xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision be1fb0e8)
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt) "CPU features: " fmt
20 
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/mmu_context.h>
28 #include <asm/processor.h>
29 #include <asm/sysreg.h>
30 #include <asm/virt.h>
31 
32 unsigned long elf_hwcap __read_mostly;
33 EXPORT_SYMBOL_GPL(elf_hwcap);
34 
35 #ifdef CONFIG_COMPAT
36 #define COMPAT_ELF_HWCAP_DEFAULT	\
37 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
38 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
39 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
40 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
41 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
42 				 COMPAT_HWCAP_LPAE)
43 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
44 unsigned int compat_elf_hwcap2 __read_mostly;
45 #endif
46 
47 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
48 
49 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
50 	{						\
51 		.sign = SIGNED,				\
52 		.strict = STRICT,			\
53 		.type = TYPE,				\
54 		.shift = SHIFT,				\
55 		.width = WIDTH,				\
56 		.safe_val = SAFE_VAL,			\
57 	}
58 
59 /* Define a feature with unsigned values */
60 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
61 	__ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
62 
63 /* Define a feature with a signed value */
64 #define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
65 	__ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
66 
67 #define ARM64_FTR_END					\
68 	{						\
69 		.width = 0,				\
70 	}
71 
72 /* meta feature for alternatives */
73 static bool __maybe_unused
74 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry);
75 
76 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
77 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
78 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
79 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
80 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
81 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
82 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
83 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
84 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
85 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* RAZ */
86 	ARM64_FTR_END,
87 };
88 
89 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
90 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
91 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
92 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
93 	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
94 	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
95 	/* Linux doesn't care about the EL3 */
96 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
97 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
98 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
99 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
100 	ARM64_FTR_END,
101 };
102 
103 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
104 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
105 	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
106 	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
107 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
108 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
109 	/* Linux shouldn't care about secure memory */
110 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
111 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
112 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
113 	/*
114 	 * Differing PARange is fine as long as all peripherals and memory are mapped
115 	 * within the minimum PARange of all CPUs
116 	 */
117 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
118 	ARM64_FTR_END,
119 };
120 
121 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
122 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
123 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
124 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
125 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
126 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
127 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
128 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
129 	ARM64_FTR_END,
130 };
131 
132 static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
133 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
134 	ARM64_FTR_END,
135 };
136 
137 static struct arm64_ftr_bits ftr_ctr[] = {
138 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */
139 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
140 	ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
141 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */
142 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
143 	/*
144 	 * Linux can handle differing I-cache policies. Userspace JITs will
145 	 * make use of *minLine
146 	 */
147 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),	/* L1Ip */
148 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),	/* RAZ */
149 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
150 	ARM64_FTR_END,
151 };
152 
153 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
154 	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf),	/* InnerShr */
155 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),	/* FCSE */
156 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
157 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),	/* TCM */
158 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* ShareLvl */
159 	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf),	/* OuterShr */
160 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),	/* PMSA */
161 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* VMSA */
162 	ARM64_FTR_END,
163 };
164 
165 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
166 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
167 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
168 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
169 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
170 	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
171 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
172 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
173 	ARM64_FTR_END,
174 };
175 
176 static struct arm64_ftr_bits ftr_mvfr2[] = {
177 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
178 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* FPMisc */
179 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* SIMDMisc */
180 	ARM64_FTR_END,
181 };
182 
183 static struct arm64_ftr_bits ftr_dczid[] = {
184 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),	/* RAZ */
185 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
186 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
187 	ARM64_FTR_END,
188 };
189 
190 
191 static struct arm64_ftr_bits ftr_id_isar5[] = {
192 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
193 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),	/* RAZ */
194 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
195 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
196 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
197 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
198 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
199 	ARM64_FTR_END,
200 };
201 
202 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
203 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
204 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* ac2 */
205 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* RAZ */
206 	ARM64_FTR_END,
207 };
208 
209 static struct arm64_ftr_bits ftr_id_pfr0[] = {
210 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),	/* RAZ */
211 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* State3 */
212 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),		/* State2 */
213 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* State1 */
214 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* State0 */
215 	ARM64_FTR_END,
216 };
217 
218 static struct arm64_ftr_bits ftr_id_dfr0[] = {
219 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
220 	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
221 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
222 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
223 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
224 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
225 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
226 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
227 	ARM64_FTR_END,
228 };
229 
230 /*
231  * Common ftr bits for a 32bit register with all hidden, strict
232  * attributes, with 4bit feature fields and a default safe value of
233  * 0. Covers the following 32bit registers:
234  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
235  */
236 static struct arm64_ftr_bits ftr_generic_32bits[] = {
237 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
238 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
239 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
240 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
241 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
242 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
243 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
244 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
245 	ARM64_FTR_END,
246 };
247 
248 static struct arm64_ftr_bits ftr_generic[] = {
249 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
250 	ARM64_FTR_END,
251 };
252 
253 static struct arm64_ftr_bits ftr_generic32[] = {
254 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
255 	ARM64_FTR_END,
256 };
257 
258 static struct arm64_ftr_bits ftr_aa64raz[] = {
259 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
260 	ARM64_FTR_END,
261 };
262 
263 #define ARM64_FTR_REG(id, table)		\
264 	{					\
265 		.sys_id = id,			\
266 		.name = #id,			\
267 		.ftr_bits = &((table)[0]),	\
268 	}
269 
270 static struct arm64_ftr_reg arm64_ftr_regs[] = {
271 
272 	/* Op1 = 0, CRn = 0, CRm = 1 */
273 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
274 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
275 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
276 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
277 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
278 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
279 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
280 
281 	/* Op1 = 0, CRn = 0, CRm = 2 */
282 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
283 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
284 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
285 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
286 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
287 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
288 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
289 
290 	/* Op1 = 0, CRn = 0, CRm = 3 */
291 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
292 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
293 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
294 
295 	/* Op1 = 0, CRn = 0, CRm = 4 */
296 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
297 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
298 
299 	/* Op1 = 0, CRn = 0, CRm = 5 */
300 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
301 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
302 
303 	/* Op1 = 0, CRn = 0, CRm = 6 */
304 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
305 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
306 
307 	/* Op1 = 0, CRn = 0, CRm = 7 */
308 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
309 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
310 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
311 
312 	/* Op1 = 3, CRn = 0, CRm = 0 */
313 	ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
314 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
315 
316 	/* Op1 = 3, CRn = 14, CRm = 0 */
317 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
318 };
319 
320 static int search_cmp_ftr_reg(const void *id, const void *regp)
321 {
322 	return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
323 }
324 
325 /*
326  * get_arm64_ftr_reg - Lookup a feature register entry using its
327  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
328  * ascending order of sys_id , we use binary search to find a matching
329  * entry.
330  *
331  * returns - Upon success,  matching ftr_reg entry for id.
332  *         - NULL on failure. It is upto the caller to decide
333  *	     the impact of a failure.
334  */
335 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
336 {
337 	return bsearch((const void *)(unsigned long)sys_id,
338 			arm64_ftr_regs,
339 			ARRAY_SIZE(arm64_ftr_regs),
340 			sizeof(arm64_ftr_regs[0]),
341 			search_cmp_ftr_reg);
342 }
343 
344 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
345 {
346 	u64 mask = arm64_ftr_mask(ftrp);
347 
348 	reg &= ~mask;
349 	reg |= (ftr_val << ftrp->shift) & mask;
350 	return reg;
351 }
352 
353 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
354 {
355 	s64 ret = 0;
356 
357 	switch (ftrp->type) {
358 	case FTR_EXACT:
359 		ret = ftrp->safe_val;
360 		break;
361 	case FTR_LOWER_SAFE:
362 		ret = new < cur ? new : cur;
363 		break;
364 	case FTR_HIGHER_SAFE:
365 		ret = new > cur ? new : cur;
366 		break;
367 	default:
368 		BUG();
369 	}
370 
371 	return ret;
372 }
373 
374 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
375 {
376 	return ((const struct arm64_ftr_reg *)a)->sys_id -
377 		 ((const struct arm64_ftr_reg *)b)->sys_id;
378 }
379 
380 static void __init swap_ftr_regs(void *a, void *b, int size)
381 {
382 	struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
383 	*(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
384 	*(struct arm64_ftr_reg *)b = tmp;
385 }
386 
387 static void __init sort_ftr_regs(void)
388 {
389 	/* Keep the array sorted so that we can do the binary search */
390 	sort(arm64_ftr_regs,
391 		ARRAY_SIZE(arm64_ftr_regs),
392 		sizeof(arm64_ftr_regs[0]),
393 		sort_cmp_ftr_regs,
394 		swap_ftr_regs);
395 }
396 
397 /*
398  * Initialise the CPU feature register from Boot CPU values.
399  * Also initiliases the strict_mask for the register.
400  */
401 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
402 {
403 	u64 val = 0;
404 	u64 strict_mask = ~0x0ULL;
405 	struct arm64_ftr_bits *ftrp;
406 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
407 
408 	BUG_ON(!reg);
409 
410 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
411 		s64 ftr_new = arm64_ftr_value(ftrp, new);
412 
413 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
414 		if (!ftrp->strict)
415 			strict_mask &= ~arm64_ftr_mask(ftrp);
416 	}
417 	reg->sys_val = val;
418 	reg->strict_mask = strict_mask;
419 }
420 
421 void __init init_cpu_features(struct cpuinfo_arm64 *info)
422 {
423 	/* Before we start using the tables, make sure it is sorted */
424 	sort_ftr_regs();
425 
426 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
427 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
428 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
429 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
430 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
431 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
432 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
433 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
434 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
435 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
436 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
437 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
438 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
439 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
440 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
441 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
442 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
443 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
444 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
445 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
446 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
447 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
448 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
449 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
450 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
451 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
452 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
453 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
454 }
455 
456 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
457 {
458 	struct arm64_ftr_bits *ftrp;
459 
460 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
461 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
462 		s64 ftr_new = arm64_ftr_value(ftrp, new);
463 
464 		if (ftr_cur == ftr_new)
465 			continue;
466 		/* Find a safe value */
467 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
468 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
469 	}
470 
471 }
472 
473 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
474 {
475 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
476 
477 	BUG_ON(!regp);
478 	update_cpu_ftr_reg(regp, val);
479 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
480 		return 0;
481 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
482 			regp->name, boot, cpu, val);
483 	return 1;
484 }
485 
486 /*
487  * Update system wide CPU feature registers with the values from a
488  * non-boot CPU. Also performs SANITY checks to make sure that there
489  * aren't any insane variations from that of the boot CPU.
490  */
491 void update_cpu_features(int cpu,
492 			 struct cpuinfo_arm64 *info,
493 			 struct cpuinfo_arm64 *boot)
494 {
495 	int taint = 0;
496 
497 	/*
498 	 * The kernel can handle differing I-cache policies, but otherwise
499 	 * caches should look identical. Userspace JITs will make use of
500 	 * *minLine.
501 	 */
502 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
503 				      info->reg_ctr, boot->reg_ctr);
504 
505 	/*
506 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
507 	 * could result in too much or too little memory being zeroed if a
508 	 * process is preempted and migrated between CPUs.
509 	 */
510 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
511 				      info->reg_dczid, boot->reg_dczid);
512 
513 	/* If different, timekeeping will be broken (especially with KVM) */
514 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
515 				      info->reg_cntfrq, boot->reg_cntfrq);
516 
517 	/*
518 	 * The kernel uses self-hosted debug features and expects CPUs to
519 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
520 	 * and BRPs to be identical.
521 	 * ID_AA64DFR1 is currently RES0.
522 	 */
523 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
524 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
525 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
526 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
527 	/*
528 	 * Even in big.LITTLE, processors should be identical instruction-set
529 	 * wise.
530 	 */
531 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
532 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
533 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
534 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
535 
536 	/*
537 	 * Differing PARange support is fine as long as all peripherals and
538 	 * memory are mapped within the minimum PARange of all CPUs.
539 	 * Linux should not care about secure memory.
540 	 */
541 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
542 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
543 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
544 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
545 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
546 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
547 
548 	/*
549 	 * EL3 is not our concern.
550 	 * ID_AA64PFR1 is currently RES0.
551 	 */
552 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
553 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
554 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
555 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
556 
557 	/*
558 	 * If we have AArch32, we care about 32-bit features for compat. These
559 	 * registers should be RES0 otherwise.
560 	 */
561 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
562 					info->reg_id_dfr0, boot->reg_id_dfr0);
563 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
564 					info->reg_id_isar0, boot->reg_id_isar0);
565 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
566 					info->reg_id_isar1, boot->reg_id_isar1);
567 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
568 					info->reg_id_isar2, boot->reg_id_isar2);
569 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
570 					info->reg_id_isar3, boot->reg_id_isar3);
571 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
572 					info->reg_id_isar4, boot->reg_id_isar4);
573 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
574 					info->reg_id_isar5, boot->reg_id_isar5);
575 
576 	/*
577 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
578 	 * ACTLR formats could differ across CPUs and therefore would have to
579 	 * be trapped for virtualization anyway.
580 	 */
581 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
582 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
583 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
584 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
585 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
586 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
587 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
588 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
589 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
590 					info->reg_id_pfr0, boot->reg_id_pfr0);
591 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
592 					info->reg_id_pfr1, boot->reg_id_pfr1);
593 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
594 					info->reg_mvfr0, boot->reg_mvfr0);
595 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
596 					info->reg_mvfr1, boot->reg_mvfr1);
597 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
598 					info->reg_mvfr2, boot->reg_mvfr2);
599 
600 	/*
601 	 * Mismatched CPU features are a recipe for disaster. Don't even
602 	 * pretend to support them.
603 	 */
604 	WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
605 			"Unsupported CPU feature variation.\n");
606 }
607 
608 u64 read_system_reg(u32 id)
609 {
610 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
611 
612 	/* We shouldn't get a request for an unsupported register */
613 	BUG_ON(!regp);
614 	return regp->sys_val;
615 }
616 
617 #include <linux/irqchip/arm-gic-v3.h>
618 
619 static bool
620 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
621 {
622 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
623 
624 	return val >= entry->min_field_value;
625 }
626 
627 static bool
628 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
629 {
630 	u64 val;
631 
632 	val = read_system_reg(entry->sys_reg);
633 	return feature_matches(val, entry);
634 }
635 
636 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
637 {
638 	bool has_sre;
639 
640 	if (!has_cpuid_feature(entry))
641 		return false;
642 
643 	has_sre = gic_enable_sre();
644 	if (!has_sre)
645 		pr_warn_once("%s present but disabled by higher exception level\n",
646 			     entry->desc);
647 
648 	return has_sre;
649 }
650 
651 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry)
652 {
653 	u32 midr = read_cpuid_id();
654 	u32 rv_min, rv_max;
655 
656 	/* Cavium ThunderX pass 1.x and 2.x */
657 	rv_min = 0;
658 	rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
659 
660 	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
661 }
662 
663 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry)
664 {
665 	return is_kernel_in_hyp_mode();
666 }
667 
668 static const struct arm64_cpu_capabilities arm64_features[] = {
669 	{
670 		.desc = "GIC system register CPU interface",
671 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
672 		.matches = has_useable_gicv3_cpuif,
673 		.sys_reg = SYS_ID_AA64PFR0_EL1,
674 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
675 		.sign = FTR_UNSIGNED,
676 		.min_field_value = 1,
677 	},
678 #ifdef CONFIG_ARM64_PAN
679 	{
680 		.desc = "Privileged Access Never",
681 		.capability = ARM64_HAS_PAN,
682 		.matches = has_cpuid_feature,
683 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
684 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
685 		.sign = FTR_UNSIGNED,
686 		.min_field_value = 1,
687 		.enable = cpu_enable_pan,
688 	},
689 #endif /* CONFIG_ARM64_PAN */
690 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
691 	{
692 		.desc = "LSE atomic instructions",
693 		.capability = ARM64_HAS_LSE_ATOMICS,
694 		.matches = has_cpuid_feature,
695 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
696 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
697 		.sign = FTR_UNSIGNED,
698 		.min_field_value = 2,
699 	},
700 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
701 	{
702 		.desc = "Software prefetching using PRFM",
703 		.capability = ARM64_HAS_NO_HW_PREFETCH,
704 		.matches = has_no_hw_prefetch,
705 	},
706 #ifdef CONFIG_ARM64_UAO
707 	{
708 		.desc = "User Access Override",
709 		.capability = ARM64_HAS_UAO,
710 		.matches = has_cpuid_feature,
711 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
712 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
713 		.min_field_value = 1,
714 		.enable = cpu_enable_uao,
715 	},
716 #endif /* CONFIG_ARM64_UAO */
717 #ifdef CONFIG_ARM64_PAN
718 	{
719 		.capability = ARM64_ALT_PAN_NOT_UAO,
720 		.matches = cpufeature_pan_not_uao,
721 	},
722 #endif /* CONFIG_ARM64_PAN */
723 	{
724 		.desc = "Virtualization Host Extensions",
725 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
726 		.matches = runs_at_el2,
727 	},
728 	{},
729 };
730 
731 #define HWCAP_CAP(reg, field, s, min_value, type, cap)	\
732 	{							\
733 		.desc = #cap,					\
734 		.matches = has_cpuid_feature,			\
735 		.sys_reg = reg,					\
736 		.field_pos = field,				\
737 		.sign = s,					\
738 		.min_field_value = min_value,			\
739 		.hwcap_type = type,				\
740 		.hwcap = cap,					\
741 	}
742 
743 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
744 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
745 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
746 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
747 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
748 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
749 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
750 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
751 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
752 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
753 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
754 #ifdef CONFIG_COMPAT
755 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
756 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
757 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
758 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
759 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
760 #endif
761 	{},
762 };
763 
764 static void __init cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
765 {
766 	switch (cap->hwcap_type) {
767 	case CAP_HWCAP:
768 		elf_hwcap |= cap->hwcap;
769 		break;
770 #ifdef CONFIG_COMPAT
771 	case CAP_COMPAT_HWCAP:
772 		compat_elf_hwcap |= (u32)cap->hwcap;
773 		break;
774 	case CAP_COMPAT_HWCAP2:
775 		compat_elf_hwcap2 |= (u32)cap->hwcap;
776 		break;
777 #endif
778 	default:
779 		WARN_ON(1);
780 		break;
781 	}
782 }
783 
784 /* Check if we have a particular HWCAP enabled */
785 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
786 {
787 	bool rc;
788 
789 	switch (cap->hwcap_type) {
790 	case CAP_HWCAP:
791 		rc = (elf_hwcap & cap->hwcap) != 0;
792 		break;
793 #ifdef CONFIG_COMPAT
794 	case CAP_COMPAT_HWCAP:
795 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
796 		break;
797 	case CAP_COMPAT_HWCAP2:
798 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
799 		break;
800 #endif
801 	default:
802 		WARN_ON(1);
803 		rc = false;
804 	}
805 
806 	return rc;
807 }
808 
809 static void __init setup_cpu_hwcaps(void)
810 {
811 	int i;
812 	const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
813 
814 	for (i = 0; hwcaps[i].matches; i++)
815 		if (hwcaps[i].matches(&hwcaps[i]))
816 			cap_set_hwcap(&hwcaps[i]);
817 }
818 
819 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
820 			    const char *info)
821 {
822 	int i;
823 
824 	for (i = 0; caps[i].matches; i++) {
825 		if (!caps[i].matches(&caps[i]))
826 			continue;
827 
828 		if (!cpus_have_cap(caps[i].capability) && caps[i].desc)
829 			pr_info("%s %s\n", info, caps[i].desc);
830 		cpus_set_cap(caps[i].capability);
831 	}
832 }
833 
834 /*
835  * Run through the enabled capabilities and enable() it on all active
836  * CPUs
837  */
838 static void __init
839 enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
840 {
841 	int i;
842 
843 	for (i = 0; caps[i].matches; i++)
844 		if (caps[i].enable && cpus_have_cap(caps[i].capability))
845 			on_each_cpu(caps[i].enable, NULL, true);
846 }
847 
848 /*
849  * Flag to indicate if we have computed the system wide
850  * capabilities based on the boot time active CPUs. This
851  * will be used to determine if a new booting CPU should
852  * go through the verification process to make sure that it
853  * supports the system capabilities, without using a hotplug
854  * notifier.
855  */
856 static bool sys_caps_initialised;
857 
858 static inline void set_sys_caps_initialised(void)
859 {
860 	sys_caps_initialised = true;
861 }
862 
863 /*
864  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
865  */
866 static u64 __raw_read_system_reg(u32 sys_id)
867 {
868 	switch (sys_id) {
869 	case SYS_ID_PFR0_EL1:		return read_cpuid(ID_PFR0_EL1);
870 	case SYS_ID_PFR1_EL1:		return read_cpuid(ID_PFR1_EL1);
871 	case SYS_ID_DFR0_EL1:		return read_cpuid(ID_DFR0_EL1);
872 	case SYS_ID_MMFR0_EL1:		return read_cpuid(ID_MMFR0_EL1);
873 	case SYS_ID_MMFR1_EL1:		return read_cpuid(ID_MMFR1_EL1);
874 	case SYS_ID_MMFR2_EL1:		return read_cpuid(ID_MMFR2_EL1);
875 	case SYS_ID_MMFR3_EL1:		return read_cpuid(ID_MMFR3_EL1);
876 	case SYS_ID_ISAR0_EL1:		return read_cpuid(ID_ISAR0_EL1);
877 	case SYS_ID_ISAR1_EL1:		return read_cpuid(ID_ISAR1_EL1);
878 	case SYS_ID_ISAR2_EL1:		return read_cpuid(ID_ISAR2_EL1);
879 	case SYS_ID_ISAR3_EL1:		return read_cpuid(ID_ISAR3_EL1);
880 	case SYS_ID_ISAR4_EL1:		return read_cpuid(ID_ISAR4_EL1);
881 	case SYS_ID_ISAR5_EL1:		return read_cpuid(ID_ISAR4_EL1);
882 	case SYS_MVFR0_EL1:		return read_cpuid(MVFR0_EL1);
883 	case SYS_MVFR1_EL1:		return read_cpuid(MVFR1_EL1);
884 	case SYS_MVFR2_EL1:		return read_cpuid(MVFR2_EL1);
885 
886 	case SYS_ID_AA64PFR0_EL1:	return read_cpuid(ID_AA64PFR0_EL1);
887 	case SYS_ID_AA64PFR1_EL1:	return read_cpuid(ID_AA64PFR0_EL1);
888 	case SYS_ID_AA64DFR0_EL1:	return read_cpuid(ID_AA64DFR0_EL1);
889 	case SYS_ID_AA64DFR1_EL1:	return read_cpuid(ID_AA64DFR0_EL1);
890 	case SYS_ID_AA64MMFR0_EL1:	return read_cpuid(ID_AA64MMFR0_EL1);
891 	case SYS_ID_AA64MMFR1_EL1:	return read_cpuid(ID_AA64MMFR1_EL1);
892 	case SYS_ID_AA64MMFR2_EL1:	return read_cpuid(ID_AA64MMFR2_EL1);
893 	case SYS_ID_AA64ISAR0_EL1:	return read_cpuid(ID_AA64ISAR0_EL1);
894 	case SYS_ID_AA64ISAR1_EL1:	return read_cpuid(ID_AA64ISAR1_EL1);
895 
896 	case SYS_CNTFRQ_EL0:		return read_cpuid(CNTFRQ_EL0);
897 	case SYS_CTR_EL0:		return read_cpuid(CTR_EL0);
898 	case SYS_DCZID_EL0:		return read_cpuid(DCZID_EL0);
899 	default:
900 		BUG();
901 		return 0;
902 	}
903 }
904 
905 /*
906  * Check for CPU features that are used in early boot
907  * based on the Boot CPU value.
908  */
909 static void check_early_cpu_features(void)
910 {
911 	verify_cpu_asid_bits();
912 }
913 
914 /*
915  * Run through the enabled system capabilities and enable() it on this CPU.
916  * The capabilities were decided based on the available CPUs at the boot time.
917  * Any new CPU should match the system wide status of the capability. If the
918  * new CPU doesn't have a capability which the system now has enabled, we
919  * cannot do anything to fix it up and could cause unexpected failures. So
920  * we park the CPU.
921  */
922 void verify_local_cpu_capabilities(void)
923 {
924 	int i;
925 	const struct arm64_cpu_capabilities *caps;
926 
927 	check_early_cpu_features();
928 
929 	/*
930 	 * If we haven't computed the system capabilities, there is nothing
931 	 * to verify.
932 	 */
933 	if (!sys_caps_initialised)
934 		return;
935 
936 	caps = arm64_features;
937 	for (i = 0; caps[i].matches; i++) {
938 		if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
939 			continue;
940 		/*
941 		 * If the new CPU misses an advertised feature, we cannot proceed
942 		 * further, park the cpu.
943 		 */
944 		if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i])) {
945 			pr_crit("CPU%d: missing feature: %s\n",
946 					smp_processor_id(), caps[i].desc);
947 			cpu_die_early();
948 		}
949 		if (caps[i].enable)
950 			caps[i].enable(NULL);
951 	}
952 
953 	for (i = 0, caps = arm64_hwcaps; caps[i].matches; i++) {
954 		if (!cpus_have_hwcap(&caps[i]))
955 			continue;
956 		if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i])) {
957 			pr_crit("CPU%d: missing HWCAP: %s\n",
958 					smp_processor_id(), caps[i].desc);
959 			cpu_die_early();
960 		}
961 	}
962 }
963 
964 static void __init setup_feature_capabilities(void)
965 {
966 	update_cpu_capabilities(arm64_features, "detected feature:");
967 	enable_cpu_capabilities(arm64_features);
968 }
969 
970 void __init setup_cpu_features(void)
971 {
972 	u32 cwg;
973 	int cls;
974 
975 	/* Set the CPU feature capabilies */
976 	setup_feature_capabilities();
977 	setup_cpu_hwcaps();
978 
979 	/* Advertise that we have computed the system capabilities */
980 	set_sys_caps_initialised();
981 
982 	/*
983 	 * Check for sane CTR_EL0.CWG value.
984 	 */
985 	cwg = cache_type_cwg();
986 	cls = cache_line_size();
987 	if (!cwg)
988 		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
989 			cls);
990 	if (L1_CACHE_BYTES < cls)
991 		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
992 			L1_CACHE_BYTES, cls);
993 }
994 
995 static bool __maybe_unused
996 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry)
997 {
998 	return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
999 }
1000