1 /* 2 * Contains CPU feature definitions 3 * 4 * Copyright (C) 2015 ARM Ltd. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #define pr_fmt(fmt) "CPU features: " fmt 20 21 #include <linux/bsearch.h> 22 #include <linux/cpumask.h> 23 #include <linux/sort.h> 24 #include <linux/stop_machine.h> 25 #include <linux/types.h> 26 #include <linux/mm.h> 27 #include <asm/cpu.h> 28 #include <asm/cpufeature.h> 29 #include <asm/cpu_ops.h> 30 #include <asm/fpsimd.h> 31 #include <asm/mmu_context.h> 32 #include <asm/processor.h> 33 #include <asm/sysreg.h> 34 #include <asm/traps.h> 35 #include <asm/virt.h> 36 37 unsigned long elf_hwcap __read_mostly; 38 EXPORT_SYMBOL_GPL(elf_hwcap); 39 40 #ifdef CONFIG_COMPAT 41 #define COMPAT_ELF_HWCAP_DEFAULT \ 42 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\ 43 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\ 44 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\ 45 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\ 46 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\ 47 COMPAT_HWCAP_LPAE) 48 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT; 49 unsigned int compat_elf_hwcap2 __read_mostly; 50 #endif 51 52 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); 53 EXPORT_SYMBOL(cpu_hwcaps); 54 55 /* 56 * Flag to indicate if we have computed the system wide 57 * capabilities based on the boot time active CPUs. This 58 * will be used to determine if a new booting CPU should 59 * go through the verification process to make sure that it 60 * supports the system capabilities, without using a hotplug 61 * notifier. 62 */ 63 static bool sys_caps_initialised; 64 65 static inline void set_sys_caps_initialised(void) 66 { 67 sys_caps_initialised = true; 68 } 69 70 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p) 71 { 72 /* file-wide pr_fmt adds "CPU features: " prefix */ 73 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps); 74 return 0; 75 } 76 77 static struct notifier_block cpu_hwcaps_notifier = { 78 .notifier_call = dump_cpu_hwcaps 79 }; 80 81 static int __init register_cpu_hwcaps_dumper(void) 82 { 83 atomic_notifier_chain_register(&panic_notifier_list, 84 &cpu_hwcaps_notifier); 85 return 0; 86 } 87 __initcall(register_cpu_hwcaps_dumper); 88 89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS); 90 EXPORT_SYMBOL(cpu_hwcap_keys); 91 92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ 93 { \ 94 .sign = SIGNED, \ 95 .visible = VISIBLE, \ 96 .strict = STRICT, \ 97 .type = TYPE, \ 98 .shift = SHIFT, \ 99 .width = WIDTH, \ 100 .safe_val = SAFE_VAL, \ 101 } 102 103 /* Define a feature with unsigned values */ 104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ 105 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) 106 107 /* Define a feature with a signed value */ 108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ 109 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) 110 111 #define ARM64_FTR_END \ 112 { \ 113 .width = 0, \ 114 } 115 116 /* meta feature for alternatives */ 117 static bool __maybe_unused 118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused); 119 120 121 /* 122 * NOTE: Any changes to the visibility of features should be kept in 123 * sync with the documentation of the CPU feature register ABI. 124 */ 125 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = { 126 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0), 127 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0), 128 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0), 129 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0), 130 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0), 131 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0), 132 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0), 133 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0), 134 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0), 135 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0), 136 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0), 137 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0), 138 ARM64_FTR_END, 139 }; 140 141 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = { 142 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0), 143 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0), 144 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0), 145 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0), 146 ARM64_FTR_END, 147 }; 148 149 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = { 150 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0), 151 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0), 152 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0), 153 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 154 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0), 155 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0), 156 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0), 157 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI), 158 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI), 159 /* Linux doesn't care about the EL3 */ 160 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0), 161 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0), 162 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY), 163 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY), 164 ARM64_FTR_END, 165 }; 166 167 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = { 168 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI), 169 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI), 170 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI), 171 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0), 172 /* Linux shouldn't care about secure memory */ 173 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0), 174 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0), 175 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0), 176 /* 177 * Differing PARange is fine as long as all peripherals and memory are mapped 178 * within the minimum PARange of all CPUs 179 */ 180 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0), 181 ARM64_FTR_END, 182 }; 183 184 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = { 185 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0), 186 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0), 187 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0), 188 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0), 189 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0), 190 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0), 191 ARM64_FTR_END, 192 }; 193 194 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = { 195 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0), 196 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0), 197 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0), 198 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0), 199 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0), 200 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0), 201 ARM64_FTR_END, 202 }; 203 204 static const struct arm64_ftr_bits ftr_ctr[] = { 205 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */ 206 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1), 207 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1), 208 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_CWG_SHIFT, 4, 0), 209 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_ERG_SHIFT, 4, 0), 210 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1), 211 /* 212 * Linux can handle differing I-cache policies. Userspace JITs will 213 * make use of *minLine. 214 * If we have differing I-cache policies, report it as the weakest - VIPT. 215 */ 216 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */ 217 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */ 218 ARM64_FTR_END, 219 }; 220 221 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = { 222 .name = "SYS_CTR_EL0", 223 .ftr_bits = ftr_ctr 224 }; 225 226 static const struct arm64_ftr_bits ftr_id_mmfr0[] = { 227 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf), /* InnerShr */ 228 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), /* FCSE */ 229 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */ 230 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), /* TCM */ 231 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* ShareLvl */ 232 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf), /* OuterShr */ 233 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* PMSA */ 234 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* VMSA */ 235 ARM64_FTR_END, 236 }; 237 238 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = { 239 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0), 240 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0), 241 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0), 242 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0), 243 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0), 244 /* 245 * We can instantiate multiple PMU instances with different levels 246 * of support. 247 */ 248 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0), 249 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0), 250 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6), 251 ARM64_FTR_END, 252 }; 253 254 static const struct arm64_ftr_bits ftr_mvfr2[] = { 255 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* FPMisc */ 256 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* SIMDMisc */ 257 ARM64_FTR_END, 258 }; 259 260 static const struct arm64_ftr_bits ftr_dczid[] = { 261 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */ 262 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */ 263 ARM64_FTR_END, 264 }; 265 266 267 static const struct arm64_ftr_bits ftr_id_isar5[] = { 268 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0), 269 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0), 270 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0), 271 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0), 272 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0), 273 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0), 274 ARM64_FTR_END, 275 }; 276 277 static const struct arm64_ftr_bits ftr_id_mmfr4[] = { 278 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* ac2 */ 279 ARM64_FTR_END, 280 }; 281 282 static const struct arm64_ftr_bits ftr_id_pfr0[] = { 283 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* State3 */ 284 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), /* State2 */ 285 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* State1 */ 286 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* State0 */ 287 ARM64_FTR_END, 288 }; 289 290 static const struct arm64_ftr_bits ftr_id_dfr0[] = { 291 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0), 292 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */ 293 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), 294 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), 295 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), 296 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), 297 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), 298 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), 299 ARM64_FTR_END, 300 }; 301 302 static const struct arm64_ftr_bits ftr_zcr[] = { 303 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 304 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */ 305 ARM64_FTR_END, 306 }; 307 308 /* 309 * Common ftr bits for a 32bit register with all hidden, strict 310 * attributes, with 4bit feature fields and a default safe value of 311 * 0. Covers the following 32bit registers: 312 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1] 313 */ 314 static const struct arm64_ftr_bits ftr_generic_32bits[] = { 315 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0), 316 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), 317 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), 318 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), 319 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), 320 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), 321 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), 322 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), 323 ARM64_FTR_END, 324 }; 325 326 /* Table for a single 32bit feature value */ 327 static const struct arm64_ftr_bits ftr_single32[] = { 328 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0), 329 ARM64_FTR_END, 330 }; 331 332 static const struct arm64_ftr_bits ftr_raz[] = { 333 ARM64_FTR_END, 334 }; 335 336 #define ARM64_FTR_REG(id, table) { \ 337 .sys_id = id, \ 338 .reg = &(struct arm64_ftr_reg){ \ 339 .name = #id, \ 340 .ftr_bits = &((table)[0]), \ 341 }} 342 343 static const struct __ftr_reg_entry { 344 u32 sys_id; 345 struct arm64_ftr_reg *reg; 346 } arm64_ftr_regs[] = { 347 348 /* Op1 = 0, CRn = 0, CRm = 1 */ 349 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0), 350 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits), 351 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0), 352 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0), 353 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits), 354 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits), 355 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits), 356 357 /* Op1 = 0, CRn = 0, CRm = 2 */ 358 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits), 359 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits), 360 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits), 361 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits), 362 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits), 363 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5), 364 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4), 365 366 /* Op1 = 0, CRn = 0, CRm = 3 */ 367 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits), 368 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits), 369 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2), 370 371 /* Op1 = 0, CRn = 0, CRm = 4 */ 372 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0), 373 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz), 374 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz), 375 376 /* Op1 = 0, CRn = 0, CRm = 5 */ 377 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0), 378 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz), 379 380 /* Op1 = 0, CRn = 0, CRm = 6 */ 381 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0), 382 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1), 383 384 /* Op1 = 0, CRn = 0, CRm = 7 */ 385 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0), 386 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1), 387 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2), 388 389 /* Op1 = 0, CRn = 1, CRm = 2 */ 390 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr), 391 392 /* Op1 = 3, CRn = 0, CRm = 0 */ 393 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 }, 394 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid), 395 396 /* Op1 = 3, CRn = 14, CRm = 0 */ 397 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32), 398 }; 399 400 static int search_cmp_ftr_reg(const void *id, const void *regp) 401 { 402 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id; 403 } 404 405 /* 406 * get_arm64_ftr_reg - Lookup a feature register entry using its 407 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the 408 * ascending order of sys_id , we use binary search to find a matching 409 * entry. 410 * 411 * returns - Upon success, matching ftr_reg entry for id. 412 * - NULL on failure. It is upto the caller to decide 413 * the impact of a failure. 414 */ 415 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id) 416 { 417 const struct __ftr_reg_entry *ret; 418 419 ret = bsearch((const void *)(unsigned long)sys_id, 420 arm64_ftr_regs, 421 ARRAY_SIZE(arm64_ftr_regs), 422 sizeof(arm64_ftr_regs[0]), 423 search_cmp_ftr_reg); 424 if (ret) 425 return ret->reg; 426 return NULL; 427 } 428 429 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg, 430 s64 ftr_val) 431 { 432 u64 mask = arm64_ftr_mask(ftrp); 433 434 reg &= ~mask; 435 reg |= (ftr_val << ftrp->shift) & mask; 436 return reg; 437 } 438 439 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, 440 s64 cur) 441 { 442 s64 ret = 0; 443 444 switch (ftrp->type) { 445 case FTR_EXACT: 446 ret = ftrp->safe_val; 447 break; 448 case FTR_LOWER_SAFE: 449 ret = new < cur ? new : cur; 450 break; 451 case FTR_HIGHER_SAFE: 452 ret = new > cur ? new : cur; 453 break; 454 default: 455 BUG(); 456 } 457 458 return ret; 459 } 460 461 static void __init sort_ftr_regs(void) 462 { 463 int i; 464 465 /* Check that the array is sorted so that we can do the binary search */ 466 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++) 467 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id); 468 } 469 470 /* 471 * Initialise the CPU feature register from Boot CPU values. 472 * Also initiliases the strict_mask for the register. 473 * Any bits that are not covered by an arm64_ftr_bits entry are considered 474 * RES0 for the system-wide value, and must strictly match. 475 */ 476 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new) 477 { 478 u64 val = 0; 479 u64 strict_mask = ~0x0ULL; 480 u64 user_mask = 0; 481 u64 valid_mask = 0; 482 483 const struct arm64_ftr_bits *ftrp; 484 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg); 485 486 BUG_ON(!reg); 487 488 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { 489 u64 ftr_mask = arm64_ftr_mask(ftrp); 490 s64 ftr_new = arm64_ftr_value(ftrp, new); 491 492 val = arm64_ftr_set_value(ftrp, val, ftr_new); 493 494 valid_mask |= ftr_mask; 495 if (!ftrp->strict) 496 strict_mask &= ~ftr_mask; 497 if (ftrp->visible) 498 user_mask |= ftr_mask; 499 else 500 reg->user_val = arm64_ftr_set_value(ftrp, 501 reg->user_val, 502 ftrp->safe_val); 503 } 504 505 val &= valid_mask; 506 507 reg->sys_val = val; 508 reg->strict_mask = strict_mask; 509 reg->user_mask = user_mask; 510 } 511 512 extern const struct arm64_cpu_capabilities arm64_errata[]; 513 static void __init setup_boot_cpu_capabilities(void); 514 515 void __init init_cpu_features(struct cpuinfo_arm64 *info) 516 { 517 /* Before we start using the tables, make sure it is sorted */ 518 sort_ftr_regs(); 519 520 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr); 521 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid); 522 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq); 523 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0); 524 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1); 525 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0); 526 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1); 527 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0); 528 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1); 529 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2); 530 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0); 531 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1); 532 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0); 533 534 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) { 535 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0); 536 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0); 537 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1); 538 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2); 539 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3); 540 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4); 541 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5); 542 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0); 543 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1); 544 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2); 545 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3); 546 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0); 547 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1); 548 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0); 549 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1); 550 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2); 551 } 552 553 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) { 554 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr); 555 sve_init_vq_map(); 556 } 557 558 /* 559 * Detect and enable early CPU capabilities based on the boot CPU, 560 * after we have initialised the CPU feature infrastructure. 561 */ 562 setup_boot_cpu_capabilities(); 563 } 564 565 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new) 566 { 567 const struct arm64_ftr_bits *ftrp; 568 569 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { 570 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val); 571 s64 ftr_new = arm64_ftr_value(ftrp, new); 572 573 if (ftr_cur == ftr_new) 574 continue; 575 /* Find a safe value */ 576 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur); 577 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new); 578 } 579 580 } 581 582 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot) 583 { 584 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id); 585 586 BUG_ON(!regp); 587 update_cpu_ftr_reg(regp, val); 588 if ((boot & regp->strict_mask) == (val & regp->strict_mask)) 589 return 0; 590 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n", 591 regp->name, boot, cpu, val); 592 return 1; 593 } 594 595 /* 596 * Update system wide CPU feature registers with the values from a 597 * non-boot CPU. Also performs SANITY checks to make sure that there 598 * aren't any insane variations from that of the boot CPU. 599 */ 600 void update_cpu_features(int cpu, 601 struct cpuinfo_arm64 *info, 602 struct cpuinfo_arm64 *boot) 603 { 604 int taint = 0; 605 606 /* 607 * The kernel can handle differing I-cache policies, but otherwise 608 * caches should look identical. Userspace JITs will make use of 609 * *minLine. 610 */ 611 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu, 612 info->reg_ctr, boot->reg_ctr); 613 614 /* 615 * Userspace may perform DC ZVA instructions. Mismatched block sizes 616 * could result in too much or too little memory being zeroed if a 617 * process is preempted and migrated between CPUs. 618 */ 619 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu, 620 info->reg_dczid, boot->reg_dczid); 621 622 /* If different, timekeeping will be broken (especially with KVM) */ 623 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu, 624 info->reg_cntfrq, boot->reg_cntfrq); 625 626 /* 627 * The kernel uses self-hosted debug features and expects CPUs to 628 * support identical debug features. We presently need CTX_CMPs, WRPs, 629 * and BRPs to be identical. 630 * ID_AA64DFR1 is currently RES0. 631 */ 632 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu, 633 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0); 634 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu, 635 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1); 636 /* 637 * Even in big.LITTLE, processors should be identical instruction-set 638 * wise. 639 */ 640 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu, 641 info->reg_id_aa64isar0, boot->reg_id_aa64isar0); 642 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu, 643 info->reg_id_aa64isar1, boot->reg_id_aa64isar1); 644 645 /* 646 * Differing PARange support is fine as long as all peripherals and 647 * memory are mapped within the minimum PARange of all CPUs. 648 * Linux should not care about secure memory. 649 */ 650 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu, 651 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0); 652 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu, 653 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1); 654 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu, 655 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2); 656 657 /* 658 * EL3 is not our concern. 659 * ID_AA64PFR1 is currently RES0. 660 */ 661 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu, 662 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0); 663 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu, 664 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1); 665 666 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu, 667 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0); 668 669 /* 670 * If we have AArch32, we care about 32-bit features for compat. 671 * If the system doesn't support AArch32, don't update them. 672 */ 673 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) && 674 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) { 675 676 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu, 677 info->reg_id_dfr0, boot->reg_id_dfr0); 678 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu, 679 info->reg_id_isar0, boot->reg_id_isar0); 680 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu, 681 info->reg_id_isar1, boot->reg_id_isar1); 682 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu, 683 info->reg_id_isar2, boot->reg_id_isar2); 684 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu, 685 info->reg_id_isar3, boot->reg_id_isar3); 686 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu, 687 info->reg_id_isar4, boot->reg_id_isar4); 688 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu, 689 info->reg_id_isar5, boot->reg_id_isar5); 690 691 /* 692 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and 693 * ACTLR formats could differ across CPUs and therefore would have to 694 * be trapped for virtualization anyway. 695 */ 696 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu, 697 info->reg_id_mmfr0, boot->reg_id_mmfr0); 698 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu, 699 info->reg_id_mmfr1, boot->reg_id_mmfr1); 700 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu, 701 info->reg_id_mmfr2, boot->reg_id_mmfr2); 702 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu, 703 info->reg_id_mmfr3, boot->reg_id_mmfr3); 704 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu, 705 info->reg_id_pfr0, boot->reg_id_pfr0); 706 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu, 707 info->reg_id_pfr1, boot->reg_id_pfr1); 708 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu, 709 info->reg_mvfr0, boot->reg_mvfr0); 710 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu, 711 info->reg_mvfr1, boot->reg_mvfr1); 712 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu, 713 info->reg_mvfr2, boot->reg_mvfr2); 714 } 715 716 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) { 717 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu, 718 info->reg_zcr, boot->reg_zcr); 719 720 /* Probe vector lengths, unless we already gave up on SVE */ 721 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) && 722 !sys_caps_initialised) 723 sve_update_vq_map(); 724 } 725 726 /* 727 * Mismatched CPU features are a recipe for disaster. Don't even 728 * pretend to support them. 729 */ 730 if (taint) { 731 pr_warn_once("Unsupported CPU feature variation detected.\n"); 732 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 733 } 734 } 735 736 u64 read_sanitised_ftr_reg(u32 id) 737 { 738 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id); 739 740 /* We shouldn't get a request for an unsupported register */ 741 BUG_ON(!regp); 742 return regp->sys_val; 743 } 744 745 #define read_sysreg_case(r) \ 746 case r: return read_sysreg_s(r) 747 748 /* 749 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated. 750 * Read the system register on the current CPU 751 */ 752 static u64 __read_sysreg_by_encoding(u32 sys_id) 753 { 754 switch (sys_id) { 755 read_sysreg_case(SYS_ID_PFR0_EL1); 756 read_sysreg_case(SYS_ID_PFR1_EL1); 757 read_sysreg_case(SYS_ID_DFR0_EL1); 758 read_sysreg_case(SYS_ID_MMFR0_EL1); 759 read_sysreg_case(SYS_ID_MMFR1_EL1); 760 read_sysreg_case(SYS_ID_MMFR2_EL1); 761 read_sysreg_case(SYS_ID_MMFR3_EL1); 762 read_sysreg_case(SYS_ID_ISAR0_EL1); 763 read_sysreg_case(SYS_ID_ISAR1_EL1); 764 read_sysreg_case(SYS_ID_ISAR2_EL1); 765 read_sysreg_case(SYS_ID_ISAR3_EL1); 766 read_sysreg_case(SYS_ID_ISAR4_EL1); 767 read_sysreg_case(SYS_ID_ISAR5_EL1); 768 read_sysreg_case(SYS_MVFR0_EL1); 769 read_sysreg_case(SYS_MVFR1_EL1); 770 read_sysreg_case(SYS_MVFR2_EL1); 771 772 read_sysreg_case(SYS_ID_AA64PFR0_EL1); 773 read_sysreg_case(SYS_ID_AA64PFR1_EL1); 774 read_sysreg_case(SYS_ID_AA64DFR0_EL1); 775 read_sysreg_case(SYS_ID_AA64DFR1_EL1); 776 read_sysreg_case(SYS_ID_AA64MMFR0_EL1); 777 read_sysreg_case(SYS_ID_AA64MMFR1_EL1); 778 read_sysreg_case(SYS_ID_AA64MMFR2_EL1); 779 read_sysreg_case(SYS_ID_AA64ISAR0_EL1); 780 read_sysreg_case(SYS_ID_AA64ISAR1_EL1); 781 782 read_sysreg_case(SYS_CNTFRQ_EL0); 783 read_sysreg_case(SYS_CTR_EL0); 784 read_sysreg_case(SYS_DCZID_EL0); 785 786 default: 787 BUG(); 788 return 0; 789 } 790 } 791 792 #include <linux/irqchip/arm-gic-v3.h> 793 794 static bool 795 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry) 796 { 797 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign); 798 799 return val >= entry->min_field_value; 800 } 801 802 static bool 803 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope) 804 { 805 u64 val; 806 807 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible()); 808 if (scope == SCOPE_SYSTEM) 809 val = read_sanitised_ftr_reg(entry->sys_reg); 810 else 811 val = __read_sysreg_by_encoding(entry->sys_reg); 812 813 return feature_matches(val, entry); 814 } 815 816 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope) 817 { 818 bool has_sre; 819 820 if (!has_cpuid_feature(entry, scope)) 821 return false; 822 823 has_sre = gic_enable_sre(); 824 if (!has_sre) 825 pr_warn_once("%s present but disabled by higher exception level\n", 826 entry->desc); 827 828 return has_sre; 829 } 830 831 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused) 832 { 833 u32 midr = read_cpuid_id(); 834 835 /* Cavium ThunderX pass 1.x and 2.x */ 836 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, 837 MIDR_CPU_VAR_REV(0, 0), 838 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK)); 839 } 840 841 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry, 842 int __unused) 843 { 844 phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start); 845 846 /* 847 * Activate the lower HYP offset only if: 848 * - the idmap doesn't clash with it, 849 * - the kernel is not running at EL2. 850 */ 851 return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode(); 852 } 853 854 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused) 855 { 856 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 857 858 return cpuid_feature_extract_signed_field(pfr0, 859 ID_AA64PFR0_FP_SHIFT) < 0; 860 } 861 862 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry, 863 int __unused) 864 { 865 return read_sanitised_ftr_reg(SYS_CTR_EL0) & BIT(CTR_IDC_SHIFT); 866 } 867 868 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry, 869 int __unused) 870 { 871 return read_sanitised_ftr_reg(SYS_CTR_EL0) & BIT(CTR_DIC_SHIFT); 872 } 873 874 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0 875 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */ 876 877 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry, 878 int scope) 879 { 880 /* List of CPUs that are not vulnerable and don't need KPTI */ 881 static const struct midr_range kpti_safe_list[] = { 882 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2), 883 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN), 884 }; 885 char const *str = "command line option"; 886 887 /* 888 * For reasons that aren't entirely clear, enabling KPTI on Cavium 889 * ThunderX leads to apparent I-cache corruption of kernel text, which 890 * ends as well as you might imagine. Don't even try. 891 */ 892 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) { 893 str = "ARM64_WORKAROUND_CAVIUM_27456"; 894 __kpti_forced = -1; 895 } 896 897 /* Forced? */ 898 if (__kpti_forced) { 899 pr_info_once("kernel page table isolation forced %s by %s\n", 900 __kpti_forced > 0 ? "ON" : "OFF", str); 901 return __kpti_forced > 0; 902 } 903 904 /* Useful for KASLR robustness */ 905 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) 906 return true; 907 908 /* Don't force KPTI for CPUs that are not vulnerable */ 909 if (is_midr_in_range_list(read_cpuid_id(), kpti_safe_list)) 910 return false; 911 912 /* Defer to CPU feature registers */ 913 return !has_cpuid_feature(entry, scope); 914 } 915 916 static void 917 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused) 918 { 919 typedef void (kpti_remap_fn)(int, int, phys_addr_t); 920 extern kpti_remap_fn idmap_kpti_install_ng_mappings; 921 kpti_remap_fn *remap_fn; 922 923 static bool kpti_applied = false; 924 int cpu = smp_processor_id(); 925 926 if (kpti_applied) 927 return; 928 929 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings); 930 931 cpu_install_idmap(); 932 remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir)); 933 cpu_uninstall_idmap(); 934 935 if (!cpu) 936 kpti_applied = true; 937 938 return; 939 } 940 941 static int __init parse_kpti(char *str) 942 { 943 bool enabled; 944 int ret = strtobool(str, &enabled); 945 946 if (ret) 947 return ret; 948 949 __kpti_forced = enabled ? 1 : -1; 950 return 0; 951 } 952 __setup("kpti=", parse_kpti); 953 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */ 954 955 #ifdef CONFIG_ARM64_HW_AFDBM 956 static inline void __cpu_enable_hw_dbm(void) 957 { 958 u64 tcr = read_sysreg(tcr_el1) | TCR_HD; 959 960 write_sysreg(tcr, tcr_el1); 961 isb(); 962 } 963 964 static bool cpu_has_broken_dbm(void) 965 { 966 /* List of CPUs which have broken DBM support. */ 967 static const struct midr_range cpus[] = { 968 #ifdef CONFIG_ARM64_ERRATUM_1024718 969 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0), // A55 r0p0 -r1p0 970 #endif 971 {}, 972 }; 973 974 return is_midr_in_range_list(read_cpuid_id(), cpus); 975 } 976 977 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap) 978 { 979 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) && 980 !cpu_has_broken_dbm(); 981 } 982 983 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap) 984 { 985 if (cpu_can_use_dbm(cap)) 986 __cpu_enable_hw_dbm(); 987 } 988 989 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap, 990 int __unused) 991 { 992 static bool detected = false; 993 /* 994 * DBM is a non-conflicting feature. i.e, the kernel can safely 995 * run a mix of CPUs with and without the feature. So, we 996 * unconditionally enable the capability to allow any late CPU 997 * to use the feature. We only enable the control bits on the 998 * CPU, if it actually supports. 999 * 1000 * We have to make sure we print the "feature" detection only 1001 * when at least one CPU actually uses it. So check if this CPU 1002 * can actually use it and print the message exactly once. 1003 * 1004 * This is safe as all CPUs (including secondary CPUs - due to the 1005 * LOCAL_CPU scope - and the hotplugged CPUs - via verification) 1006 * goes through the "matches" check exactly once. Also if a CPU 1007 * matches the criteria, it is guaranteed that the CPU will turn 1008 * the DBM on, as the capability is unconditionally enabled. 1009 */ 1010 if (!detected && cpu_can_use_dbm(cap)) { 1011 detected = true; 1012 pr_info("detected: Hardware dirty bit management\n"); 1013 } 1014 1015 return true; 1016 } 1017 1018 #endif 1019 1020 #ifdef CONFIG_ARM64_VHE 1021 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused) 1022 { 1023 return is_kernel_in_hyp_mode(); 1024 } 1025 1026 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused) 1027 { 1028 /* 1029 * Copy register values that aren't redirected by hardware. 1030 * 1031 * Before code patching, we only set tpidr_el1, all CPUs need to copy 1032 * this value to tpidr_el2 before we patch the code. Once we've done 1033 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to 1034 * do anything here. 1035 */ 1036 if (!alternatives_applied) 1037 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2); 1038 } 1039 #endif 1040 1041 static const struct arm64_cpu_capabilities arm64_features[] = { 1042 { 1043 .desc = "GIC system register CPU interface", 1044 .capability = ARM64_HAS_SYSREG_GIC_CPUIF, 1045 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1046 .matches = has_useable_gicv3_cpuif, 1047 .sys_reg = SYS_ID_AA64PFR0_EL1, 1048 .field_pos = ID_AA64PFR0_GIC_SHIFT, 1049 .sign = FTR_UNSIGNED, 1050 .min_field_value = 1, 1051 }, 1052 #ifdef CONFIG_ARM64_PAN 1053 { 1054 .desc = "Privileged Access Never", 1055 .capability = ARM64_HAS_PAN, 1056 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1057 .matches = has_cpuid_feature, 1058 .sys_reg = SYS_ID_AA64MMFR1_EL1, 1059 .field_pos = ID_AA64MMFR1_PAN_SHIFT, 1060 .sign = FTR_UNSIGNED, 1061 .min_field_value = 1, 1062 .cpu_enable = cpu_enable_pan, 1063 }, 1064 #endif /* CONFIG_ARM64_PAN */ 1065 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS) 1066 { 1067 .desc = "LSE atomic instructions", 1068 .capability = ARM64_HAS_LSE_ATOMICS, 1069 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1070 .matches = has_cpuid_feature, 1071 .sys_reg = SYS_ID_AA64ISAR0_EL1, 1072 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT, 1073 .sign = FTR_UNSIGNED, 1074 .min_field_value = 2, 1075 }, 1076 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */ 1077 { 1078 .desc = "Software prefetching using PRFM", 1079 .capability = ARM64_HAS_NO_HW_PREFETCH, 1080 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, 1081 .matches = has_no_hw_prefetch, 1082 }, 1083 #ifdef CONFIG_ARM64_UAO 1084 { 1085 .desc = "User Access Override", 1086 .capability = ARM64_HAS_UAO, 1087 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1088 .matches = has_cpuid_feature, 1089 .sys_reg = SYS_ID_AA64MMFR2_EL1, 1090 .field_pos = ID_AA64MMFR2_UAO_SHIFT, 1091 .min_field_value = 1, 1092 /* 1093 * We rely on stop_machine() calling uao_thread_switch() to set 1094 * UAO immediately after patching. 1095 */ 1096 }, 1097 #endif /* CONFIG_ARM64_UAO */ 1098 #ifdef CONFIG_ARM64_PAN 1099 { 1100 .capability = ARM64_ALT_PAN_NOT_UAO, 1101 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1102 .matches = cpufeature_pan_not_uao, 1103 }, 1104 #endif /* CONFIG_ARM64_PAN */ 1105 #ifdef CONFIG_ARM64_VHE 1106 { 1107 .desc = "Virtualization Host Extensions", 1108 .capability = ARM64_HAS_VIRT_HOST_EXTN, 1109 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 1110 .matches = runs_at_el2, 1111 .cpu_enable = cpu_copy_el2regs, 1112 }, 1113 #endif /* CONFIG_ARM64_VHE */ 1114 { 1115 .desc = "32-bit EL0 Support", 1116 .capability = ARM64_HAS_32BIT_EL0, 1117 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1118 .matches = has_cpuid_feature, 1119 .sys_reg = SYS_ID_AA64PFR0_EL1, 1120 .sign = FTR_UNSIGNED, 1121 .field_pos = ID_AA64PFR0_EL0_SHIFT, 1122 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT, 1123 }, 1124 { 1125 .desc = "Reduced HYP mapping offset", 1126 .capability = ARM64_HYP_OFFSET_LOW, 1127 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1128 .matches = hyp_offset_low, 1129 }, 1130 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0 1131 { 1132 .desc = "Kernel page table isolation (KPTI)", 1133 .capability = ARM64_UNMAP_KERNEL_AT_EL0, 1134 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE, 1135 /* 1136 * The ID feature fields below are used to indicate that 1137 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for 1138 * more details. 1139 */ 1140 .sys_reg = SYS_ID_AA64PFR0_EL1, 1141 .field_pos = ID_AA64PFR0_CSV3_SHIFT, 1142 .min_field_value = 1, 1143 .matches = unmap_kernel_at_el0, 1144 .cpu_enable = kpti_install_ng_mappings, 1145 }, 1146 #endif 1147 { 1148 /* FP/SIMD is not implemented */ 1149 .capability = ARM64_HAS_NO_FPSIMD, 1150 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1151 .min_field_value = 0, 1152 .matches = has_no_fpsimd, 1153 }, 1154 #ifdef CONFIG_ARM64_PMEM 1155 { 1156 .desc = "Data cache clean to Point of Persistence", 1157 .capability = ARM64_HAS_DCPOP, 1158 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1159 .matches = has_cpuid_feature, 1160 .sys_reg = SYS_ID_AA64ISAR1_EL1, 1161 .field_pos = ID_AA64ISAR1_DPB_SHIFT, 1162 .min_field_value = 1, 1163 }, 1164 #endif 1165 #ifdef CONFIG_ARM64_SVE 1166 { 1167 .desc = "Scalable Vector Extension", 1168 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1169 .capability = ARM64_SVE, 1170 .sys_reg = SYS_ID_AA64PFR0_EL1, 1171 .sign = FTR_UNSIGNED, 1172 .field_pos = ID_AA64PFR0_SVE_SHIFT, 1173 .min_field_value = ID_AA64PFR0_SVE, 1174 .matches = has_cpuid_feature, 1175 .cpu_enable = sve_kernel_enable, 1176 }, 1177 #endif /* CONFIG_ARM64_SVE */ 1178 #ifdef CONFIG_ARM64_RAS_EXTN 1179 { 1180 .desc = "RAS Extension Support", 1181 .capability = ARM64_HAS_RAS_EXTN, 1182 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1183 .matches = has_cpuid_feature, 1184 .sys_reg = SYS_ID_AA64PFR0_EL1, 1185 .sign = FTR_UNSIGNED, 1186 .field_pos = ID_AA64PFR0_RAS_SHIFT, 1187 .min_field_value = ID_AA64PFR0_RAS_V1, 1188 .cpu_enable = cpu_clear_disr, 1189 }, 1190 #endif /* CONFIG_ARM64_RAS_EXTN */ 1191 { 1192 .desc = "Data cache clean to the PoU not required for I/D coherence", 1193 .capability = ARM64_HAS_CACHE_IDC, 1194 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1195 .matches = has_cache_idc, 1196 }, 1197 { 1198 .desc = "Instruction cache invalidation not required for I/D coherence", 1199 .capability = ARM64_HAS_CACHE_DIC, 1200 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1201 .matches = has_cache_dic, 1202 }, 1203 #ifdef CONFIG_ARM64_HW_AFDBM 1204 { 1205 /* 1206 * Since we turn this on always, we don't want the user to 1207 * think that the feature is available when it may not be. 1208 * So hide the description. 1209 * 1210 * .desc = "Hardware pagetable Dirty Bit Management", 1211 * 1212 */ 1213 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, 1214 .capability = ARM64_HW_DBM, 1215 .sys_reg = SYS_ID_AA64MMFR1_EL1, 1216 .sign = FTR_UNSIGNED, 1217 .field_pos = ID_AA64MMFR1_HADBS_SHIFT, 1218 .min_field_value = 2, 1219 .matches = has_hw_dbm, 1220 .cpu_enable = cpu_enable_hw_dbm, 1221 }, 1222 #endif 1223 {}, 1224 }; 1225 1226 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \ 1227 { \ 1228 .desc = #cap, \ 1229 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \ 1230 .matches = has_cpuid_feature, \ 1231 .sys_reg = reg, \ 1232 .field_pos = field, \ 1233 .sign = s, \ 1234 .min_field_value = min_value, \ 1235 .hwcap_type = cap_type, \ 1236 .hwcap = cap, \ 1237 } 1238 1239 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = { 1240 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL), 1241 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES), 1242 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1), 1243 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2), 1244 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512), 1245 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32), 1246 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS), 1247 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM), 1248 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3), 1249 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3), 1250 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4), 1251 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP), 1252 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM), 1253 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM), 1254 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP), 1255 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP), 1256 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD), 1257 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP), 1258 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT), 1259 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP), 1260 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT), 1261 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA), 1262 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC), 1263 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC), 1264 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT), 1265 #ifdef CONFIG_ARM64_SVE 1266 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE), 1267 #endif 1268 {}, 1269 }; 1270 1271 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = { 1272 #ifdef CONFIG_COMPAT 1273 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL), 1274 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES), 1275 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1), 1276 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2), 1277 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32), 1278 #endif 1279 {}, 1280 }; 1281 1282 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap) 1283 { 1284 switch (cap->hwcap_type) { 1285 case CAP_HWCAP: 1286 elf_hwcap |= cap->hwcap; 1287 break; 1288 #ifdef CONFIG_COMPAT 1289 case CAP_COMPAT_HWCAP: 1290 compat_elf_hwcap |= (u32)cap->hwcap; 1291 break; 1292 case CAP_COMPAT_HWCAP2: 1293 compat_elf_hwcap2 |= (u32)cap->hwcap; 1294 break; 1295 #endif 1296 default: 1297 WARN_ON(1); 1298 break; 1299 } 1300 } 1301 1302 /* Check if we have a particular HWCAP enabled */ 1303 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap) 1304 { 1305 bool rc; 1306 1307 switch (cap->hwcap_type) { 1308 case CAP_HWCAP: 1309 rc = (elf_hwcap & cap->hwcap) != 0; 1310 break; 1311 #ifdef CONFIG_COMPAT 1312 case CAP_COMPAT_HWCAP: 1313 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0; 1314 break; 1315 case CAP_COMPAT_HWCAP2: 1316 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0; 1317 break; 1318 #endif 1319 default: 1320 WARN_ON(1); 1321 rc = false; 1322 } 1323 1324 return rc; 1325 } 1326 1327 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps) 1328 { 1329 /* We support emulation of accesses to CPU ID feature registers */ 1330 elf_hwcap |= HWCAP_CPUID; 1331 for (; hwcaps->matches; hwcaps++) 1332 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps))) 1333 cap_set_elf_hwcap(hwcaps); 1334 } 1335 1336 /* 1337 * Check if the current CPU has a given feature capability. 1338 * Should be called from non-preemptible context. 1339 */ 1340 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array, 1341 unsigned int cap) 1342 { 1343 const struct arm64_cpu_capabilities *caps; 1344 1345 if (WARN_ON(preemptible())) 1346 return false; 1347 1348 for (caps = cap_array; caps->matches; caps++) 1349 if (caps->capability == cap) 1350 return caps->matches(caps, SCOPE_LOCAL_CPU); 1351 1352 return false; 1353 } 1354 1355 static void __update_cpu_capabilities(const struct arm64_cpu_capabilities *caps, 1356 u16 scope_mask, const char *info) 1357 { 1358 scope_mask &= ARM64_CPUCAP_SCOPE_MASK; 1359 for (; caps->matches; caps++) { 1360 if (!(caps->type & scope_mask) || 1361 !caps->matches(caps, cpucap_default_scope(caps))) 1362 continue; 1363 1364 if (!cpus_have_cap(caps->capability) && caps->desc) 1365 pr_info("%s %s\n", info, caps->desc); 1366 cpus_set_cap(caps->capability); 1367 } 1368 } 1369 1370 static void update_cpu_capabilities(u16 scope_mask) 1371 { 1372 __update_cpu_capabilities(arm64_features, scope_mask, "detected:"); 1373 __update_cpu_capabilities(arm64_errata, scope_mask, 1374 "enabling workaround for"); 1375 } 1376 1377 static int __enable_cpu_capability(void *arg) 1378 { 1379 const struct arm64_cpu_capabilities *cap = arg; 1380 1381 cap->cpu_enable(cap); 1382 return 0; 1383 } 1384 1385 /* 1386 * Run through the enabled capabilities and enable() it on all active 1387 * CPUs 1388 */ 1389 static void __init 1390 __enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps, 1391 u16 scope_mask) 1392 { 1393 scope_mask &= ARM64_CPUCAP_SCOPE_MASK; 1394 for (; caps->matches; caps++) { 1395 unsigned int num = caps->capability; 1396 1397 if (!(caps->type & scope_mask) || !cpus_have_cap(num)) 1398 continue; 1399 1400 /* Ensure cpus_have_const_cap(num) works */ 1401 static_branch_enable(&cpu_hwcap_keys[num]); 1402 1403 if (caps->cpu_enable) { 1404 /* 1405 * Capabilities with SCOPE_BOOT_CPU scope are finalised 1406 * before any secondary CPU boots. Thus, each secondary 1407 * will enable the capability as appropriate via 1408 * check_local_cpu_capabilities(). The only exception is 1409 * the boot CPU, for which the capability must be 1410 * enabled here. This approach avoids costly 1411 * stop_machine() calls for this case. 1412 * 1413 * Otherwise, use stop_machine() as it schedules the 1414 * work allowing us to modify PSTATE, instead of 1415 * on_each_cpu() which uses an IPI, giving us a PSTATE 1416 * that disappears when we return. 1417 */ 1418 if (scope_mask & SCOPE_BOOT_CPU) 1419 caps->cpu_enable(caps); 1420 else 1421 stop_machine(__enable_cpu_capability, 1422 (void *)caps, cpu_online_mask); 1423 } 1424 } 1425 } 1426 1427 static void __init enable_cpu_capabilities(u16 scope_mask) 1428 { 1429 __enable_cpu_capabilities(arm64_features, scope_mask); 1430 __enable_cpu_capabilities(arm64_errata, scope_mask); 1431 } 1432 1433 /* 1434 * Run through the list of capabilities to check for conflicts. 1435 * If the system has already detected a capability, take necessary 1436 * action on this CPU. 1437 * 1438 * Returns "false" on conflicts. 1439 */ 1440 static bool 1441 __verify_local_cpu_caps(const struct arm64_cpu_capabilities *caps, 1442 u16 scope_mask) 1443 { 1444 bool cpu_has_cap, system_has_cap; 1445 1446 scope_mask &= ARM64_CPUCAP_SCOPE_MASK; 1447 1448 for (; caps->matches; caps++) { 1449 if (!(caps->type & scope_mask)) 1450 continue; 1451 1452 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU); 1453 system_has_cap = cpus_have_cap(caps->capability); 1454 1455 if (system_has_cap) { 1456 /* 1457 * Check if the new CPU misses an advertised feature, 1458 * which is not safe to miss. 1459 */ 1460 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps)) 1461 break; 1462 /* 1463 * We have to issue cpu_enable() irrespective of 1464 * whether the CPU has it or not, as it is enabeld 1465 * system wide. It is upto the call back to take 1466 * appropriate action on this CPU. 1467 */ 1468 if (caps->cpu_enable) 1469 caps->cpu_enable(caps); 1470 } else { 1471 /* 1472 * Check if the CPU has this capability if it isn't 1473 * safe to have when the system doesn't. 1474 */ 1475 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps)) 1476 break; 1477 } 1478 } 1479 1480 if (caps->matches) { 1481 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n", 1482 smp_processor_id(), caps->capability, 1483 caps->desc, system_has_cap, cpu_has_cap); 1484 return false; 1485 } 1486 1487 return true; 1488 } 1489 1490 static bool verify_local_cpu_caps(u16 scope_mask) 1491 { 1492 return __verify_local_cpu_caps(arm64_errata, scope_mask) && 1493 __verify_local_cpu_caps(arm64_features, scope_mask); 1494 } 1495 1496 /* 1497 * Check for CPU features that are used in early boot 1498 * based on the Boot CPU value. 1499 */ 1500 static void check_early_cpu_features(void) 1501 { 1502 verify_cpu_asid_bits(); 1503 /* 1504 * Early features are used by the kernel already. If there 1505 * is a conflict, we cannot proceed further. 1506 */ 1507 if (!verify_local_cpu_caps(SCOPE_BOOT_CPU)) 1508 cpu_panic_kernel(); 1509 } 1510 1511 static void 1512 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps) 1513 { 1514 1515 for (; caps->matches; caps++) 1516 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) { 1517 pr_crit("CPU%d: missing HWCAP: %s\n", 1518 smp_processor_id(), caps->desc); 1519 cpu_die_early(); 1520 } 1521 } 1522 1523 static void verify_sve_features(void) 1524 { 1525 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); 1526 u64 zcr = read_zcr_features(); 1527 1528 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK; 1529 unsigned int len = zcr & ZCR_ELx_LEN_MASK; 1530 1531 if (len < safe_len || sve_verify_vq_map()) { 1532 pr_crit("CPU%d: SVE: required vector length(s) missing\n", 1533 smp_processor_id()); 1534 cpu_die_early(); 1535 } 1536 1537 /* Add checks on other ZCR bits here if necessary */ 1538 } 1539 1540 1541 /* 1542 * Run through the enabled system capabilities and enable() it on this CPU. 1543 * The capabilities were decided based on the available CPUs at the boot time. 1544 * Any new CPU should match the system wide status of the capability. If the 1545 * new CPU doesn't have a capability which the system now has enabled, we 1546 * cannot do anything to fix it up and could cause unexpected failures. So 1547 * we park the CPU. 1548 */ 1549 static void verify_local_cpu_capabilities(void) 1550 { 1551 /* 1552 * The capabilities with SCOPE_BOOT_CPU are checked from 1553 * check_early_cpu_features(), as they need to be verified 1554 * on all secondary CPUs. 1555 */ 1556 if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU)) 1557 cpu_die_early(); 1558 1559 verify_local_elf_hwcaps(arm64_elf_hwcaps); 1560 1561 if (system_supports_32bit_el0()) 1562 verify_local_elf_hwcaps(compat_elf_hwcaps); 1563 1564 if (system_supports_sve()) 1565 verify_sve_features(); 1566 } 1567 1568 void check_local_cpu_capabilities(void) 1569 { 1570 /* 1571 * All secondary CPUs should conform to the early CPU features 1572 * in use by the kernel based on boot CPU. 1573 */ 1574 check_early_cpu_features(); 1575 1576 /* 1577 * If we haven't finalised the system capabilities, this CPU gets 1578 * a chance to update the errata work arounds and local features. 1579 * Otherwise, this CPU should verify that it has all the system 1580 * advertised capabilities. 1581 */ 1582 if (!sys_caps_initialised) 1583 update_cpu_capabilities(SCOPE_LOCAL_CPU); 1584 else 1585 verify_local_cpu_capabilities(); 1586 } 1587 1588 static void __init setup_boot_cpu_capabilities(void) 1589 { 1590 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */ 1591 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU); 1592 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */ 1593 enable_cpu_capabilities(SCOPE_BOOT_CPU); 1594 } 1595 1596 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready); 1597 EXPORT_SYMBOL(arm64_const_caps_ready); 1598 1599 static void __init mark_const_caps_ready(void) 1600 { 1601 static_branch_enable(&arm64_const_caps_ready); 1602 } 1603 1604 extern const struct arm64_cpu_capabilities arm64_errata[]; 1605 1606 bool this_cpu_has_cap(unsigned int cap) 1607 { 1608 return (__this_cpu_has_cap(arm64_features, cap) || 1609 __this_cpu_has_cap(arm64_errata, cap)); 1610 } 1611 1612 static void __init setup_system_capabilities(void) 1613 { 1614 /* 1615 * We have finalised the system-wide safe feature 1616 * registers, finalise the capabilities that depend 1617 * on it. Also enable all the available capabilities, 1618 * that are not enabled already. 1619 */ 1620 update_cpu_capabilities(SCOPE_SYSTEM); 1621 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU); 1622 } 1623 1624 void __init setup_cpu_features(void) 1625 { 1626 u32 cwg; 1627 int cls; 1628 1629 setup_system_capabilities(); 1630 mark_const_caps_ready(); 1631 setup_elf_hwcaps(arm64_elf_hwcaps); 1632 1633 if (system_supports_32bit_el0()) 1634 setup_elf_hwcaps(compat_elf_hwcaps); 1635 1636 if (system_uses_ttbr0_pan()) 1637 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n"); 1638 1639 sve_setup(); 1640 1641 /* Advertise that we have computed the system capabilities */ 1642 set_sys_caps_initialised(); 1643 1644 /* 1645 * Check for sane CTR_EL0.CWG value. 1646 */ 1647 cwg = cache_type_cwg(); 1648 cls = cache_line_size(); 1649 if (!cwg) 1650 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n", 1651 cls); 1652 if (L1_CACHE_BYTES < cls) 1653 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n", 1654 L1_CACHE_BYTES, cls); 1655 } 1656 1657 static bool __maybe_unused 1658 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused) 1659 { 1660 return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO)); 1661 } 1662 1663 /* 1664 * We emulate only the following system register space. 1665 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7] 1666 * See Table C5-6 System instruction encodings for System register accesses, 1667 * ARMv8 ARM(ARM DDI 0487A.f) for more details. 1668 */ 1669 static inline bool __attribute_const__ is_emulated(u32 id) 1670 { 1671 return (sys_reg_Op0(id) == 0x3 && 1672 sys_reg_CRn(id) == 0x0 && 1673 sys_reg_Op1(id) == 0x0 && 1674 (sys_reg_CRm(id) == 0 || 1675 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7)))); 1676 } 1677 1678 /* 1679 * With CRm == 0, reg should be one of : 1680 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1. 1681 */ 1682 static inline int emulate_id_reg(u32 id, u64 *valp) 1683 { 1684 switch (id) { 1685 case SYS_MIDR_EL1: 1686 *valp = read_cpuid_id(); 1687 break; 1688 case SYS_MPIDR_EL1: 1689 *valp = SYS_MPIDR_SAFE_VAL; 1690 break; 1691 case SYS_REVIDR_EL1: 1692 /* IMPLEMENTATION DEFINED values are emulated with 0 */ 1693 *valp = 0; 1694 break; 1695 default: 1696 return -EINVAL; 1697 } 1698 1699 return 0; 1700 } 1701 1702 static int emulate_sys_reg(u32 id, u64 *valp) 1703 { 1704 struct arm64_ftr_reg *regp; 1705 1706 if (!is_emulated(id)) 1707 return -EINVAL; 1708 1709 if (sys_reg_CRm(id) == 0) 1710 return emulate_id_reg(id, valp); 1711 1712 regp = get_arm64_ftr_reg(id); 1713 if (regp) 1714 *valp = arm64_ftr_reg_user_value(regp); 1715 else 1716 /* 1717 * The untracked registers are either IMPLEMENTATION DEFINED 1718 * (e.g, ID_AFR0_EL1) or reserved RAZ. 1719 */ 1720 *valp = 0; 1721 return 0; 1722 } 1723 1724 static int emulate_mrs(struct pt_regs *regs, u32 insn) 1725 { 1726 int rc; 1727 u32 sys_reg, dst; 1728 u64 val; 1729 1730 /* 1731 * sys_reg values are defined as used in mrs/msr instruction. 1732 * shift the imm value to get the encoding. 1733 */ 1734 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5; 1735 rc = emulate_sys_reg(sys_reg, &val); 1736 if (!rc) { 1737 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn); 1738 pt_regs_write_reg(regs, dst, val); 1739 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 1740 } 1741 1742 return rc; 1743 } 1744 1745 static struct undef_hook mrs_hook = { 1746 .instr_mask = 0xfff00000, 1747 .instr_val = 0xd5300000, 1748 .pstate_mask = COMPAT_PSR_MODE_MASK, 1749 .pstate_val = PSR_MODE_EL0t, 1750 .fn = emulate_mrs, 1751 }; 1752 1753 static int __init enable_mrs_emulation(void) 1754 { 1755 register_undef_hook(&mrs_hook); 1756 return 0; 1757 } 1758 1759 core_initcall(enable_mrs_emulation); 1760 1761 void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused) 1762 { 1763 /* Firmware may have left a deferred SError in this register. */ 1764 write_sysreg_s(0, SYS_DISR_EL1); 1765 } 1766