xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision bbecb07f)
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt) "CPU features: " fmt
20 
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/fpsimd.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
35 #include <asm/virt.h>
36 
37 unsigned long elf_hwcap __read_mostly;
38 EXPORT_SYMBOL_GPL(elf_hwcap);
39 
40 #ifdef CONFIG_COMPAT
41 #define COMPAT_ELF_HWCAP_DEFAULT	\
42 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
45 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
46 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
47 				 COMPAT_HWCAP_LPAE)
48 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
49 unsigned int compat_elf_hwcap2 __read_mostly;
50 #endif
51 
52 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
53 EXPORT_SYMBOL(cpu_hwcaps);
54 
55 /*
56  * Flag to indicate if we have computed the system wide
57  * capabilities based on the boot time active CPUs. This
58  * will be used to determine if a new booting CPU should
59  * go through the verification process to make sure that it
60  * supports the system capabilities, without using a hotplug
61  * notifier.
62  */
63 static bool sys_caps_initialised;
64 
65 static inline void set_sys_caps_initialised(void)
66 {
67 	sys_caps_initialised = true;
68 }
69 
70 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
71 {
72 	/* file-wide pr_fmt adds "CPU features: " prefix */
73 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
74 	return 0;
75 }
76 
77 static struct notifier_block cpu_hwcaps_notifier = {
78 	.notifier_call = dump_cpu_hwcaps
79 };
80 
81 static int __init register_cpu_hwcaps_dumper(void)
82 {
83 	atomic_notifier_chain_register(&panic_notifier_list,
84 				       &cpu_hwcaps_notifier);
85 	return 0;
86 }
87 __initcall(register_cpu_hwcaps_dumper);
88 
89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
90 EXPORT_SYMBOL(cpu_hwcap_keys);
91 
92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93 	{						\
94 		.sign = SIGNED,				\
95 		.visible = VISIBLE,			\
96 		.strict = STRICT,			\
97 		.type = TYPE,				\
98 		.shift = SHIFT,				\
99 		.width = WIDTH,				\
100 		.safe_val = SAFE_VAL,			\
101 	}
102 
103 /* Define a feature with unsigned values */
104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
105 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
106 
107 /* Define a feature with a signed value */
108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
109 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
110 
111 #define ARM64_FTR_END					\
112 	{						\
113 		.width = 0,				\
114 	}
115 
116 /* meta feature for alternatives */
117 static bool __maybe_unused
118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
119 
120 
121 /*
122  * NOTE: Any changes to the visibility of features should be kept in
123  * sync with the documentation of the CPU feature register ABI.
124  */
125 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
126 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
127 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
128 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
129 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
130 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
131 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
132 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
133 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
134 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
135 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
136 	ARM64_FTR_END,
137 };
138 
139 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
140 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
141 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
142 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
143 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
144 	ARM64_FTR_END,
145 };
146 
147 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
148 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
149 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
150 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
151 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
152 	/* Linux doesn't care about the EL3 */
153 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
154 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
155 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
156 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
157 	ARM64_FTR_END,
158 };
159 
160 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
161 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
162 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
163 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
164 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
165 	/* Linux shouldn't care about secure memory */
166 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
167 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
168 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
169 	/*
170 	 * Differing PARange is fine as long as all peripherals and memory are mapped
171 	 * within the minimum PARange of all CPUs
172 	 */
173 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
174 	ARM64_FTR_END,
175 };
176 
177 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
178 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
179 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
180 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
181 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
182 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
183 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
184 	ARM64_FTR_END,
185 };
186 
187 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
188 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
189 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
190 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
191 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
192 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
193 	ARM64_FTR_END,
194 };
195 
196 static const struct arm64_ftr_bits ftr_ctr[] = {
197 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */
198 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
199 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */
200 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
201 	/*
202 	 * Linux can handle differing I-cache policies. Userspace JITs will
203 	 * make use of *minLine.
204 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
205 	 */
206 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
207 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
208 	ARM64_FTR_END,
209 };
210 
211 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
212 	.name		= "SYS_CTR_EL0",
213 	.ftr_bits	= ftr_ctr
214 };
215 
216 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
217 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
218 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
219 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
220 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
221 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
222 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
223 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
224 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
225 	ARM64_FTR_END,
226 };
227 
228 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
229 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
230 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
231 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
232 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
233 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
234 	/*
235 	 * We can instantiate multiple PMU instances with different levels
236 	 * of support.
237 	 */
238 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
239 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
240 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
241 	ARM64_FTR_END,
242 };
243 
244 static const struct arm64_ftr_bits ftr_mvfr2[] = {
245 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
246 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
247 	ARM64_FTR_END,
248 };
249 
250 static const struct arm64_ftr_bits ftr_dczid[] = {
251 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
252 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
253 	ARM64_FTR_END,
254 };
255 
256 
257 static const struct arm64_ftr_bits ftr_id_isar5[] = {
258 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
259 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
260 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
261 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
262 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
263 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
264 	ARM64_FTR_END,
265 };
266 
267 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
268 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
269 	ARM64_FTR_END,
270 };
271 
272 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
273 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
274 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
275 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
276 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
277 	ARM64_FTR_END,
278 };
279 
280 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
281 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
282 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
283 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
284 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
285 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
286 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
287 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
288 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
289 	ARM64_FTR_END,
290 };
291 
292 static const struct arm64_ftr_bits ftr_zcr[] = {
293 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
294 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
295 	ARM64_FTR_END,
296 };
297 
298 /*
299  * Common ftr bits for a 32bit register with all hidden, strict
300  * attributes, with 4bit feature fields and a default safe value of
301  * 0. Covers the following 32bit registers:
302  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
303  */
304 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
305 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
306 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
307 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
308 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
309 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
310 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
311 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
312 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
313 	ARM64_FTR_END,
314 };
315 
316 /* Table for a single 32bit feature value */
317 static const struct arm64_ftr_bits ftr_single32[] = {
318 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
319 	ARM64_FTR_END,
320 };
321 
322 static const struct arm64_ftr_bits ftr_raz[] = {
323 	ARM64_FTR_END,
324 };
325 
326 #define ARM64_FTR_REG(id, table) {		\
327 	.sys_id = id,				\
328 	.reg = 	&(struct arm64_ftr_reg){	\
329 		.name = #id,			\
330 		.ftr_bits = &((table)[0]),	\
331 	}}
332 
333 static const struct __ftr_reg_entry {
334 	u32			sys_id;
335 	struct arm64_ftr_reg 	*reg;
336 } arm64_ftr_regs[] = {
337 
338 	/* Op1 = 0, CRn = 0, CRm = 1 */
339 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
340 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
341 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
342 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
343 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
344 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
345 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
346 
347 	/* Op1 = 0, CRn = 0, CRm = 2 */
348 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
349 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
350 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
351 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
352 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
353 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
354 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
355 
356 	/* Op1 = 0, CRn = 0, CRm = 3 */
357 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
358 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
359 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
360 
361 	/* Op1 = 0, CRn = 0, CRm = 4 */
362 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
363 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
364 	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
365 
366 	/* Op1 = 0, CRn = 0, CRm = 5 */
367 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
368 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
369 
370 	/* Op1 = 0, CRn = 0, CRm = 6 */
371 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
372 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
373 
374 	/* Op1 = 0, CRn = 0, CRm = 7 */
375 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
376 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
377 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
378 
379 	/* Op1 = 0, CRn = 1, CRm = 2 */
380 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
381 
382 	/* Op1 = 3, CRn = 0, CRm = 0 */
383 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
384 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
385 
386 	/* Op1 = 3, CRn = 14, CRm = 0 */
387 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
388 };
389 
390 static int search_cmp_ftr_reg(const void *id, const void *regp)
391 {
392 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
393 }
394 
395 /*
396  * get_arm64_ftr_reg - Lookup a feature register entry using its
397  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
398  * ascending order of sys_id , we use binary search to find a matching
399  * entry.
400  *
401  * returns - Upon success,  matching ftr_reg entry for id.
402  *         - NULL on failure. It is upto the caller to decide
403  *	     the impact of a failure.
404  */
405 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
406 {
407 	const struct __ftr_reg_entry *ret;
408 
409 	ret = bsearch((const void *)(unsigned long)sys_id,
410 			arm64_ftr_regs,
411 			ARRAY_SIZE(arm64_ftr_regs),
412 			sizeof(arm64_ftr_regs[0]),
413 			search_cmp_ftr_reg);
414 	if (ret)
415 		return ret->reg;
416 	return NULL;
417 }
418 
419 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
420 			       s64 ftr_val)
421 {
422 	u64 mask = arm64_ftr_mask(ftrp);
423 
424 	reg &= ~mask;
425 	reg |= (ftr_val << ftrp->shift) & mask;
426 	return reg;
427 }
428 
429 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
430 				s64 cur)
431 {
432 	s64 ret = 0;
433 
434 	switch (ftrp->type) {
435 	case FTR_EXACT:
436 		ret = ftrp->safe_val;
437 		break;
438 	case FTR_LOWER_SAFE:
439 		ret = new < cur ? new : cur;
440 		break;
441 	case FTR_HIGHER_SAFE:
442 		ret = new > cur ? new : cur;
443 		break;
444 	default:
445 		BUG();
446 	}
447 
448 	return ret;
449 }
450 
451 static void __init sort_ftr_regs(void)
452 {
453 	int i;
454 
455 	/* Check that the array is sorted so that we can do the binary search */
456 	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
457 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
458 }
459 
460 /*
461  * Initialise the CPU feature register from Boot CPU values.
462  * Also initiliases the strict_mask for the register.
463  * Any bits that are not covered by an arm64_ftr_bits entry are considered
464  * RES0 for the system-wide value, and must strictly match.
465  */
466 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
467 {
468 	u64 val = 0;
469 	u64 strict_mask = ~0x0ULL;
470 	u64 user_mask = 0;
471 	u64 valid_mask = 0;
472 
473 	const struct arm64_ftr_bits *ftrp;
474 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
475 
476 	BUG_ON(!reg);
477 
478 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
479 		u64 ftr_mask = arm64_ftr_mask(ftrp);
480 		s64 ftr_new = arm64_ftr_value(ftrp, new);
481 
482 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
483 
484 		valid_mask |= ftr_mask;
485 		if (!ftrp->strict)
486 			strict_mask &= ~ftr_mask;
487 		if (ftrp->visible)
488 			user_mask |= ftr_mask;
489 		else
490 			reg->user_val = arm64_ftr_set_value(ftrp,
491 							    reg->user_val,
492 							    ftrp->safe_val);
493 	}
494 
495 	val &= valid_mask;
496 
497 	reg->sys_val = val;
498 	reg->strict_mask = strict_mask;
499 	reg->user_mask = user_mask;
500 }
501 
502 void __init init_cpu_features(struct cpuinfo_arm64 *info)
503 {
504 	/* Before we start using the tables, make sure it is sorted */
505 	sort_ftr_regs();
506 
507 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
508 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
509 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
510 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
511 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
512 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
513 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
514 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
515 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
516 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
517 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
518 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
519 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
520 
521 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
522 		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
523 		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
524 		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
525 		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
526 		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
527 		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
528 		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
529 		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
530 		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
531 		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
532 		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
533 		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
534 		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
535 		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
536 		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
537 		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
538 	}
539 
540 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
541 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
542 		sve_init_vq_map();
543 	}
544 }
545 
546 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
547 {
548 	const struct arm64_ftr_bits *ftrp;
549 
550 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
551 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
552 		s64 ftr_new = arm64_ftr_value(ftrp, new);
553 
554 		if (ftr_cur == ftr_new)
555 			continue;
556 		/* Find a safe value */
557 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
558 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
559 	}
560 
561 }
562 
563 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
564 {
565 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
566 
567 	BUG_ON(!regp);
568 	update_cpu_ftr_reg(regp, val);
569 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
570 		return 0;
571 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
572 			regp->name, boot, cpu, val);
573 	return 1;
574 }
575 
576 /*
577  * Update system wide CPU feature registers with the values from a
578  * non-boot CPU. Also performs SANITY checks to make sure that there
579  * aren't any insane variations from that of the boot CPU.
580  */
581 void update_cpu_features(int cpu,
582 			 struct cpuinfo_arm64 *info,
583 			 struct cpuinfo_arm64 *boot)
584 {
585 	int taint = 0;
586 
587 	/*
588 	 * The kernel can handle differing I-cache policies, but otherwise
589 	 * caches should look identical. Userspace JITs will make use of
590 	 * *minLine.
591 	 */
592 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
593 				      info->reg_ctr, boot->reg_ctr);
594 
595 	/*
596 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
597 	 * could result in too much or too little memory being zeroed if a
598 	 * process is preempted and migrated between CPUs.
599 	 */
600 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
601 				      info->reg_dczid, boot->reg_dczid);
602 
603 	/* If different, timekeeping will be broken (especially with KVM) */
604 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
605 				      info->reg_cntfrq, boot->reg_cntfrq);
606 
607 	/*
608 	 * The kernel uses self-hosted debug features and expects CPUs to
609 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
610 	 * and BRPs to be identical.
611 	 * ID_AA64DFR1 is currently RES0.
612 	 */
613 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
614 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
615 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
616 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
617 	/*
618 	 * Even in big.LITTLE, processors should be identical instruction-set
619 	 * wise.
620 	 */
621 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
622 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
623 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
624 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
625 
626 	/*
627 	 * Differing PARange support is fine as long as all peripherals and
628 	 * memory are mapped within the minimum PARange of all CPUs.
629 	 * Linux should not care about secure memory.
630 	 */
631 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
632 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
633 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
634 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
635 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
636 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
637 
638 	/*
639 	 * EL3 is not our concern.
640 	 * ID_AA64PFR1 is currently RES0.
641 	 */
642 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
643 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
644 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
645 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
646 
647 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
648 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
649 
650 	/*
651 	 * If we have AArch32, we care about 32-bit features for compat.
652 	 * If the system doesn't support AArch32, don't update them.
653 	 */
654 	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
655 		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
656 
657 		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
658 					info->reg_id_dfr0, boot->reg_id_dfr0);
659 		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
660 					info->reg_id_isar0, boot->reg_id_isar0);
661 		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
662 					info->reg_id_isar1, boot->reg_id_isar1);
663 		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
664 					info->reg_id_isar2, boot->reg_id_isar2);
665 		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
666 					info->reg_id_isar3, boot->reg_id_isar3);
667 		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
668 					info->reg_id_isar4, boot->reg_id_isar4);
669 		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
670 					info->reg_id_isar5, boot->reg_id_isar5);
671 
672 		/*
673 		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
674 		 * ACTLR formats could differ across CPUs and therefore would have to
675 		 * be trapped for virtualization anyway.
676 		 */
677 		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
678 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
679 		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
680 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
681 		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
682 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
683 		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
684 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
685 		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
686 					info->reg_id_pfr0, boot->reg_id_pfr0);
687 		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
688 					info->reg_id_pfr1, boot->reg_id_pfr1);
689 		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
690 					info->reg_mvfr0, boot->reg_mvfr0);
691 		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
692 					info->reg_mvfr1, boot->reg_mvfr1);
693 		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
694 					info->reg_mvfr2, boot->reg_mvfr2);
695 	}
696 
697 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
698 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
699 					info->reg_zcr, boot->reg_zcr);
700 
701 		/* Probe vector lengths, unless we already gave up on SVE */
702 		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
703 		    !sys_caps_initialised)
704 			sve_update_vq_map();
705 	}
706 
707 	/*
708 	 * Mismatched CPU features are a recipe for disaster. Don't even
709 	 * pretend to support them.
710 	 */
711 	if (taint) {
712 		pr_warn_once("Unsupported CPU feature variation detected.\n");
713 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
714 	}
715 }
716 
717 u64 read_sanitised_ftr_reg(u32 id)
718 {
719 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
720 
721 	/* We shouldn't get a request for an unsupported register */
722 	BUG_ON(!regp);
723 	return regp->sys_val;
724 }
725 
726 #define read_sysreg_case(r)	\
727 	case r:		return read_sysreg_s(r)
728 
729 /*
730  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
731  * Read the system register on the current CPU
732  */
733 static u64 __read_sysreg_by_encoding(u32 sys_id)
734 {
735 	switch (sys_id) {
736 	read_sysreg_case(SYS_ID_PFR0_EL1);
737 	read_sysreg_case(SYS_ID_PFR1_EL1);
738 	read_sysreg_case(SYS_ID_DFR0_EL1);
739 	read_sysreg_case(SYS_ID_MMFR0_EL1);
740 	read_sysreg_case(SYS_ID_MMFR1_EL1);
741 	read_sysreg_case(SYS_ID_MMFR2_EL1);
742 	read_sysreg_case(SYS_ID_MMFR3_EL1);
743 	read_sysreg_case(SYS_ID_ISAR0_EL1);
744 	read_sysreg_case(SYS_ID_ISAR1_EL1);
745 	read_sysreg_case(SYS_ID_ISAR2_EL1);
746 	read_sysreg_case(SYS_ID_ISAR3_EL1);
747 	read_sysreg_case(SYS_ID_ISAR4_EL1);
748 	read_sysreg_case(SYS_ID_ISAR5_EL1);
749 	read_sysreg_case(SYS_MVFR0_EL1);
750 	read_sysreg_case(SYS_MVFR1_EL1);
751 	read_sysreg_case(SYS_MVFR2_EL1);
752 
753 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
754 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
755 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
756 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
757 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
758 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
759 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
760 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
761 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
762 
763 	read_sysreg_case(SYS_CNTFRQ_EL0);
764 	read_sysreg_case(SYS_CTR_EL0);
765 	read_sysreg_case(SYS_DCZID_EL0);
766 
767 	default:
768 		BUG();
769 		return 0;
770 	}
771 }
772 
773 #include <linux/irqchip/arm-gic-v3.h>
774 
775 static bool
776 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
777 {
778 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
779 
780 	return val >= entry->min_field_value;
781 }
782 
783 static bool
784 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
785 {
786 	u64 val;
787 
788 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
789 	if (scope == SCOPE_SYSTEM)
790 		val = read_sanitised_ftr_reg(entry->sys_reg);
791 	else
792 		val = __read_sysreg_by_encoding(entry->sys_reg);
793 
794 	return feature_matches(val, entry);
795 }
796 
797 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
798 {
799 	bool has_sre;
800 
801 	if (!has_cpuid_feature(entry, scope))
802 		return false;
803 
804 	has_sre = gic_enable_sre();
805 	if (!has_sre)
806 		pr_warn_once("%s present but disabled by higher exception level\n",
807 			     entry->desc);
808 
809 	return has_sre;
810 }
811 
812 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
813 {
814 	u32 midr = read_cpuid_id();
815 
816 	/* Cavium ThunderX pass 1.x and 2.x */
817 	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
818 		MIDR_CPU_VAR_REV(0, 0),
819 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
820 }
821 
822 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
823 {
824 	return is_kernel_in_hyp_mode();
825 }
826 
827 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
828 			   int __unused)
829 {
830 	phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
831 
832 	/*
833 	 * Activate the lower HYP offset only if:
834 	 * - the idmap doesn't clash with it,
835 	 * - the kernel is not running at EL2.
836 	 */
837 	return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
838 }
839 
840 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
841 {
842 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
843 
844 	return cpuid_feature_extract_signed_field(pfr0,
845 					ID_AA64PFR0_FP_SHIFT) < 0;
846 }
847 
848 static const struct arm64_cpu_capabilities arm64_features[] = {
849 	{
850 		.desc = "GIC system register CPU interface",
851 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
852 		.def_scope = SCOPE_SYSTEM,
853 		.matches = has_useable_gicv3_cpuif,
854 		.sys_reg = SYS_ID_AA64PFR0_EL1,
855 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
856 		.sign = FTR_UNSIGNED,
857 		.min_field_value = 1,
858 	},
859 #ifdef CONFIG_ARM64_PAN
860 	{
861 		.desc = "Privileged Access Never",
862 		.capability = ARM64_HAS_PAN,
863 		.def_scope = SCOPE_SYSTEM,
864 		.matches = has_cpuid_feature,
865 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
866 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
867 		.sign = FTR_UNSIGNED,
868 		.min_field_value = 1,
869 		.enable = cpu_enable_pan,
870 	},
871 #endif /* CONFIG_ARM64_PAN */
872 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
873 	{
874 		.desc = "LSE atomic instructions",
875 		.capability = ARM64_HAS_LSE_ATOMICS,
876 		.def_scope = SCOPE_SYSTEM,
877 		.matches = has_cpuid_feature,
878 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
879 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
880 		.sign = FTR_UNSIGNED,
881 		.min_field_value = 2,
882 	},
883 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
884 	{
885 		.desc = "Software prefetching using PRFM",
886 		.capability = ARM64_HAS_NO_HW_PREFETCH,
887 		.def_scope = SCOPE_SYSTEM,
888 		.matches = has_no_hw_prefetch,
889 	},
890 #ifdef CONFIG_ARM64_UAO
891 	{
892 		.desc = "User Access Override",
893 		.capability = ARM64_HAS_UAO,
894 		.def_scope = SCOPE_SYSTEM,
895 		.matches = has_cpuid_feature,
896 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
897 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
898 		.min_field_value = 1,
899 		/*
900 		 * We rely on stop_machine() calling uao_thread_switch() to set
901 		 * UAO immediately after patching.
902 		 */
903 	},
904 #endif /* CONFIG_ARM64_UAO */
905 #ifdef CONFIG_ARM64_PAN
906 	{
907 		.capability = ARM64_ALT_PAN_NOT_UAO,
908 		.def_scope = SCOPE_SYSTEM,
909 		.matches = cpufeature_pan_not_uao,
910 	},
911 #endif /* CONFIG_ARM64_PAN */
912 	{
913 		.desc = "Virtualization Host Extensions",
914 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
915 		.def_scope = SCOPE_SYSTEM,
916 		.matches = runs_at_el2,
917 	},
918 	{
919 		.desc = "32-bit EL0 Support",
920 		.capability = ARM64_HAS_32BIT_EL0,
921 		.def_scope = SCOPE_SYSTEM,
922 		.matches = has_cpuid_feature,
923 		.sys_reg = SYS_ID_AA64PFR0_EL1,
924 		.sign = FTR_UNSIGNED,
925 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
926 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
927 	},
928 	{
929 		.desc = "Reduced HYP mapping offset",
930 		.capability = ARM64_HYP_OFFSET_LOW,
931 		.def_scope = SCOPE_SYSTEM,
932 		.matches = hyp_offset_low,
933 	},
934 	{
935 		/* FP/SIMD is not implemented */
936 		.capability = ARM64_HAS_NO_FPSIMD,
937 		.def_scope = SCOPE_SYSTEM,
938 		.min_field_value = 0,
939 		.matches = has_no_fpsimd,
940 	},
941 #ifdef CONFIG_ARM64_PMEM
942 	{
943 		.desc = "Data cache clean to Point of Persistence",
944 		.capability = ARM64_HAS_DCPOP,
945 		.def_scope = SCOPE_SYSTEM,
946 		.matches = has_cpuid_feature,
947 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
948 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
949 		.min_field_value = 1,
950 	},
951 #endif
952 #ifdef CONFIG_ARM64_SVE
953 	{
954 		.desc = "Scalable Vector Extension",
955 		.capability = ARM64_SVE,
956 		.def_scope = SCOPE_SYSTEM,
957 		.sys_reg = SYS_ID_AA64PFR0_EL1,
958 		.sign = FTR_UNSIGNED,
959 		.field_pos = ID_AA64PFR0_SVE_SHIFT,
960 		.min_field_value = ID_AA64PFR0_SVE,
961 		.matches = has_cpuid_feature,
962 		.enable = sve_kernel_enable,
963 	},
964 #endif /* CONFIG_ARM64_SVE */
965 	{},
966 };
967 
968 #define HWCAP_CAP(reg, field, s, min_value, type, cap)	\
969 	{							\
970 		.desc = #cap,					\
971 		.def_scope = SCOPE_SYSTEM,			\
972 		.matches = has_cpuid_feature,			\
973 		.sys_reg = reg,					\
974 		.field_pos = field,				\
975 		.sign = s,					\
976 		.min_field_value = min_value,			\
977 		.hwcap_type = type,				\
978 		.hwcap = cap,					\
979 	}
980 
981 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
982 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
983 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
984 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
985 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
986 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
987 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
988 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
989 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
990 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
991 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
992 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
993 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
994 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
995 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
996 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
997 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
998 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
999 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1000 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1001 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1002 #ifdef CONFIG_ARM64_SVE
1003 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1004 #endif
1005 	{},
1006 };
1007 
1008 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1009 #ifdef CONFIG_COMPAT
1010 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1011 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1012 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1013 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1014 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1015 #endif
1016 	{},
1017 };
1018 
1019 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1020 {
1021 	switch (cap->hwcap_type) {
1022 	case CAP_HWCAP:
1023 		elf_hwcap |= cap->hwcap;
1024 		break;
1025 #ifdef CONFIG_COMPAT
1026 	case CAP_COMPAT_HWCAP:
1027 		compat_elf_hwcap |= (u32)cap->hwcap;
1028 		break;
1029 	case CAP_COMPAT_HWCAP2:
1030 		compat_elf_hwcap2 |= (u32)cap->hwcap;
1031 		break;
1032 #endif
1033 	default:
1034 		WARN_ON(1);
1035 		break;
1036 	}
1037 }
1038 
1039 /* Check if we have a particular HWCAP enabled */
1040 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1041 {
1042 	bool rc;
1043 
1044 	switch (cap->hwcap_type) {
1045 	case CAP_HWCAP:
1046 		rc = (elf_hwcap & cap->hwcap) != 0;
1047 		break;
1048 #ifdef CONFIG_COMPAT
1049 	case CAP_COMPAT_HWCAP:
1050 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1051 		break;
1052 	case CAP_COMPAT_HWCAP2:
1053 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1054 		break;
1055 #endif
1056 	default:
1057 		WARN_ON(1);
1058 		rc = false;
1059 	}
1060 
1061 	return rc;
1062 }
1063 
1064 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1065 {
1066 	/* We support emulation of accesses to CPU ID feature registers */
1067 	elf_hwcap |= HWCAP_CPUID;
1068 	for (; hwcaps->matches; hwcaps++)
1069 		if (hwcaps->matches(hwcaps, hwcaps->def_scope))
1070 			cap_set_elf_hwcap(hwcaps);
1071 }
1072 
1073 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1074 			    const char *info)
1075 {
1076 	for (; caps->matches; caps++) {
1077 		if (!caps->matches(caps, caps->def_scope))
1078 			continue;
1079 
1080 		if (!cpus_have_cap(caps->capability) && caps->desc)
1081 			pr_info("%s %s\n", info, caps->desc);
1082 		cpus_set_cap(caps->capability);
1083 	}
1084 }
1085 
1086 /*
1087  * Run through the enabled capabilities and enable() it on all active
1088  * CPUs
1089  */
1090 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1091 {
1092 	for (; caps->matches; caps++) {
1093 		unsigned int num = caps->capability;
1094 
1095 		if (!cpus_have_cap(num))
1096 			continue;
1097 
1098 		/* Ensure cpus_have_const_cap(num) works */
1099 		static_branch_enable(&cpu_hwcap_keys[num]);
1100 
1101 		if (caps->enable) {
1102 			/*
1103 			 * Use stop_machine() as it schedules the work allowing
1104 			 * us to modify PSTATE, instead of on_each_cpu() which
1105 			 * uses an IPI, giving us a PSTATE that disappears when
1106 			 * we return.
1107 			 */
1108 			stop_machine(caps->enable, NULL, cpu_online_mask);
1109 		}
1110 	}
1111 }
1112 
1113 /*
1114  * Check for CPU features that are used in early boot
1115  * based on the Boot CPU value.
1116  */
1117 static void check_early_cpu_features(void)
1118 {
1119 	verify_cpu_run_el();
1120 	verify_cpu_asid_bits();
1121 }
1122 
1123 static void
1124 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1125 {
1126 
1127 	for (; caps->matches; caps++)
1128 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1129 			pr_crit("CPU%d: missing HWCAP: %s\n",
1130 					smp_processor_id(), caps->desc);
1131 			cpu_die_early();
1132 		}
1133 }
1134 
1135 static void
1136 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1137 {
1138 	for (; caps->matches; caps++) {
1139 		if (!cpus_have_cap(caps->capability))
1140 			continue;
1141 		/*
1142 		 * If the new CPU misses an advertised feature, we cannot proceed
1143 		 * further, park the cpu.
1144 		 */
1145 		if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1146 			pr_crit("CPU%d: missing feature: %s\n",
1147 					smp_processor_id(), caps->desc);
1148 			cpu_die_early();
1149 		}
1150 		if (caps->enable)
1151 			caps->enable(NULL);
1152 	}
1153 }
1154 
1155 static void verify_sve_features(void)
1156 {
1157 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1158 	u64 zcr = read_zcr_features();
1159 
1160 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1161 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1162 
1163 	if (len < safe_len || sve_verify_vq_map()) {
1164 		pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1165 			smp_processor_id());
1166 		cpu_die_early();
1167 	}
1168 
1169 	/* Add checks on other ZCR bits here if necessary */
1170 }
1171 
1172 /*
1173  * Run through the enabled system capabilities and enable() it on this CPU.
1174  * The capabilities were decided based on the available CPUs at the boot time.
1175  * Any new CPU should match the system wide status of the capability. If the
1176  * new CPU doesn't have a capability which the system now has enabled, we
1177  * cannot do anything to fix it up and could cause unexpected failures. So
1178  * we park the CPU.
1179  */
1180 static void verify_local_cpu_capabilities(void)
1181 {
1182 	verify_local_cpu_errata_workarounds();
1183 	verify_local_cpu_features(arm64_features);
1184 	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1185 
1186 	if (system_supports_32bit_el0())
1187 		verify_local_elf_hwcaps(compat_elf_hwcaps);
1188 
1189 	if (system_supports_sve())
1190 		verify_sve_features();
1191 }
1192 
1193 void check_local_cpu_capabilities(void)
1194 {
1195 	/*
1196 	 * All secondary CPUs should conform to the early CPU features
1197 	 * in use by the kernel based on boot CPU.
1198 	 */
1199 	check_early_cpu_features();
1200 
1201 	/*
1202 	 * If we haven't finalised the system capabilities, this CPU gets
1203 	 * a chance to update the errata work arounds.
1204 	 * Otherwise, this CPU should verify that it has all the system
1205 	 * advertised capabilities.
1206 	 */
1207 	if (!sys_caps_initialised)
1208 		update_cpu_errata_workarounds();
1209 	else
1210 		verify_local_cpu_capabilities();
1211 }
1212 
1213 static void __init setup_feature_capabilities(void)
1214 {
1215 	update_cpu_capabilities(arm64_features, "detected feature:");
1216 	enable_cpu_capabilities(arm64_features);
1217 }
1218 
1219 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1220 EXPORT_SYMBOL(arm64_const_caps_ready);
1221 
1222 static void __init mark_const_caps_ready(void)
1223 {
1224 	static_branch_enable(&arm64_const_caps_ready);
1225 }
1226 
1227 /*
1228  * Check if the current CPU has a given feature capability.
1229  * Should be called from non-preemptible context.
1230  */
1231 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1232 			       unsigned int cap)
1233 {
1234 	const struct arm64_cpu_capabilities *caps;
1235 
1236 	if (WARN_ON(preemptible()))
1237 		return false;
1238 
1239 	for (caps = cap_array; caps->desc; caps++)
1240 		if (caps->capability == cap && caps->matches)
1241 			return caps->matches(caps, SCOPE_LOCAL_CPU);
1242 
1243 	return false;
1244 }
1245 
1246 extern const struct arm64_cpu_capabilities arm64_errata[];
1247 
1248 bool this_cpu_has_cap(unsigned int cap)
1249 {
1250 	return (__this_cpu_has_cap(arm64_features, cap) ||
1251 		__this_cpu_has_cap(arm64_errata, cap));
1252 }
1253 
1254 void __init setup_cpu_features(void)
1255 {
1256 	u32 cwg;
1257 	int cls;
1258 
1259 	/* Set the CPU feature capabilies */
1260 	setup_feature_capabilities();
1261 	enable_errata_workarounds();
1262 	mark_const_caps_ready();
1263 	setup_elf_hwcaps(arm64_elf_hwcaps);
1264 
1265 	if (system_supports_32bit_el0())
1266 		setup_elf_hwcaps(compat_elf_hwcaps);
1267 
1268 	sve_setup();
1269 
1270 	/* Advertise that we have computed the system capabilities */
1271 	set_sys_caps_initialised();
1272 
1273 	/*
1274 	 * Check for sane CTR_EL0.CWG value.
1275 	 */
1276 	cwg = cache_type_cwg();
1277 	cls = cache_line_size();
1278 	if (!cwg)
1279 		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1280 			cls);
1281 	if (L1_CACHE_BYTES < cls)
1282 		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1283 			L1_CACHE_BYTES, cls);
1284 }
1285 
1286 static bool __maybe_unused
1287 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1288 {
1289 	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1290 }
1291 
1292 /*
1293  * We emulate only the following system register space.
1294  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1295  * See Table C5-6 System instruction encodings for System register accesses,
1296  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1297  */
1298 static inline bool __attribute_const__ is_emulated(u32 id)
1299 {
1300 	return (sys_reg_Op0(id) == 0x3 &&
1301 		sys_reg_CRn(id) == 0x0 &&
1302 		sys_reg_Op1(id) == 0x0 &&
1303 		(sys_reg_CRm(id) == 0 ||
1304 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1305 }
1306 
1307 /*
1308  * With CRm == 0, reg should be one of :
1309  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1310  */
1311 static inline int emulate_id_reg(u32 id, u64 *valp)
1312 {
1313 	switch (id) {
1314 	case SYS_MIDR_EL1:
1315 		*valp = read_cpuid_id();
1316 		break;
1317 	case SYS_MPIDR_EL1:
1318 		*valp = SYS_MPIDR_SAFE_VAL;
1319 		break;
1320 	case SYS_REVIDR_EL1:
1321 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
1322 		*valp = 0;
1323 		break;
1324 	default:
1325 		return -EINVAL;
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 static int emulate_sys_reg(u32 id, u64 *valp)
1332 {
1333 	struct arm64_ftr_reg *regp;
1334 
1335 	if (!is_emulated(id))
1336 		return -EINVAL;
1337 
1338 	if (sys_reg_CRm(id) == 0)
1339 		return emulate_id_reg(id, valp);
1340 
1341 	regp = get_arm64_ftr_reg(id);
1342 	if (regp)
1343 		*valp = arm64_ftr_reg_user_value(regp);
1344 	else
1345 		/*
1346 		 * The untracked registers are either IMPLEMENTATION DEFINED
1347 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1348 		 */
1349 		*valp = 0;
1350 	return 0;
1351 }
1352 
1353 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1354 {
1355 	int rc;
1356 	u32 sys_reg, dst;
1357 	u64 val;
1358 
1359 	/*
1360 	 * sys_reg values are defined as used in mrs/msr instruction.
1361 	 * shift the imm value to get the encoding.
1362 	 */
1363 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1364 	rc = emulate_sys_reg(sys_reg, &val);
1365 	if (!rc) {
1366 		dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1367 		pt_regs_write_reg(regs, dst, val);
1368 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1369 	}
1370 
1371 	return rc;
1372 }
1373 
1374 static struct undef_hook mrs_hook = {
1375 	.instr_mask = 0xfff00000,
1376 	.instr_val  = 0xd5300000,
1377 	.pstate_mask = COMPAT_PSR_MODE_MASK,
1378 	.pstate_val = PSR_MODE_EL0t,
1379 	.fn = emulate_mrs,
1380 };
1381 
1382 static int __init enable_mrs_emulation(void)
1383 {
1384 	register_undef_hook(&mrs_hook);
1385 	return 0;
1386 }
1387 
1388 core_initcall(enable_mrs_emulation);
1389