMP,
2284 		.cpu_enable = cpu_amu_enable,
2285 	},
2286 #endif /* CONFIG_ARM64_AMU_EXTN */
2287 	{
2288 		.desc = "Data cache clean to the PoU not required for I/D coherence",
2289 		.capability = ARM64_HAS_CACHE_IDC,
2290 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2291 		.matches = has_cache_idc,
2292 		.cpu_enable = cpu_emulate_effective_ctr,
2293 	},
2294 	{
2295 		.desc = "Instruction cache invalidation not required for I/D coherence",
2296 		.capability = ARM64_HAS_CACHE_DIC,
2297 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2298 		.matches = has_cache_dic,
2299 	},
2300 	{
2301 		.desc = "Stage-2 Force Write-Back",
2302 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2303 		.capability = ARM64_HAS_STAGE2_FWB,
2304 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2305 		.sign = FTR_UNSIGNED,
2306 		.field_pos = ID_AA64MMFR2_EL1_FWB_SHIFT,
2307 		.field_width = 4,
2308 		.min_field_value = 1,
2309 		.matches = has_cpuid_feature,
2310 	},
2311 	{
2312 		.desc = "ARMv8.4 Translation Table Level",
2313 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2314 		.capability = ARM64_HAS_ARMv8_4_TTL,
2315 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2316 		.sign = FTR_UNSIGNED,
2317 		.field_pos = ID_AA64MMFR2_EL1_TTL_SHIFT,
2318 		.field_width = 4,
2319 		.min_field_value = 1,
2320 		.matches = has_cpuid_feature,
2321 	},
2322 	{
2323 		.desc = "TLB range maintenance instructions",
2324 		.capability = ARM64_HAS_TLB_RANGE,
2325 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2326 		.matches = has_cpuid_feature,
2327 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2328 		.field_pos = ID_AA64ISAR0_EL1_TLB_SHIFT,
2329 		.field_width = 4,
2330 		.sign = FTR_UNSIGNED,
2331 		.min_field_value = ID_AA64ISAR0_EL1_TLB_RANGE,
2332 	},
2333 #ifdef CONFIG_ARM64_HW_AFDBM
2334 	{
2335 		/*
2336 		 * Since we turn this on always, we don't want the user to
2337 		 * think that the feature is available when it may not be.
2338 		 * So hide the description.
2339 		 *
2340 		 * .desc = "Hardware pagetable Dirty Bit Management",
2341 		 *
2342 		 */
2343 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2344 		.capability = ARM64_HW_DBM,
2345 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2346 		.sign = FTR_UNSIGNED,
2347 		.field_pos = ID_AA64MMFR1_EL1_HAFDBS_SHIFT,
2348 		.field_width = 4,
2349 		.min_field_value = 2,
2350 		.matches = has_hw_dbm,
2351 		.cpu_enable = cpu_enable_hw_dbm,
2352 	},
2353 #endif
2354 	{
2355 		.desc = "CRC32 instructions",
2356 		.capability = ARM64_HAS_CRC32,
2357 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2358 		.matches = has_cpuid_feature,
2359 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2360 		.field_pos = ID_AA64ISAR0_EL1_CRC32_SHIFT,
2361 		.field_width = 4,
2362 		.min_field_value = 1,
2363 	},
2364 	{
2365 		.desc = "Speculative Store Bypassing Safe (SSBS)",
2366 		.capability = ARM64_SSBS,
2367 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2368 		.matches = has_cpuid_feature,
2369 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2370 		.field_pos = ID_AA64PFR1_EL1_SSBS_SHIFT,
2371 		.field_width = 4,
2372 		.sign = FTR_UNSIGNED,
2373 		.min_field_value = ID_AA64PFR1_EL1_SSBS_IMP,
2374 	},
2375 #ifdef CONFIG_ARM64_CNP
2376 	{
2377 		.desc = "Common not Private translations",
2378 		.capability = ARM64_HAS_CNP,
2379 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2380 		.matches = has_useable_cnp,
2381 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2382 		.sign = FTR_UNSIGNED,
2383 		.field_pos = ID_AA64MMFR2_EL1_CnP_SHIFT,
2384 		.field_width = 4,
2385 		.min_field_value = 1,
2386 		.cpu_enable = cpu_enable_cnp,
2387 	},
2388 #endif
2389 	{
2390 		.desc = "Speculation barrier (SB)",
2391 		.capability = ARM64_HAS_SB,
2392 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2393 		.matches = has_cpuid_feature,
2394 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2395 		.field_pos = ID_AA64ISAR1_EL1_SB_SHIFT,
2396 		.field_width = 4,
2397 		.sign = FTR_UNSIGNED,
2398 		.min_field_value = 1,
2399 	},
2400 #ifdef CONFIG_ARM64_PTR_AUTH
2401 	{
2402 		.desc = "Address authentication (architected QARMA5 algorithm)",
2403 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2404 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2405 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2406 		.sign = FTR_UNSIGNED,
2407 		.field_pos = ID_AA64ISAR1_EL1_APA_SHIFT,
2408 		.field_width = 4,
2409 		.min_field_value = ID_AA64ISAR1_EL1_APA_PAuth,
2410 		.matches = has_address_auth_cpucap,
2411 	},
2412 	{
2413 		.desc = "Address authentication (architected QARMA3 algorithm)",
2414 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2415 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2416 		.sys_reg = SYS_ID_AA64ISAR2_EL1,
2417 		.sign = FTR_UNSIGNED,
2418 		.field_pos = ID_AA64ISAR2_EL1_APA3_SHIFT,
2419 		.field_width = 4,
2420 		.min_field_value = ID_AA64ISAR2_EL1_APA3_PAuth,
2421 		.matches = has_address_auth_cpucap,
2422 	},
2423 	{
2424 		.desc = "Address authentication (IMP DEF algorithm)",
2425 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2426 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2427 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2428 		.sign = FTR_UNSIGNED,
2429 		.field_pos = ID_AA64ISAR1_EL1_API_SHIFT,
2430 		.field_width = 4,
2431 		.min_field_value = ID_AA64ISAR1_EL1_API_PAuth,
2432 		.matches = has_address_auth_cpucap,
2433 	},
2434 	{
2435 		.capability = ARM64_HAS_ADDRESS_AUTH,
2436 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2437 		.matches = has_address_auth_metacap,
2438 	},
2439 	{
2440 		.desc = "Generic authentication (architected QARMA5 algorithm)",
2441 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2442 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2443 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2444 		.sign = FTR_UNSIGNED,
2445 		.field_pos = ID_AA64ISAR1_EL1_GPA_SHIFT,
2446 		.field_width = 4,
2447 		.min_field_value = ID_AA64ISAR1_EL1_GPA_IMP,
2448 		.matches = has_cpuid_feature,
2449 	},
2450 	{
2451 		.desc = "Generic authentication (architected QARMA3 algorithm)",
2452 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2453 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2454 		.sys_reg = SYS_ID_AA64ISAR2_EL1,
2455 		.sign = FTR_UNSIGNED,
2456 		.field_pos = ID_AA64ISAR2_EL1_GPA3_SHIFT,
2457 		.field_width = 4,
2458 		.min_field_value = ID_AA64ISAR2_EL1_GPA3_IMP,
2459 		.matches = has_cpuid_feature,
2460 	},
2461 	{
2462 		.desc = "Generic authentication (IMP DEF algorithm)",
2463 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2464 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2465 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2466 		.sign = FTR_UNSIGNED,
2467 		.field_pos = ID_AA64ISAR1_EL1_GPI_SHIFT,
2468 		.field_width = 4,
2469 		.min_field_value = ID_AA64ISAR1_EL1_GPI_IMP,
2470 		.matches = has_cpuid_feature,
2471 	},
2472 	{
2473 		.capability = ARM64_HAS_GENERIC_AUTH,
2474 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2475 		.matches = has_generic_auth,
2476 	},
2477 #endif /* CONFIG_ARM64_PTR_AUTH */
2478 #ifdef CONFIG_ARM64_PSEUDO_NMI
2479 	{
2480 		/*
2481 		 * Depends on having GICv3
2482 		 */
2483 		.desc = "IRQ priority masking",
2484 		.capability = ARM64_HAS_IRQ_PRIO_MASKING,
2485 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2486 		.matches = can_use_gic_priorities,
2487 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2488 		.field_pos = ID_AA64PFR0_EL1_GIC_SHIFT,
2489 		.field_width = 4,
2490 		.sign = FTR_UNSIGNED,
2491 		.min_field_value = 1,
2492 	},
2493 #endif
2494 #ifdef CONFIG_ARM64_E0PD
2495 	{
2496 		.desc = "E0PD",
2497 		.capability = ARM64_HAS_E0PD,
2498 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2499 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2500 		.sign = FTR_UNSIGNED,
2501 		.field_width = 4,
2502 		.field_pos = ID_AA64MMFR2_EL1_E0PD_SHIFT,
2503 		.matches = has_cpuid_feature,
2504 		.min_field_value = 1,
2505 		.cpu_enable = cpu_enable_e0pd,
2506 	},
2507 #endif
2508 	{
2509 		.desc = "Random Number Generator",
2510 		.capability = ARM64_HAS_RNG,
2511 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2512 		.matches = has_cpuid_feature,
2513 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2514 		.field_pos = ID_AA64ISAR0_EL1_RNDR_SHIFT,
2515 		.field_width = 4,
2516 		.sign = FTR_UNSIGNED,
2517 		.min_field_value = 1,
2518 	},
2519 #ifdef CONFIG_ARM64_BTI
2520 	{
2521 		.desc = "Branch Target Identification",
2522 		.capability = ARM64_BTI,
2523 #ifdef CONFIG_ARM64_BTI_KERNEL
2524 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2525 #else
2526 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2527 #endif
2528 		.matches = has_cpuid_feature,
2529 		.cpu_enable = bti_enable,
2530 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2531 		.field_pos = ID_AA64PFR1_EL1_BT_SHIFT,
2532 		.field_width = 4,
2533 		.min_field_value = ID_AA64PFR1_EL1_BT_IMP,
2534 		.sign = FTR_UNSIGNED,
2535 	},
2536 #endif
2537 #ifdef CONFIG_ARM64_MTE
2538 	{
2539 		.desc = "Memory Tagging Extension",
2540 		.capability = ARM64_MTE,
2541 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2542 		.matches = has_cpuid_feature,
2543 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2544 		.field_pos = ID_AA64PFR1_EL1_MTE_SHIFT,
2545 		.field_width = 4,
2546 		.min_field_value = ID_AA64PFR1_EL1_MTE_MTE2,
2547 		.sign = FTR_UNSIGNED,
2548 		.cpu_enable = cpu_enable_mte,
2549 	},
2550 	{
2551 		.desc = "Asymmetric MTE Tag Check Fault",
2552 		.capability = ARM64_MTE_ASYMM,
2553 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2554 		.matches = has_cpuid_feature,
2555 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2556 		.field_pos = ID_AA64PFR1_EL1_MTE_SHIFT,
2557 		.field_width = 4,
2558 		.min_field_value = ID_AA64PFR1_EL1_MTE_MTE3,
2559 		.sign = FTR_UNSIGNED,
2560 	},
2561 #endif /* CONFIG_ARM64_MTE */
2562 	{
2563 		.desc = "RCpc load-acquire (LDAPR)",
2564 		.capability = ARM64_HAS_LDAPR,
2565 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2566 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2567 		.sign = FTR_UNSIGNED,
2568 		.field_pos = ID_AA64ISAR1_EL1_LRCPC_SHIFT,
2569 		.field_width = 4,
2570 		.matches = has_cpuid_feature,
2571 		.min_field_value = 1,
2572 	},
2573 #ifdef CONFIG_ARM64_SME
2574 	{
2575 		.desc = "Scalable Matrix Extension",
2576 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2577 		.capability = ARM64_SME,
2578 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2579 		.sign = FTR_UNSIGNED,
2580 		.field_pos = ID_AA64PFR1_EL1_SME_SHIFT,
2581 		.field_width = 4,
2582 		.min_field_value = ID_AA64PFR1_EL1_SME_IMP,
2583 		.matches = has_cpuid_feature,
2584 		.cpu_enable = sme_kernel_enable,
2585 	},
2586 	/* FA64 should be sorted after the base SME capability */
2587 	{
2588 		.desc = "FA64",
2589 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2590 		.capability = ARM64_SME_FA64,
2591 		.sys_reg = SYS_ID_AA64SMFR0_EL1,
2592 		.sign = FTR_UNSIGNED,
2593 		.field_pos = ID_AA64SMFR0_EL1_FA64_SHIFT,
2594 		.field_width = 1,
2595 		.min_field_value = ID_AA64SMFR0_EL1_FA64_IMP,
2596 		.matches = has_cpuid_feature,
2597 		.cpu_enable = fa64_kernel_enable,
2598 	},
2599 #endif /* CONFIG_ARM64_SME */
2600 	{
2601 		.desc = "WFx with timeout",
2602 		.capability = ARM64_HAS_WFXT,
2603 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2604 		.sys_reg = SYS_ID_AA64ISAR2_EL1,
2605 		.sign = FTR_UNSIGNED,
2606 		.field_pos = ID_AA64ISAR2_EL1_WFxT_SHIFT,
2607 		.field_width = 4,
2608 		.matches = has_cpuid_feature,
2609 		.min_field_value = ID_AA64ISAR2_EL1_WFxT_IMP,
2610 	},
2611 	{
2612 		.desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2613 		.capability = ARM64_HAS_TIDCP1,
2614 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2615 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2616 		.sign = FTR_UNSIGNED,
2617 		.field_pos = ID_AA64MMFR1_EL1_TIDCP1_SHIFT,
2618 		.field_width = 4,
2619 		.min_field_value = ID_AA64MMFR1_EL1_TIDCP1_IMP,
2620 		.matches = has_cpuid_feature,
2621 		.cpu_enable = cpu_trap_el0_impdef,
2622 	},
2623 	{},
2624 };
2625 
2626 #define HWCAP_CPUID_MATCH(reg, field, width, s, min_value)			\
2627 		.matches = has_cpuid_feature,					\
2628 		.sys_reg = reg,							\
2629 		.field_pos = field,						\
2630 		.field_width = width,						\
2631 		.sign = s,							\
2632 		.min_field_value = min_value,
2633 
2634 #define __HWCAP_CAP(name, cap_type, cap)					\
2635 		.desc = name,							\
2636 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
2637 		.hwcap_type = cap_type,						\
2638 		.hwcap = cap,							\
2639 
2640 #define HWCAP_CAP(reg, field, width, s, min_value, cap_type, cap)		\
2641 	{									\
2642 		__HWCAP_CAP(#cap, cap_type, cap)				\
2643 		HWCAP_CPUID_MATCH(reg, field, width, s, min_value) 		\
2644 	}
2645 
2646 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
2647 	{									\
2648 		__HWCAP_CAP(#cap, cap_type, cap)				\
2649 		.matches = cpucap_multi_entry_cap_matches,			\
2650 		.match_list = list,						\
2651 	}
2652 
2653 #define HWCAP_CAP_MATCH(match, cap_type, cap)					\
2654 	{									\
2655 		__HWCAP_CAP(#cap, cap_type, cap)				\
2656 		.matches = match,						\
2657 	}
2658 
2659 #ifdef CONFIG_ARM64_PTR_AUTH
2660 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2661 	{
2662 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_APA_SHIFT,
2663 				  4, FTR_UNSIGNED,
2664 				  ID_AA64ISAR1_EL1_APA_PAuth)
2665 	},
2666 	{
2667 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_APA3_SHIFT,
2668 				  4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_APA3_PAuth)
2669 	},
2670 	{
2671 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_API_SHIFT,
2672 				  4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_API_PAuth)
2673 	},
2674 	{},
2675 };
2676 
2677 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2678 	{
2679 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_GPA_SHIFT,
2680 				  4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_GPA_IMP)
2681 	},
2682 	{
2683 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_GPA3_SHIFT,
2684 				  4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_GPA3_IMP)
2685 	},
2686 	{
2687 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_GPI_SHIFT,
2688 				  4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_GPI_IMP)
2689 	},
2690 	{},
2691 };
2692 #endif
2693 
2694 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2695 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2696 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2697 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2698 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2699 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2700 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2701 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2702 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2703 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2704 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2705 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2706 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_DP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2707 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2708 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2709 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2710 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2711 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_FP_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2712 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_FP_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2713 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2714 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2715 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_DIT_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2716 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2717 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2718 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2719 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2720 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2721 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2722 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2723 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_SB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2724 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2725 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_EBF16),
2726 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2727 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2728 	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_EL1_AT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2729 #ifdef CONFIG_ARM64_SVE
2730 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_SVE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR0_EL1_SVE_IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
2731 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SVEver_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2732 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_AES_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2733 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_AES_PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2734 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_BitPerm_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2735 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_BF16_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2736 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SHA3_IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2737 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SM4_IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2738 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_I8MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2739 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_F32MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2740 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_F64MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2741 #endif
2742 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_SSBS_SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2743 #ifdef CONFIG_ARM64_BTI
2744 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_BT_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_BT_IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
2745 #endif
2746 #ifdef CONFIG_ARM64_PTR_AUTH
2747 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2748 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2749 #endif
2750 #ifdef CONFIG_ARM64_MTE
2751 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_MTE_MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
2752 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_MTE_MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2753 #endif /* CONFIG_ARM64_MTE */
2754 	HWCAP_CAP(SYS_ID_AA64MMFR0_EL1, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ECV),
2755 	HWCAP_CAP(SYS_ID_AA64MMFR1_EL1, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AFP),
2756 	HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2757 	HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_WFxT_IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
2758 #ifdef CONFIG_ARM64_SME
2759 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_SME_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_SME_IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
2760 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_FA64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
2761 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_EL1_I16I64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
2762 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F64F64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
2763 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_EL1_I8I32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
2764 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F16F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
2765 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_B16F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
2766 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F32F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
2767 #endif /* CONFIG_ARM64_SME */
2768 	{},
2769 };
2770 
2771 #ifdef CONFIG_COMPAT
2772 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2773 {
2774 	/*
2775 	 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2776 	 * in line with that of arm32 as in vfp_init(). We make sure that the
2777 	 * check is future proof, by making sure value is non-zero.
2778 	 */
2779 	u32 mvfr1;
2780 
2781 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2782 	if (scope == SCOPE_SYSTEM)
2783 		mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2784 	else
2785 		mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2786 
2787 	return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2788 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2789 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2790 }
2791 #endif
2792 
2793 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2794 #ifdef CONFIG_COMPAT
2795 	HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2796 	HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2797 	/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2798 	HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2799 	HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2800 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2801 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2802 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2803 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2804 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2805 #endif
2806 	{},
2807 };
2808 
2809 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2810 {
2811 	switch (cap->hwcap_type) {
2812 	case CAP_HWCAP:
2813 		cpu_set_feature(cap->hwcap);
2814 		break;
2815 #ifdef CONFIG_COMPAT
2816 	case CAP_COMPAT_HWCAP:
2817 		compat_elf_hwcap |= (u32)cap->hwcap;
2818 		break;
2819 	case CAP_COMPAT_HWCAP2:
2820 		compat_elf_hwcap2 |= (u32)cap->hwcap;
2821 		break;
2822 #endif
2823 	default:
2824 		WARN_ON(1);
2825 		break;
2826 	}
2827 }
2828 
2829 /* Check if we have a particular HWCAP enabled */
2830 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2831 {
2832 	bool rc;
2833 
2834 	switch (cap->hwcap_type) {
2835 	case CAP_HWCAP:
2836 		rc = cpu_have_feature(cap->hwcap);
2837 		break;
2838 #ifdef CONFIG_COMPAT
2839 	case CAP_COMPAT_HWCAP:
2840 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2841 		break;
2842 	case CAP_COMPAT_HWCAP2:
2843 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2844 		break;
2845 #endif
2846 	default:
2847 		WARN_ON(1);
2848 		rc = false;
2849 	}
2850 
2851 	return rc;
2852 }
2853 
2854 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2855 {
2856 	/* We support emulation of accesses to CPU ID feature registers */
2857 	cpu_set_named_feature(CPUID);
2858 	for (; hwcaps->matches; hwcaps++)
2859 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2860 			cap_set_elf_hwcap(hwcaps);
2861 }
2862 
2863 static void update_cpu_capabilities(u16 scope_mask)
2864 {
2865 	int i;
2866 	const struct arm64_cpu_capabilities *caps;
2867 
2868 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2869 	for (i = 0; i < ARM64_NCAPS; i++) {
2870 		caps = cpu_hwcaps_ptrs[i];
2871 		if (!caps || !(caps->type & scope_mask) ||
2872 		    cpus_have_cap(caps->capability) ||
2873 		    !caps->matches(caps, cpucap_default_scope(caps)))
2874 			continue;
2875 
2876 		if (caps->desc)
2877 			pr_info("detected: %s\n", caps->desc);
2878 		cpus_set_cap(caps->capability);
2879 
2880 		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2881 			set_bit(caps->capability, boot_capabilities);
2882 	}
2883 }
2884 
2885 /*
2886  * Enable all the available capabilities on this CPU. The capabilities
2887  * with BOOT_CPU scope are handled separately and hence skipped here.
2888  */
2889 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2890 {
2891 	int i;
2892 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2893 
2894 	for_each_available_cap(i) {
2895 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2896 
2897 		if (WARN_ON(!cap))
2898 			continue;
2899 
2900 		if (!(cap->type & non_boot_scope))
2901 			continue;
2902 
2903 		if (cap->cpu_enable)
2904 			cap->cpu_enable(cap);
2905 	}
2906 	return 0;
2907 }
2908 
2909 /*
2910  * Run through the enabled capabilities and enable() it on all active
2911  * CPUs
2912  */
2913 static void __init enable_cpu_capabilities(u16 scope_mask)
2914 {
2915 	int i;
2916 	const struct arm64_cpu_capabilities *caps;
2917 	bool boot_scope;
2918 
2919 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2920 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2921 
2922 	for (i = 0; i < ARM64_NCAPS; i++) {
2923 		unsigned int num;
2924 
2925 		caps = cpu_hwcaps_ptrs[i];
2926 		if (!caps || !(caps->type & scope_mask))
2927 			continue;
2928 		num = caps->capability;
2929 		if (!cpus_have_cap(num))
2930 			continue;
2931 
2932 		/* Ensure cpus_have_const_cap(num) works */
2933 		static_branch_enable(&cpu_hwcap_keys[num]);
2934 
2935 		if (boot_scope && caps->cpu_enable)
2936 			/*
2937 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
2938 			 * before any secondary CPU boots. Thus, each secondary
2939 			 * will enable the capability as appropriate via
2940 			 * check_local_cpu_capabilities(). The only exception is
2941 			 * the boot CPU, for which the capability must be
2942 			 * enabled here. This approach avoids costly
2943 			 * stop_machine() calls for this case.
2944 			 */
2945 			caps->cpu_enable(caps);
2946 	}
2947 
2948 	/*
2949 	 * For all non-boot scope capabilities, use stop_machine()
2950 	 * as it schedules the work allowing us to modify PSTATE,
2951 	 * instead of on_each_cpu() which uses an IPI, giving us a
2952 	 * PSTATE that disappears when we return.
2953 	 */
2954 	if (!boot_scope)
2955 		stop_machine(cpu_enable_non_boot_scope_capabilities,
2956 			     NULL, cpu_online_mask);
2957 }
2958 
2959 /*
2960  * Run through the list of capabilities to check for conflicts.
2961  * If the system has already detected a capability, take necessary
2962  * action on this CPU.
2963  */
2964 static void verify_local_cpu_caps(u16 scope_mask)
2965 {
2966 	int i;
2967 	bool cpu_has_cap, system_has_cap;
2968 	const struct arm64_cpu_capabilities *caps;
2969 
2970 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2971 
2972 	for (i = 0; i < ARM64_NCAPS; i++) {
2973 		caps = cpu_hwcaps_ptrs[i];
2974 		if (!caps || !(caps->type & scope_mask))
2975 			continue;
2976 
2977 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2978 		system_has_cap = cpus_have_cap(caps->capability);
2979 
2980 		if (system_has_cap) {
2981 			/*
2982 			 * Check if the new CPU misses an advertised feature,
2983 			 * which is not safe to miss.
2984 			 */
2985 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2986 				break;
2987 			/*
2988 			 * We have to issue cpu_enable() irrespective of
2989 			 * whether the CPU has it or not, as it is enabeld
2990 			 * system wide. It is upto the call back to take
2991 			 * appropriate action on this CPU.
2992 			 */
2993 			if (caps->cpu_enable)
2994 				caps->cpu_enable(caps);
2995 		} else {
2996 			/*
2997 			 * Check if the CPU has this capability if it isn't
2998 			 * safe to have when the system doesn't.
2999 			 */
3000 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3001 				break;
3002 		}
3003 	}
3004 
3005 	if (i < ARM64_NCAPS) {
3006 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3007 			smp_processor_id(), caps->capability,
3008 			caps->desc, system_has_cap, cpu_has_cap);
3009 
3010 		if (cpucap_panic_on_conflict(caps))
3011 			cpu_panic_kernel();
3012 		else
3013 			cpu_die_early();
3014 	}
3015 }
3016 
3017 /*
3018  * Check for CPU features that are used in early boot
3019  * based on the Boot CPU value.
3020  */
3021 static void check_early_cpu_features(void)
3022 {
3023 	verify_cpu_asid_bits();
3024 
3025 	verify_local_cpu_caps(SCOPE_BOOT_CPU);
3026 }
3027 
3028 static void
3029 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3030 {
3031 
3032 	for (; caps->matches; caps++)
3033 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3034 			pr_crit("CPU%d: missing HWCAP: %s\n",
3035 					smp_processor_id(), caps->desc);
3036 			cpu_die_early();
3037 		}
3038 }
3039 
3040 static void verify_local_elf_hwcaps(void)
3041 {
3042 	__verify_local_elf_hwcaps(arm64_elf_hwcaps);
3043 
3044 	if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3045 		__verify_local_elf_hwcaps(compat_elf_hwcaps);
3046 }
3047 
3048 static void verify_sve_features(void)
3049 {
3050 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
3051 	u64 zcr = read_zcr_features();
3052 
3053 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
3054 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
3055 
3056 	if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) {
3057 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
3058 			smp_processor_id());
3059 		cpu_die_early();
3060 	}
3061 
3062 	/* Add checks on other ZCR bits here if necessary */
3063 }
3064 
3065 static void verify_sme_features(void)
3066 {
3067 	u64 safe_smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
3068 	u64 smcr = read_smcr_features();
3069 
3070 	unsigned int safe_len = safe_smcr & SMCR_ELx_LEN_MASK;
3071 	unsigned int len = smcr & SMCR_ELx_LEN_MASK;
3072 
3073 	if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SME)) {
3074 		pr_crit("CPU%d: SME: vector length support mismatch\n",
3075 			smp_processor_id());
3076 		cpu_die_early();
3077 	}
3078 
3079 	/* Add checks on other SMCR bits here if necessary */
3080 }
3081 
3082 static void verify_hyp_capabilities(void)
3083 {
3084 	u64 safe_mmfr1, mmfr0, mmfr1;
3085 	int parange, ipa_max;
3086 	unsigned int safe_vmid_bits, vmid_bits;
3087 
3088 	if (!IS_ENABLED(CONFIG_KVM))
3089 		return;
3090 
3091 	safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3092 	mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3093 	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3094 
3095 	/* Verify VMID bits */
3096 	safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3097 	vmid_bits = get_vmid_bits(mmfr1);
3098 	if (vmid_bits < safe_vmid_bits) {
3099 		pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3100 		cpu_die_early();
3101 	}
3102 
3103 	/* Verify IPA range */
3104 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
3105 				ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3106 	ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3107 	if (ipa_max < get_kvm_ipa_limit()) {
3108 		pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3109 		cpu_die_early();
3110 	}
3111 }
3112 
3113 /*
3114  * Run through the enabled system capabilities and enable() it on this CPU.
3115  * The capabilities were decided based on the available CPUs at the boot time.
3116  * Any new CPU should match the system wide status of the capability. If the
3117  * new CPU doesn't have a capability which the system now has enabled, we
3118  * cannot do anything to fix it up and could cause unexpected failures. So
3119  * we park the CPU.
3120  */
3121 static void verify_local_cpu_capabilities(void)
3122 {
3123 	/*
3124 	 * The capabilities with SCOPE_BOOT_CPU are checked from
3125 	 * check_early_cpu_features(), as they need to be verified
3126 	 * on all secondary CPUs.
3127 	 */
3128 	verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3129 	verify_local_elf_hwcaps();
3130 
3131 	if (system_supports_sve())
3132 		verify_sve_features();
3133 
3134 	if (system_supports_sme())
3135 		verify_sme_features();
3136 
3137 	if (is_hyp_mode_available())
3138 		verify_hyp_capabilities();
3139 }
3140 
3141 void check_local_cpu_capabilities(void)
3142 {
3143 	/*
3144 	 * All secondary CPUs should conform to the early CPU features
3145 	 * in use by the kernel based on boot CPU.
3146 	 */
3147 	check_early_cpu_features();
3148 
3149 	/*
3150 	 * If we haven't finalised the system capabilities, this CPU gets
3151 	 * a chance to update the errata work arounds and local features.
3152 	 * Otherwise, this CPU should verify that it has all the system
3153 	 * advertised capabilities.
3154 	 */
3155 	if (!system_capabilities_finalized())
3156 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
3157 	else
3158 		verify_local_cpu_capabilities();
3159 }
3160 
3161 static void __init setup_boot_cpu_capabilities(void)
3162 {
3163 	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
3164 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3165 	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
3166 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
3167 }
3168 
3169 bool this_cpu_has_cap(unsigned int n)
3170 {
3171 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3172 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
3173 
3174 		if (cap)
3175 			return cap->matches(cap, SCOPE_LOCAL_CPU);
3176 	}
3177 
3178 	return false;
3179 }
3180 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3181 
3182 /*
3183  * This helper function is used in a narrow window when,
3184  * - The system wide safe registers are set with all the SMP CPUs and,
3185  * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
3186  * In all other cases cpus_have_{const_}cap() should be used.
3187  */
3188 static bool __maybe_unused __system_matches_cap(unsigned int n)
3189 {
3190 	if (n < ARM64_NCAPS) {
3191 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
3192 
3193 		if (cap)
3194 			return cap->matches(cap, SCOPE_SYSTEM);
3195 	}
3196 	return false;
3197 }
3198 
3199 void cpu_set_feature(unsigned int num)
3200 {
3201 	set_bit(num, elf_hwcap);
3202 }
3203 
3204 bool cpu_have_feature(unsigned int num)
3205 {
3206 	return test_bit(num, elf_hwcap);
3207 }
3208 EXPORT_SYMBOL_GPL(cpu_have_feature);
3209 
3210 unsigned long cpu_get_elf_hwcap(void)
3211 {
3212 	/*
3213 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
3214 	 * note that for userspace compatibility we guarantee that bits 62
3215 	 * and 63 will always be returned as 0.
3216 	 */
3217 	return elf_hwcap[0];
3218 }
3219 
3220 unsigned long cpu_get_elf_hwcap2(void)
3221 {
3222 	return elf_hwcap[1];
3223 }
3224 
3225 static void __init setup_system_capabilities(void)
3226 {
3227 	/*
3228 	 * We have finalised the system-wide safe feature
3229 	 * registers, finalise the capabilities that depend
3230 	 * on it. Also enable all the available capabilities,
3231 	 * that are not enabled already.
3232 	 */
3233 	update_cpu_capabilities(SCOPE_SYSTEM);
3234 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3235 }
3236 
3237 void __init setup_cpu_features(void)
3238 {
3239 	u32 cwg;
3240 
3241 	setup_system_capabilities();
3242 	setup_elf_hwcaps(arm64_elf_hwcaps);
3243 
3244 	if (system_supports_32bit_el0()) {
3245 		setup_elf_hwcaps(compat_elf_hwcaps);
3246 		elf_hwcap_fixup();
3247 	}
3248 
3249 	if (system_uses_ttbr0_pan())
3250 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3251 
3252 	sve_setup();
3253 	sme_setup();
3254 	minsigstksz_setup();
3255 
3256 	/* Advertise that we have computed the system capabilities */
3257 	finalize_system_capabilities();
3258 
3259 	/*
3260 	 * Check for sane CTR_EL0.CWG value.
3261 	 */
3262 	cwg = cache_type_cwg();
3263 	if (!cwg)
3264 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
3265 			ARCH_DMA_MINALIGN);
3266 }
3267 
3268 static int enable_mismatched_32bit_el0(unsigned int cpu)
3269 {
3270 	/*
3271 	 * The first 32-bit-capable CPU we detected and so can no longer
3272 	 * be offlined by userspace. -1 indicates we haven't yet onlined
3273 	 * a 32-bit-capable CPU.
3274 	 */
3275 	static int lucky_winner = -1;
3276 
3277 	struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3278 	bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3279 
3280 	if (cpu_32bit) {
3281 		cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3282 		static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3283 	}
3284 
3285 	if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3286 		return 0;
3287 
3288 	if (lucky_winner >= 0)
3289 		return 0;
3290 
3291 	/*
3292 	 * We've detected a mismatch. We need to keep one of our CPUs with
3293 	 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3294 	 * every CPU in the system for a 32-bit task.
3295 	 */
3296 	lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3297 							 cpu_active_mask);
3298 	get_cpu_device(lucky_winner)->offline_disabled = true;
3299 	setup_elf_hwcaps(compat_elf_hwcaps);
3300 	elf_hwcap_fixup();
3301 	pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3302 		cpu, lucky_winner);
3303 	return 0;
3304 }
3305 
3306 static int __init init_32bit_el0_mask(void)
3307 {
3308 	if (!allow_mismatched_32bit_el0)
3309 		return 0;
3310 
3311 	if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3312 		return -ENOMEM;
3313 
3314 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3315 				 "arm64/mismatched_32bit_el0:online",
3316 				 enable_mismatched_32bit_el0, NULL);
3317 }
3318 subsys_initcall_sync(init_32bit_el0_mask);
3319 
3320 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3321 {
3322 	cpu_replace_ttbr1(lm_alias(swapper_pg_dir), idmap_pg_dir);
3323 }
3324 
3325 /*
3326  * We emulate only the following system register space.
3327  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
3328  * See Table C5-6 System instruction encodings for System register accesses,
3329  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3330  */
3331 static inline bool __attribute_const__ is_emulated(u32 id)
3332 {
3333 	return (sys_reg_Op0(id) == 0x3 &&
3334 		sys_reg_CRn(id) == 0x0 &&
3335 		sys_reg_Op1(id) == 0x0 &&
3336 		(sys_reg_CRm(id) == 0 ||
3337 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
3338 }
3339 
3340 /*
3341  * With CRm == 0, reg should be one of :
3342  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3343  */
3344 static inline int emulate_id_reg(u32 id, u64 *valp)
3345 {
3346 	switch (id) {
3347 	case SYS_MIDR_EL1:
3348 		*valp = read_cpuid_id();
3349 		break;
3350 	case SYS_MPIDR_EL1:
3351 		*valp = SYS_MPIDR_SAFE_VAL;
3352 		break;
3353 	case SYS_REVIDR_EL1:
3354 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
3355 		*valp = 0;
3356 		break;
3357 	default:
3358 		return -EINVAL;
3359 	}
3360 
3361 	return 0;
3362 }
3363 
3364 static int emulate_sys_reg(u32 id, u64 *valp)
3365 {
3366 	struct arm64_ftr_reg *regp;
3367 
3368 	if (!is_emulated(id))
3369 		return -EINVAL;
3370 
3371 	if (sys_reg_CRm(id) == 0)
3372 		return emulate_id_reg(id, valp);
3373 
3374 	regp = get_arm64_ftr_reg_nowarn(id);
3375 	if (regp)
3376 		*valp = arm64_ftr_reg_user_value(regp);
3377 	else
3378 		/*
3379 		 * The untracked registers are either IMPLEMENTATION DEFINED
3380 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3381 		 */
3382 		*valp = 0;
3383 	return 0;
3384 }
3385 
3386 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3387 {
3388 	int rc;
3389 	u64 val;
3390 
3391 	rc = emulate_sys_reg(sys_reg, &val);
3392 	if (!rc) {
3393 		pt_regs_write_reg(regs, rt, val);
3394 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3395 	}
3396 	return rc;
3397 }
3398 
3399 static int emulate_mrs(struct pt_regs *regs, u32 insn)
3400 {
3401 	u32 sys_reg, rt;
3402 
3403 	/*
3404 	 * sys_reg values are defined as used in mrs/msr instruction.
3405 	 * shift the imm value to get the encoding.
3406 	 */
3407 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3408 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3409 	return do_emulate_mrs(regs, sys_reg, rt);
3410 }
3411 
3412 static struct undef_hook mrs_hook = {
3413 	.instr_mask = 0xffff0000,
3414 	.instr_val  = 0xd5380000,
3415 	.pstate_mask = PSR_AA32_MODE_MASK,
3416 	.pstate_val = PSR_MODE_EL0t,
3417 	.fn = emulate_mrs,
3418 };
3419 
3420 static int __init enable_mrs_emulation(void)
3421 {
3422 	register_undef_hook(&mrs_hook);
3423 	return 0;
3424 }
3425 
3426 core_initcall(enable_mrs_emulation);
3427 
3428 enum mitigation_state arm64_get_meltdown_state(void)
3429 {
3430 	if (__meltdown_safe)
3431 		return SPECTRE_UNAFFECTED;
3432 
3433 	if (arm64_kernel_unmapped_at_el0())
3434 		return SPECTRE_MITIGATED;
3435 
3436 	return SPECTRE_VULNERABLE;
3437 }
3438 
3439 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3440 			  char *buf)
3441 {
3442 	switch (arm64_get_meltdown_state()) {
3443 	case SPECTRE_UNAFFECTED:
3444 		return sprintf(buf, "Not affected\n");
3445 
3446 	case SPECTRE_MITIGATED:
3447 		return sprintf(buf, "Mitigation: PTI\n");
3448 
3449 	default:
3450 		return sprintf(buf, "Vulnerable\n");
3451 	}
3452 }
3453