xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision a266ef69b890f099069cf51bb40572611c435a54)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62 
63 #define pr_fmt(fmt) "CPU features: " fmt
64 
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/sort.h>
69 #include <linux/stop_machine.h>
70 #include <linux/sysfs.h>
71 #include <linux/types.h>
72 #include <linux/minmax.h>
73 #include <linux/mm.h>
74 #include <linux/cpu.h>
75 #include <linux/kasan.h>
76 #include <linux/percpu.h>
77 
78 #include <asm/cpu.h>
79 #include <asm/cpufeature.h>
80 #include <asm/cpu_ops.h>
81 #include <asm/fpsimd.h>
82 #include <asm/hwcap.h>
83 #include <asm/insn.h>
84 #include <asm/kvm_host.h>
85 #include <asm/mmu_context.h>
86 #include <asm/mte.h>
87 #include <asm/processor.h>
88 #include <asm/smp.h>
89 #include <asm/sysreg.h>
90 #include <asm/traps.h>
91 #include <asm/vectors.h>
92 #include <asm/virt.h>
93 
94 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
95 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
96 
97 #ifdef CONFIG_COMPAT
98 #define COMPAT_ELF_HWCAP_DEFAULT	\
99 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
100 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
101 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
102 				 COMPAT_HWCAP_LPAE)
103 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
104 unsigned int compat_elf_hwcap2 __read_mostly;
105 #endif
106 
107 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
108 EXPORT_SYMBOL(cpu_hwcaps);
109 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
110 
111 DECLARE_BITMAP(boot_capabilities, ARM64_NCAPS);
112 
113 bool arm64_use_ng_mappings = false;
114 EXPORT_SYMBOL(arm64_use_ng_mappings);
115 
116 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
117 
118 /*
119  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
120  * support it?
121  */
122 static bool __read_mostly allow_mismatched_32bit_el0;
123 
124 /*
125  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
126  * seen at least one CPU capable of 32-bit EL0.
127  */
128 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
129 
130 /*
131  * Mask of CPUs supporting 32-bit EL0.
132  * Only valid if arm64_mismatched_32bit_el0 is enabled.
133  */
134 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
135 
136 void dump_cpu_features(void)
137 {
138 	/* file-wide pr_fmt adds "CPU features: " prefix */
139 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
140 }
141 
142 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
143 	{						\
144 		.sign = SIGNED,				\
145 		.visible = VISIBLE,			\
146 		.strict = STRICT,			\
147 		.type = TYPE,				\
148 		.shift = SHIFT,				\
149 		.width = WIDTH,				\
150 		.safe_val = SAFE_VAL,			\
151 	}
152 
153 /* Define a feature with unsigned values */
154 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
155 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
156 
157 /* Define a feature with a signed value */
158 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
159 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
160 
161 #define ARM64_FTR_END					\
162 	{						\
163 		.width = 0,				\
164 	}
165 
166 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
167 
168 static bool __system_matches_cap(unsigned int n);
169 
170 /*
171  * NOTE: Any changes to the visibility of features should be kept in
172  * sync with the documentation of the CPU feature register ABI.
173  */
174 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
175 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
176 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
177 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
178 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
179 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
180 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
181 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
182 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
183 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
184 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
185 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
186 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
187 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
188 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
189 	ARM64_FTR_END,
190 };
191 
192 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
193 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
194 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
195 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
196 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
197 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
198 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
199 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
200 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
201 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
202 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
203 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
204 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
205 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
206 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
207 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
208 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
209 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
210 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
211 	ARM64_FTR_END,
212 };
213 
214 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
215 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
216 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
217 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
218 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
219 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
220 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
221 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
222 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
223 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
224 	ARM64_FTR_END,
225 };
226 
227 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
228 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
229 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
230 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
231 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
232 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
233 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
234 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
235 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
236 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
237 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
238 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
239 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
240 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
241 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
242 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
243 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
244 	ARM64_FTR_END,
245 };
246 
247 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
248 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
249 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
250 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
251 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
252 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
253 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
254 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
255 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
256 				    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
257 	ARM64_FTR_END,
258 };
259 
260 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
261 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
262 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
263 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
264 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
265 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
266 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
267 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
268 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
269 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
270 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
271 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
272 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
273 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
274 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
275 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
276 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
277 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
278 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
279 	ARM64_FTR_END,
280 };
281 
282 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
283 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
284 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
285 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
286 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
287 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
288 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
289 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
290 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
291 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
292 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
293 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
294 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
295 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
296 		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
297 	ARM64_FTR_END,
298 };
299 
300 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
301 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
302 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
303 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
304 	/*
305 	 * Page size not being supported at Stage-2 is not fatal. You
306 	 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
307 	 * your favourite nesting hypervisor.
308 	 *
309 	 * There is a small corner case where the hypervisor explicitly
310 	 * advertises a given granule size at Stage-2 (value 2) on some
311 	 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
312 	 * vCPUs. Although this is not forbidden by the architecture, it
313 	 * indicates that the hypervisor is being silly (or buggy).
314 	 *
315 	 * We make no effort to cope with this and pretend that if these
316 	 * fields are inconsistent across vCPUs, then it isn't worth
317 	 * trying to bring KVM up.
318 	 */
319 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
320 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
321 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
322 	/*
323 	 * We already refuse to boot CPUs that don't support our configured
324 	 * page size, so we can only detect mismatches for a page size other
325 	 * than the one we're currently using. Unfortunately, SoCs like this
326 	 * exist in the wild so, even though we don't like it, we'll have to go
327 	 * along with it and treat them as non-strict.
328 	 */
329 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
330 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
331 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
332 
333 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
334 	/* Linux shouldn't care about secure memory */
335 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
336 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
337 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
338 	/*
339 	 * Differing PARange is fine as long as all peripherals and memory are mapped
340 	 * within the minimum PARange of all CPUs
341 	 */
342 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
343 	ARM64_FTR_END,
344 };
345 
346 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
347 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
348 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
349 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
350 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
351 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
352 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
353 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
354 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
355 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
356 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
357 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
358 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
359 	ARM64_FTR_END,
360 };
361 
362 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
363 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
364 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
365 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
366 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
367 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
368 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
369 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
370 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
371 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
372 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
373 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
374 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
375 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
376 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
377 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
378 	ARM64_FTR_END,
379 };
380 
381 static const struct arm64_ftr_bits ftr_ctr[] = {
382 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
383 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
384 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
385 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
386 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
387 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
388 	/*
389 	 * Linux can handle differing I-cache policies. Userspace JITs will
390 	 * make use of *minLine.
391 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
392 	 */
393 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),	/* L1Ip */
394 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
395 	ARM64_FTR_END,
396 };
397 
398 static struct arm64_ftr_override __ro_after_init no_override = { };
399 
400 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
401 	.name		= "SYS_CTR_EL0",
402 	.ftr_bits	= ftr_ctr,
403 	.override	= &no_override,
404 };
405 
406 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
407 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
408 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
409 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
410 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
411 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
412 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
413 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
414 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
415 	ARM64_FTR_END,
416 };
417 
418 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
419 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
420 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
421 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
422 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
423 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
424 	/*
425 	 * We can instantiate multiple PMU instances with different levels
426 	 * of support.
427 	 */
428 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
429 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
430 	ARM64_FTR_END,
431 };
432 
433 static const struct arm64_ftr_bits ftr_mvfr0[] = {
434 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
435 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
436 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
437 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
438 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
439 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
440 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
441 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
442 	ARM64_FTR_END,
443 };
444 
445 static const struct arm64_ftr_bits ftr_mvfr1[] = {
446 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
447 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
448 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
449 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
450 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
451 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
452 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
453 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
454 	ARM64_FTR_END,
455 };
456 
457 static const struct arm64_ftr_bits ftr_mvfr2[] = {
458 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
459 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
460 	ARM64_FTR_END,
461 };
462 
463 static const struct arm64_ftr_bits ftr_dczid[] = {
464 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
465 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
466 	ARM64_FTR_END,
467 };
468 
469 static const struct arm64_ftr_bits ftr_gmid[] = {
470 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
471 	ARM64_FTR_END,
472 };
473 
474 static const struct arm64_ftr_bits ftr_id_isar0[] = {
475 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
476 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
477 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
478 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
479 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
480 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
481 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
482 	ARM64_FTR_END,
483 };
484 
485 static const struct arm64_ftr_bits ftr_id_isar5[] = {
486 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
487 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
488 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
489 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
490 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
491 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
492 	ARM64_FTR_END,
493 };
494 
495 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
496 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
497 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
498 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
499 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
500 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
501 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
502 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
503 
504 	/*
505 	 * SpecSEI = 1 indicates that the PE might generate an SError on an
506 	 * external abort on speculative read. It is safe to assume that an
507 	 * SError might be generated than it will not be. Hence it has been
508 	 * classified as FTR_HIGHER_SAFE.
509 	 */
510 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
511 	ARM64_FTR_END,
512 };
513 
514 static const struct arm64_ftr_bits ftr_id_isar4[] = {
515 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
516 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
517 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
518 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
519 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
520 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
521 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
522 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
523 	ARM64_FTR_END,
524 };
525 
526 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
527 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
528 	ARM64_FTR_END,
529 };
530 
531 static const struct arm64_ftr_bits ftr_id_isar6[] = {
532 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
533 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
534 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
535 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
536 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
537 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
538 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
539 	ARM64_FTR_END,
540 };
541 
542 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
543 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
544 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
545 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
546 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
547 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
548 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
549 	ARM64_FTR_END,
550 };
551 
552 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
553 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
554 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
555 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
556 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
557 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
558 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
559 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
560 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
561 	ARM64_FTR_END,
562 };
563 
564 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
565 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
566 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
567 	ARM64_FTR_END,
568 };
569 
570 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
571 	/* [31:28] TraceFilt */
572 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
573 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
574 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
575 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
576 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
577 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
578 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
579 	ARM64_FTR_END,
580 };
581 
582 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
583 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
584 	ARM64_FTR_END,
585 };
586 
587 static const struct arm64_ftr_bits ftr_zcr[] = {
588 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
589 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_WIDTH, 0),	/* LEN */
590 	ARM64_FTR_END,
591 };
592 
593 static const struct arm64_ftr_bits ftr_smcr[] = {
594 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
595 		SMCR_ELx_LEN_SHIFT, SMCR_ELx_LEN_WIDTH, 0),	/* LEN */
596 	ARM64_FTR_END,
597 };
598 
599 /*
600  * Common ftr bits for a 32bit register with all hidden, strict
601  * attributes, with 4bit feature fields and a default safe value of
602  * 0. Covers the following 32bit registers:
603  * id_isar[1-3], id_mmfr[1-3]
604  */
605 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
606 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
607 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
608 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
609 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
610 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
611 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
612 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
613 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
614 	ARM64_FTR_END,
615 };
616 
617 /* Table for a single 32bit feature value */
618 static const struct arm64_ftr_bits ftr_single32[] = {
619 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
620 	ARM64_FTR_END,
621 };
622 
623 static const struct arm64_ftr_bits ftr_raz[] = {
624 	ARM64_FTR_END,
625 };
626 
627 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {	\
628 		.sys_id = id,					\
629 		.reg = 	&(struct arm64_ftr_reg){		\
630 			.name = id_str,				\
631 			.override = (ovr),			\
632 			.ftr_bits = &((table)[0]),		\
633 	}}
634 
635 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)	\
636 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
637 
638 #define ARM64_FTR_REG(id, table)		\
639 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
640 
641 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
642 struct arm64_ftr_override __ro_after_init id_aa64pfr0_override;
643 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
644 struct arm64_ftr_override __ro_after_init id_aa64zfr0_override;
645 struct arm64_ftr_override __ro_after_init id_aa64smfr0_override;
646 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
647 struct arm64_ftr_override __ro_after_init id_aa64isar2_override;
648 
649 static const struct __ftr_reg_entry {
650 	u32			sys_id;
651 	struct arm64_ftr_reg 	*reg;
652 } arm64_ftr_regs[] = {
653 
654 	/* Op1 = 0, CRn = 0, CRm = 1 */
655 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
656 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
657 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
658 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
659 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
660 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
661 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
662 
663 	/* Op1 = 0, CRn = 0, CRm = 2 */
664 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
665 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
666 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
667 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
668 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
669 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
670 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
671 	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
672 
673 	/* Op1 = 0, CRn = 0, CRm = 3 */
674 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
675 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
676 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
677 	ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
678 	ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
679 	ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
680 
681 	/* Op1 = 0, CRn = 0, CRm = 4 */
682 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
683 			       &id_aa64pfr0_override),
684 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
685 			       &id_aa64pfr1_override),
686 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
687 			       &id_aa64zfr0_override),
688 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
689 			       &id_aa64smfr0_override),
690 
691 	/* Op1 = 0, CRn = 0, CRm = 5 */
692 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
693 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
694 
695 	/* Op1 = 0, CRn = 0, CRm = 6 */
696 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
697 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
698 			       &id_aa64isar1_override),
699 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
700 			       &id_aa64isar2_override),
701 
702 	/* Op1 = 0, CRn = 0, CRm = 7 */
703 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
704 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
705 			       &id_aa64mmfr1_override),
706 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
707 
708 	/* Op1 = 0, CRn = 1, CRm = 2 */
709 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
710 	ARM64_FTR_REG(SYS_SMCR_EL1, ftr_smcr),
711 
712 	/* Op1 = 1, CRn = 0, CRm = 0 */
713 	ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
714 
715 	/* Op1 = 3, CRn = 0, CRm = 0 */
716 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
717 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
718 
719 	/* Op1 = 3, CRn = 14, CRm = 0 */
720 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
721 };
722 
723 static int search_cmp_ftr_reg(const void *id, const void *regp)
724 {
725 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
726 }
727 
728 /*
729  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
730  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
731  * ascending order of sys_id, we use binary search to find a matching
732  * entry.
733  *
734  * returns - Upon success,  matching ftr_reg entry for id.
735  *         - NULL on failure. It is upto the caller to decide
736  *	     the impact of a failure.
737  */
738 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
739 {
740 	const struct __ftr_reg_entry *ret;
741 
742 	ret = bsearch((const void *)(unsigned long)sys_id,
743 			arm64_ftr_regs,
744 			ARRAY_SIZE(arm64_ftr_regs),
745 			sizeof(arm64_ftr_regs[0]),
746 			search_cmp_ftr_reg);
747 	if (ret)
748 		return ret->reg;
749 	return NULL;
750 }
751 
752 /*
753  * get_arm64_ftr_reg - Looks up a feature register entry using
754  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
755  *
756  * returns - Upon success,  matching ftr_reg entry for id.
757  *         - NULL on failure but with an WARN_ON().
758  */
759 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
760 {
761 	struct arm64_ftr_reg *reg;
762 
763 	reg = get_arm64_ftr_reg_nowarn(sys_id);
764 
765 	/*
766 	 * Requesting a non-existent register search is an error. Warn
767 	 * and let the caller handle it.
768 	 */
769 	WARN_ON(!reg);
770 	return reg;
771 }
772 
773 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
774 			       s64 ftr_val)
775 {
776 	u64 mask = arm64_ftr_mask(ftrp);
777 
778 	reg &= ~mask;
779 	reg |= (ftr_val << ftrp->shift) & mask;
780 	return reg;
781 }
782 
783 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
784 				s64 cur)
785 {
786 	s64 ret = 0;
787 
788 	switch (ftrp->type) {
789 	case FTR_EXACT:
790 		ret = ftrp->safe_val;
791 		break;
792 	case FTR_LOWER_SAFE:
793 		ret = min(new, cur);
794 		break;
795 	case FTR_HIGHER_OR_ZERO_SAFE:
796 		if (!cur || !new)
797 			break;
798 		fallthrough;
799 	case FTR_HIGHER_SAFE:
800 		ret = max(new, cur);
801 		break;
802 	default:
803 		BUG();
804 	}
805 
806 	return ret;
807 }
808 
809 static void __init sort_ftr_regs(void)
810 {
811 	unsigned int i;
812 
813 	for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
814 		const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
815 		const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
816 		unsigned int j = 0;
817 
818 		/*
819 		 * Features here must be sorted in descending order with respect
820 		 * to their shift values and should not overlap with each other.
821 		 */
822 		for (; ftr_bits->width != 0; ftr_bits++, j++) {
823 			unsigned int width = ftr_reg->ftr_bits[j].width;
824 			unsigned int shift = ftr_reg->ftr_bits[j].shift;
825 			unsigned int prev_shift;
826 
827 			WARN((shift  + width) > 64,
828 				"%s has invalid feature at shift %d\n",
829 				ftr_reg->name, shift);
830 
831 			/*
832 			 * Skip the first feature. There is nothing to
833 			 * compare against for now.
834 			 */
835 			if (j == 0)
836 				continue;
837 
838 			prev_shift = ftr_reg->ftr_bits[j - 1].shift;
839 			WARN((shift + width) > prev_shift,
840 				"%s has feature overlap at shift %d\n",
841 				ftr_reg->name, shift);
842 		}
843 
844 		/*
845 		 * Skip the first register. There is nothing to
846 		 * compare against for now.
847 		 */
848 		if (i == 0)
849 			continue;
850 		/*
851 		 * Registers here must be sorted in ascending order with respect
852 		 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
853 		 * to work correctly.
854 		 */
855 		BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
856 	}
857 }
858 
859 /*
860  * Initialise the CPU feature register from Boot CPU values.
861  * Also initiliases the strict_mask for the register.
862  * Any bits that are not covered by an arm64_ftr_bits entry are considered
863  * RES0 for the system-wide value, and must strictly match.
864  */
865 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
866 {
867 	u64 val = 0;
868 	u64 strict_mask = ~0x0ULL;
869 	u64 user_mask = 0;
870 	u64 valid_mask = 0;
871 
872 	const struct arm64_ftr_bits *ftrp;
873 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
874 
875 	if (!reg)
876 		return;
877 
878 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
879 		u64 ftr_mask = arm64_ftr_mask(ftrp);
880 		s64 ftr_new = arm64_ftr_value(ftrp, new);
881 		s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
882 
883 		if ((ftr_mask & reg->override->mask) == ftr_mask) {
884 			s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
885 			char *str = NULL;
886 
887 			if (ftr_ovr != tmp) {
888 				/* Unsafe, remove the override */
889 				reg->override->mask &= ~ftr_mask;
890 				reg->override->val &= ~ftr_mask;
891 				tmp = ftr_ovr;
892 				str = "ignoring override";
893 			} else if (ftr_new != tmp) {
894 				/* Override was valid */
895 				ftr_new = tmp;
896 				str = "forced";
897 			} else if (ftr_ovr == tmp) {
898 				/* Override was the safe value */
899 				str = "already set";
900 			}
901 
902 			if (str)
903 				pr_warn("%s[%d:%d]: %s to %llx\n",
904 					reg->name,
905 					ftrp->shift + ftrp->width - 1,
906 					ftrp->shift, str, tmp);
907 		} else if ((ftr_mask & reg->override->val) == ftr_mask) {
908 			reg->override->val &= ~ftr_mask;
909 			pr_warn("%s[%d:%d]: impossible override, ignored\n",
910 				reg->name,
911 				ftrp->shift + ftrp->width - 1,
912 				ftrp->shift);
913 		}
914 
915 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
916 
917 		valid_mask |= ftr_mask;
918 		if (!ftrp->strict)
919 			strict_mask &= ~ftr_mask;
920 		if (ftrp->visible)
921 			user_mask |= ftr_mask;
922 		else
923 			reg->user_val = arm64_ftr_set_value(ftrp,
924 							    reg->user_val,
925 							    ftrp->safe_val);
926 	}
927 
928 	val &= valid_mask;
929 
930 	reg->sys_val = val;
931 	reg->strict_mask = strict_mask;
932 	reg->user_mask = user_mask;
933 }
934 
935 extern const struct arm64_cpu_capabilities arm64_errata[];
936 static const struct arm64_cpu_capabilities arm64_features[];
937 
938 static void __init
939 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
940 {
941 	for (; caps->matches; caps++) {
942 		if (WARN(caps->capability >= ARM64_NCAPS,
943 			"Invalid capability %d\n", caps->capability))
944 			continue;
945 		if (WARN(cpu_hwcaps_ptrs[caps->capability],
946 			"Duplicate entry for capability %d\n",
947 			caps->capability))
948 			continue;
949 		cpu_hwcaps_ptrs[caps->capability] = caps;
950 	}
951 }
952 
953 static void __init init_cpu_hwcaps_indirect_list(void)
954 {
955 	init_cpu_hwcaps_indirect_list_from_array(arm64_features);
956 	init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
957 }
958 
959 static void __init setup_boot_cpu_capabilities(void);
960 
961 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
962 {
963 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
964 	init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
965 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
966 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
967 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
968 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
969 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
970 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
971 	init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
972 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
973 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
974 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
975 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
976 	init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
977 	init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
978 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
979 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
980 	init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
981 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
982 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
983 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
984 }
985 
986 void __init init_cpu_features(struct cpuinfo_arm64 *info)
987 {
988 	/* Before we start using the tables, make sure it is sorted */
989 	sort_ftr_regs();
990 
991 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
992 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
993 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
994 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
995 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
996 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
997 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
998 	init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
999 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1000 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1001 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1002 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1003 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1004 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1005 	init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1006 
1007 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1008 		init_32bit_cpu_features(&info->aarch32);
1009 
1010 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1011 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1012 		info->reg_zcr = read_zcr_features();
1013 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
1014 		vec_init_vq_map(ARM64_VEC_SVE);
1015 	}
1016 
1017 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1018 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1019 		info->reg_smcr = read_smcr_features();
1020 		/*
1021 		 * We mask out SMPS since even if the hardware
1022 		 * supports priorities the kernel does not at present
1023 		 * and we block access to them.
1024 		 */
1025 		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1026 		init_cpu_ftr_reg(SYS_SMCR_EL1, info->reg_smcr);
1027 		vec_init_vq_map(ARM64_VEC_SME);
1028 	}
1029 
1030 	if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1031 		init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1032 
1033 	/*
1034 	 * Initialize the indirect array of CPU hwcaps capabilities pointers
1035 	 * before we handle the boot CPU below.
1036 	 */
1037 	init_cpu_hwcaps_indirect_list();
1038 
1039 	/*
1040 	 * Detect and enable early CPU capabilities based on the boot CPU,
1041 	 * after we have initialised the CPU feature infrastructure.
1042 	 */
1043 	setup_boot_cpu_capabilities();
1044 }
1045 
1046 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1047 {
1048 	const struct arm64_ftr_bits *ftrp;
1049 
1050 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1051 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1052 		s64 ftr_new = arm64_ftr_value(ftrp, new);
1053 
1054 		if (ftr_cur == ftr_new)
1055 			continue;
1056 		/* Find a safe value */
1057 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1058 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1059 	}
1060 
1061 }
1062 
1063 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1064 {
1065 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1066 
1067 	if (!regp)
1068 		return 0;
1069 
1070 	update_cpu_ftr_reg(regp, val);
1071 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1072 		return 0;
1073 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1074 			regp->name, boot, cpu, val);
1075 	return 1;
1076 }
1077 
1078 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1079 {
1080 	const struct arm64_ftr_bits *ftrp;
1081 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1082 
1083 	if (!regp)
1084 		return;
1085 
1086 	for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1087 		if (ftrp->shift == field) {
1088 			regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1089 			break;
1090 		}
1091 	}
1092 
1093 	/* Bogus field? */
1094 	WARN_ON(!ftrp->width);
1095 }
1096 
1097 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1098 					 struct cpuinfo_arm64 *boot)
1099 {
1100 	static bool boot_cpu_32bit_regs_overridden = false;
1101 
1102 	if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1103 		return;
1104 
1105 	if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1106 		return;
1107 
1108 	boot->aarch32 = info->aarch32;
1109 	init_32bit_cpu_features(&boot->aarch32);
1110 	boot_cpu_32bit_regs_overridden = true;
1111 }
1112 
1113 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1114 				     struct cpuinfo_32bit *boot)
1115 {
1116 	int taint = 0;
1117 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1118 
1119 	/*
1120 	 * If we don't have AArch32 at EL1, then relax the strictness of
1121 	 * EL1-dependent register fields to avoid spurious sanity check fails.
1122 	 */
1123 	if (!id_aa64pfr0_32bit_el1(pfr0)) {
1124 		relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1125 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1126 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1127 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1128 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1129 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1130 	}
1131 
1132 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1133 				      info->reg_id_dfr0, boot->reg_id_dfr0);
1134 	taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1135 				      info->reg_id_dfr1, boot->reg_id_dfr1);
1136 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1137 				      info->reg_id_isar0, boot->reg_id_isar0);
1138 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1139 				      info->reg_id_isar1, boot->reg_id_isar1);
1140 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1141 				      info->reg_id_isar2, boot->reg_id_isar2);
1142 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1143 				      info->reg_id_isar3, boot->reg_id_isar3);
1144 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1145 				      info->reg_id_isar4, boot->reg_id_isar4);
1146 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1147 				      info->reg_id_isar5, boot->reg_id_isar5);
1148 	taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1149 				      info->reg_id_isar6, boot->reg_id_isar6);
1150 
1151 	/*
1152 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1153 	 * ACTLR formats could differ across CPUs and therefore would have to
1154 	 * be trapped for virtualization anyway.
1155 	 */
1156 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1157 				      info->reg_id_mmfr0, boot->reg_id_mmfr0);
1158 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1159 				      info->reg_id_mmfr1, boot->reg_id_mmfr1);
1160 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1161 				      info->reg_id_mmfr2, boot->reg_id_mmfr2);
1162 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1163 				      info->reg_id_mmfr3, boot->reg_id_mmfr3);
1164 	taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1165 				      info->reg_id_mmfr4, boot->reg_id_mmfr4);
1166 	taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1167 				      info->reg_id_mmfr5, boot->reg_id_mmfr5);
1168 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1169 				      info->reg_id_pfr0, boot->reg_id_pfr0);
1170 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1171 				      info->reg_id_pfr1, boot->reg_id_pfr1);
1172 	taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1173 				      info->reg_id_pfr2, boot->reg_id_pfr2);
1174 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1175 				      info->reg_mvfr0, boot->reg_mvfr0);
1176 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1177 				      info->reg_mvfr1, boot->reg_mvfr1);
1178 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1179 				      info->reg_mvfr2, boot->reg_mvfr2);
1180 
1181 	return taint;
1182 }
1183 
1184 /*
1185  * Update system wide CPU feature registers with the values from a
1186  * non-boot CPU. Also performs SANITY checks to make sure that there
1187  * aren't any insane variations from that of the boot CPU.
1188  */
1189 void update_cpu_features(int cpu,
1190 			 struct cpuinfo_arm64 *info,
1191 			 struct cpuinfo_arm64 *boot)
1192 {
1193 	int taint = 0;
1194 
1195 	/*
1196 	 * The kernel can handle differing I-cache policies, but otherwise
1197 	 * caches should look identical. Userspace JITs will make use of
1198 	 * *minLine.
1199 	 */
1200 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1201 				      info->reg_ctr, boot->reg_ctr);
1202 
1203 	/*
1204 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1205 	 * could result in too much or too little memory being zeroed if a
1206 	 * process is preempted and migrated between CPUs.
1207 	 */
1208 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1209 				      info->reg_dczid, boot->reg_dczid);
1210 
1211 	/* If different, timekeeping will be broken (especially with KVM) */
1212 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1213 				      info->reg_cntfrq, boot->reg_cntfrq);
1214 
1215 	/*
1216 	 * The kernel uses self-hosted debug features and expects CPUs to
1217 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
1218 	 * and BRPs to be identical.
1219 	 * ID_AA64DFR1 is currently RES0.
1220 	 */
1221 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1222 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1223 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1224 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1225 	/*
1226 	 * Even in big.LITTLE, processors should be identical instruction-set
1227 	 * wise.
1228 	 */
1229 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1230 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1231 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1232 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1233 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1234 				      info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1235 
1236 	/*
1237 	 * Differing PARange support is fine as long as all peripherals and
1238 	 * memory are mapped within the minimum PARange of all CPUs.
1239 	 * Linux should not care about secure memory.
1240 	 */
1241 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1242 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1243 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1244 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1245 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1246 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1247 
1248 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1249 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1250 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1251 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1252 
1253 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1254 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1255 
1256 	taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1257 				      info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1258 
1259 	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1260 	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1261 		info->reg_zcr = read_zcr_features();
1262 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1263 					info->reg_zcr, boot->reg_zcr);
1264 
1265 		/* Probe vector lengths */
1266 		if (!system_capabilities_finalized())
1267 			vec_update_vq_map(ARM64_VEC_SVE);
1268 	}
1269 
1270 	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1271 	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1272 		info->reg_smcr = read_smcr_features();
1273 		/*
1274 		 * We mask out SMPS since even if the hardware
1275 		 * supports priorities the kernel does not at present
1276 		 * and we block access to them.
1277 		 */
1278 		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1279 		taint |= check_update_ftr_reg(SYS_SMCR_EL1, cpu,
1280 					info->reg_smcr, boot->reg_smcr);
1281 
1282 		/* Probe vector lengths */
1283 		if (!system_capabilities_finalized())
1284 			vec_update_vq_map(ARM64_VEC_SME);
1285 	}
1286 
1287 	/*
1288 	 * The kernel uses the LDGM/STGM instructions and the number of tags
1289 	 * they read/write depends on the GMID_EL1.BS field. Check that the
1290 	 * value is the same on all CPUs.
1291 	 */
1292 	if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1293 	    id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1294 		taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1295 					      info->reg_gmid, boot->reg_gmid);
1296 	}
1297 
1298 	/*
1299 	 * If we don't have AArch32 at all then skip the checks entirely
1300 	 * as the register values may be UNKNOWN and we're not going to be
1301 	 * using them for anything.
1302 	 *
1303 	 * This relies on a sanitised view of the AArch64 ID registers
1304 	 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1305 	 */
1306 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1307 		lazy_init_32bit_cpu_features(info, boot);
1308 		taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1309 						   &boot->aarch32);
1310 	}
1311 
1312 	/*
1313 	 * Mismatched CPU features are a recipe for disaster. Don't even
1314 	 * pretend to support them.
1315 	 */
1316 	if (taint) {
1317 		pr_warn_once("Unsupported CPU feature variation detected.\n");
1318 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1319 	}
1320 }
1321 
1322 u64 read_sanitised_ftr_reg(u32 id)
1323 {
1324 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1325 
1326 	if (!regp)
1327 		return 0;
1328 	return regp->sys_val;
1329 }
1330 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1331 
1332 #define read_sysreg_case(r)	\
1333 	case r:		val = read_sysreg_s(r); break;
1334 
1335 /*
1336  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1337  * Read the system register on the current CPU
1338  */
1339 u64 __read_sysreg_by_encoding(u32 sys_id)
1340 {
1341 	struct arm64_ftr_reg *regp;
1342 	u64 val;
1343 
1344 	switch (sys_id) {
1345 	read_sysreg_case(SYS_ID_PFR0_EL1);
1346 	read_sysreg_case(SYS_ID_PFR1_EL1);
1347 	read_sysreg_case(SYS_ID_PFR2_EL1);
1348 	read_sysreg_case(SYS_ID_DFR0_EL1);
1349 	read_sysreg_case(SYS_ID_DFR1_EL1);
1350 	read_sysreg_case(SYS_ID_MMFR0_EL1);
1351 	read_sysreg_case(SYS_ID_MMFR1_EL1);
1352 	read_sysreg_case(SYS_ID_MMFR2_EL1);
1353 	read_sysreg_case(SYS_ID_MMFR3_EL1);
1354 	read_sysreg_case(SYS_ID_MMFR4_EL1);
1355 	read_sysreg_case(SYS_ID_MMFR5_EL1);
1356 	read_sysreg_case(SYS_ID_ISAR0_EL1);
1357 	read_sysreg_case(SYS_ID_ISAR1_EL1);
1358 	read_sysreg_case(SYS_ID_ISAR2_EL1);
1359 	read_sysreg_case(SYS_ID_ISAR3_EL1);
1360 	read_sysreg_case(SYS_ID_ISAR4_EL1);
1361 	read_sysreg_case(SYS_ID_ISAR5_EL1);
1362 	read_sysreg_case(SYS_ID_ISAR6_EL1);
1363 	read_sysreg_case(SYS_MVFR0_EL1);
1364 	read_sysreg_case(SYS_MVFR1_EL1);
1365 	read_sysreg_case(SYS_MVFR2_EL1);
1366 
1367 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1368 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1369 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1370 	read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1371 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1372 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1373 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1374 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1375 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1376 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1377 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1378 	read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1379 
1380 	read_sysreg_case(SYS_CNTFRQ_EL0);
1381 	read_sysreg_case(SYS_CTR_EL0);
1382 	read_sysreg_case(SYS_DCZID_EL0);
1383 
1384 	default:
1385 		BUG();
1386 		return 0;
1387 	}
1388 
1389 	regp  = get_arm64_ftr_reg(sys_id);
1390 	if (regp) {
1391 		val &= ~regp->override->mask;
1392 		val |= (regp->override->val & regp->override->mask);
1393 	}
1394 
1395 	return val;
1396 }
1397 
1398 #include <linux/irqchip/arm-gic-v3.h>
1399 
1400 static bool
1401 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1402 {
1403 	return true;
1404 }
1405 
1406 static bool
1407 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1408 {
1409 	int val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1410 						    entry->field_width,
1411 						    entry->sign);
1412 
1413 	return val >= entry->min_field_value;
1414 }
1415 
1416 static u64
1417 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1418 {
1419 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1420 	if (scope == SCOPE_SYSTEM)
1421 		return read_sanitised_ftr_reg(entry->sys_reg);
1422 	else
1423 		return __read_sysreg_by_encoding(entry->sys_reg);
1424 }
1425 
1426 static bool
1427 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1428 {
1429 	int mask;
1430 	struct arm64_ftr_reg *regp;
1431 	u64 val = read_scoped_sysreg(entry, scope);
1432 
1433 	regp = get_arm64_ftr_reg(entry->sys_reg);
1434 	if (!regp)
1435 		return false;
1436 
1437 	mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1438 							  entry->field_pos,
1439 							  entry->field_width);
1440 	if (!mask)
1441 		return false;
1442 
1443 	return feature_matches(val, entry);
1444 }
1445 
1446 static bool
1447 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1448 {
1449 	u64 val = read_scoped_sysreg(entry, scope);
1450 	return feature_matches(val, entry);
1451 }
1452 
1453 const struct cpumask *system_32bit_el0_cpumask(void)
1454 {
1455 	if (!system_supports_32bit_el0())
1456 		return cpu_none_mask;
1457 
1458 	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1459 		return cpu_32bit_el0_mask;
1460 
1461 	return cpu_possible_mask;
1462 }
1463 
1464 static int __init parse_32bit_el0_param(char *str)
1465 {
1466 	allow_mismatched_32bit_el0 = true;
1467 	return 0;
1468 }
1469 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1470 
1471 static ssize_t aarch32_el0_show(struct device *dev,
1472 				struct device_attribute *attr, char *buf)
1473 {
1474 	const struct cpumask *mask = system_32bit_el0_cpumask();
1475 
1476 	return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1477 }
1478 static const DEVICE_ATTR_RO(aarch32_el0);
1479 
1480 static int __init aarch32_el0_sysfs_init(void)
1481 {
1482 	if (!allow_mismatched_32bit_el0)
1483 		return 0;
1484 
1485 	return device_create_file(cpu_subsys.dev_root, &dev_attr_aarch32_el0);
1486 }
1487 device_initcall(aarch32_el0_sysfs_init);
1488 
1489 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1490 {
1491 	if (!has_cpuid_feature(entry, scope))
1492 		return allow_mismatched_32bit_el0;
1493 
1494 	if (scope == SCOPE_SYSTEM)
1495 		pr_info("detected: 32-bit EL0 Support\n");
1496 
1497 	return true;
1498 }
1499 
1500 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1501 {
1502 	bool has_sre;
1503 
1504 	if (!has_cpuid_feature(entry, scope))
1505 		return false;
1506 
1507 	has_sre = gic_enable_sre();
1508 	if (!has_sre)
1509 		pr_warn_once("%s present but disabled by higher exception level\n",
1510 			     entry->desc);
1511 
1512 	return has_sre;
1513 }
1514 
1515 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1516 {
1517 	u32 midr = read_cpuid_id();
1518 
1519 	/* Cavium ThunderX pass 1.x and 2.x */
1520 	return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1521 		MIDR_CPU_VAR_REV(0, 0),
1522 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1523 }
1524 
1525 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1526 {
1527 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1528 
1529 	return cpuid_feature_extract_signed_field(pfr0,
1530 					ID_AA64PFR0_EL1_FP_SHIFT) < 0;
1531 }
1532 
1533 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1534 			  int scope)
1535 {
1536 	u64 ctr;
1537 
1538 	if (scope == SCOPE_SYSTEM)
1539 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1540 	else
1541 		ctr = read_cpuid_effective_cachetype();
1542 
1543 	return ctr & BIT(CTR_EL0_IDC_SHIFT);
1544 }
1545 
1546 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1547 {
1548 	/*
1549 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1550 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1551 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1552 	 * value.
1553 	 */
1554 	if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1555 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1556 }
1557 
1558 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1559 			  int scope)
1560 {
1561 	u64 ctr;
1562 
1563 	if (scope == SCOPE_SYSTEM)
1564 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1565 	else
1566 		ctr = read_cpuid_cachetype();
1567 
1568 	return ctr & BIT(CTR_EL0_DIC_SHIFT);
1569 }
1570 
1571 static bool __maybe_unused
1572 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1573 {
1574 	/*
1575 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1576 	 * may share TLB entries with a CPU stuck in the crashed
1577 	 * kernel.
1578 	 */
1579 	if (is_kdump_kernel())
1580 		return false;
1581 
1582 	if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1583 		return false;
1584 
1585 	return has_cpuid_feature(entry, scope);
1586 }
1587 
1588 /*
1589  * This check is triggered during the early boot before the cpufeature
1590  * is initialised. Checking the status on the local CPU allows the boot
1591  * CPU to detect the need for non-global mappings and thus avoiding a
1592  * pagetable re-write after all the CPUs are booted. This check will be
1593  * anyway run on individual CPUs, allowing us to get the consistent
1594  * state once the SMP CPUs are up and thus make the switch to non-global
1595  * mappings if required.
1596  */
1597 bool kaslr_requires_kpti(void)
1598 {
1599 	if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1600 		return false;
1601 
1602 	/*
1603 	 * E0PD does a similar job to KPTI so can be used instead
1604 	 * where available.
1605 	 */
1606 	if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1607 		u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1608 		if (cpuid_feature_extract_unsigned_field(mmfr2,
1609 						ID_AA64MMFR2_EL1_E0PD_SHIFT))
1610 			return false;
1611 	}
1612 
1613 	/*
1614 	 * Systems affected by Cavium erratum 24756 are incompatible
1615 	 * with KPTI.
1616 	 */
1617 	if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1618 		extern const struct midr_range cavium_erratum_27456_cpus[];
1619 
1620 		if (is_midr_in_range_list(read_cpuid_id(),
1621 					  cavium_erratum_27456_cpus))
1622 			return false;
1623 	}
1624 
1625 	return kaslr_offset() > 0;
1626 }
1627 
1628 static bool __meltdown_safe = true;
1629 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1630 
1631 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1632 				int scope)
1633 {
1634 	/* List of CPUs that are not vulnerable and don't need KPTI */
1635 	static const struct midr_range kpti_safe_list[] = {
1636 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1637 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1638 		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1639 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1640 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1641 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1642 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1643 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1644 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1645 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1646 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1647 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1648 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1649 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1650 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1651 		{ /* sentinel */ }
1652 	};
1653 	char const *str = "kpti command line option";
1654 	bool meltdown_safe;
1655 
1656 	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1657 
1658 	/* Defer to CPU feature registers */
1659 	if (has_cpuid_feature(entry, scope))
1660 		meltdown_safe = true;
1661 
1662 	if (!meltdown_safe)
1663 		__meltdown_safe = false;
1664 
1665 	/*
1666 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1667 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
1668 	 * ends as well as you might imagine. Don't even try. We cannot rely
1669 	 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1670 	 * because cpucap detection order may change. However, since we know
1671 	 * affected CPUs are always in a homogeneous configuration, it is
1672 	 * safe to rely on this_cpu_has_cap() here.
1673 	 */
1674 	if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1675 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1676 		__kpti_forced = -1;
1677 	}
1678 
1679 	/* Useful for KASLR robustness */
1680 	if (kaslr_requires_kpti()) {
1681 		if (!__kpti_forced) {
1682 			str = "KASLR";
1683 			__kpti_forced = 1;
1684 		}
1685 	}
1686 
1687 	if (cpu_mitigations_off() && !__kpti_forced) {
1688 		str = "mitigations=off";
1689 		__kpti_forced = -1;
1690 	}
1691 
1692 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1693 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1694 		return false;
1695 	}
1696 
1697 	/* Forced? */
1698 	if (__kpti_forced) {
1699 		pr_info_once("kernel page table isolation forced %s by %s\n",
1700 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1701 		return __kpti_forced > 0;
1702 	}
1703 
1704 	return !meltdown_safe;
1705 }
1706 
1707 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1708 #define KPTI_NG_TEMP_VA		(-(1UL << PMD_SHIFT))
1709 
1710 extern
1711 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1712 			     phys_addr_t size, pgprot_t prot,
1713 			     phys_addr_t (*pgtable_alloc)(int), int flags);
1714 
1715 static phys_addr_t kpti_ng_temp_alloc;
1716 
1717 static phys_addr_t kpti_ng_pgd_alloc(int shift)
1718 {
1719 	kpti_ng_temp_alloc -= PAGE_SIZE;
1720 	return kpti_ng_temp_alloc;
1721 }
1722 
1723 static void
1724 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1725 {
1726 	typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1727 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1728 	kpti_remap_fn *remap_fn;
1729 
1730 	int cpu = smp_processor_id();
1731 	int levels = CONFIG_PGTABLE_LEVELS;
1732 	int order = order_base_2(levels);
1733 	u64 kpti_ng_temp_pgd_pa = 0;
1734 	pgd_t *kpti_ng_temp_pgd;
1735 	u64 alloc = 0;
1736 
1737 	if (__this_cpu_read(this_cpu_vector) == vectors) {
1738 		const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1739 
1740 		__this_cpu_write(this_cpu_vector, v);
1741 	}
1742 
1743 	/*
1744 	 * We don't need to rewrite the page-tables if either we've done
1745 	 * it already or we have KASLR enabled and therefore have not
1746 	 * created any global mappings at all.
1747 	 */
1748 	if (arm64_use_ng_mappings)
1749 		return;
1750 
1751 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1752 
1753 	if (!cpu) {
1754 		alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1755 		kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1756 		kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1757 
1758 		//
1759 		// Create a minimal page table hierarchy that permits us to map
1760 		// the swapper page tables temporarily as we traverse them.
1761 		//
1762 		// The physical pages are laid out as follows:
1763 		//
1764 		// +--------+-/-------+-/------ +-\\--------+
1765 		// :  PTE[] : | PMD[] : | PUD[] : || PGD[]  :
1766 		// +--------+-\-------+-\------ +-//--------+
1767 		//      ^
1768 		// The first page is mapped into this hierarchy at a PMD_SHIFT
1769 		// aligned virtual address, so that we can manipulate the PTE
1770 		// level entries while the mapping is active. The first entry
1771 		// covers the PTE[] page itself, the remaining entries are free
1772 		// to be used as a ad-hoc fixmap.
1773 		//
1774 		create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1775 					KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1776 					kpti_ng_pgd_alloc, 0);
1777 	}
1778 
1779 	cpu_install_idmap();
1780 	remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1781 	cpu_uninstall_idmap();
1782 
1783 	if (!cpu) {
1784 		free_pages(alloc, order);
1785 		arm64_use_ng_mappings = true;
1786 	}
1787 }
1788 #else
1789 static void
1790 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1791 {
1792 }
1793 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1794 
1795 static int __init parse_kpti(char *str)
1796 {
1797 	bool enabled;
1798 	int ret = strtobool(str, &enabled);
1799 
1800 	if (ret)
1801 		return ret;
1802 
1803 	__kpti_forced = enabled ? 1 : -1;
1804 	return 0;
1805 }
1806 early_param("kpti", parse_kpti);
1807 
1808 #ifdef CONFIG_ARM64_HW_AFDBM
1809 static inline void __cpu_enable_hw_dbm(void)
1810 {
1811 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1812 
1813 	write_sysreg(tcr, tcr_el1);
1814 	isb();
1815 	local_flush_tlb_all();
1816 }
1817 
1818 static bool cpu_has_broken_dbm(void)
1819 {
1820 	/* List of CPUs which have broken DBM support. */
1821 	static const struct midr_range cpus[] = {
1822 #ifdef CONFIG_ARM64_ERRATUM_1024718
1823 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1824 		/* Kryo4xx Silver (rdpe => r1p0) */
1825 		MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1826 #endif
1827 #ifdef CONFIG_ARM64_ERRATUM_2051678
1828 		MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1829 #endif
1830 		{},
1831 	};
1832 
1833 	return is_midr_in_range_list(read_cpuid_id(), cpus);
1834 }
1835 
1836 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1837 {
1838 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1839 	       !cpu_has_broken_dbm();
1840 }
1841 
1842 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1843 {
1844 	if (cpu_can_use_dbm(cap))
1845 		__cpu_enable_hw_dbm();
1846 }
1847 
1848 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1849 		       int __unused)
1850 {
1851 	static bool detected = false;
1852 	/*
1853 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
1854 	 * run a mix of CPUs with and without the feature. So, we
1855 	 * unconditionally enable the capability to allow any late CPU
1856 	 * to use the feature. We only enable the control bits on the
1857 	 * CPU, if it actually supports.
1858 	 *
1859 	 * We have to make sure we print the "feature" detection only
1860 	 * when at least one CPU actually uses it. So check if this CPU
1861 	 * can actually use it and print the message exactly once.
1862 	 *
1863 	 * This is safe as all CPUs (including secondary CPUs - due to the
1864 	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1865 	 * goes through the "matches" check exactly once. Also if a CPU
1866 	 * matches the criteria, it is guaranteed that the CPU will turn
1867 	 * the DBM on, as the capability is unconditionally enabled.
1868 	 */
1869 	if (!detected && cpu_can_use_dbm(cap)) {
1870 		detected = true;
1871 		pr_info("detected: Hardware dirty bit management\n");
1872 	}
1873 
1874 	return true;
1875 }
1876 
1877 #endif
1878 
1879 #ifdef CONFIG_ARM64_AMU_EXTN
1880 
1881 /*
1882  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1883  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1884  * information regarding all the events that it supports. When a CPU bit is
1885  * set in the cpumask, the user of this feature can only rely on the presence
1886  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1887  * counters are enabled or access to these counters is enabled by code
1888  * executed at higher exception levels (firmware).
1889  */
1890 static struct cpumask amu_cpus __read_mostly;
1891 
1892 bool cpu_has_amu_feat(int cpu)
1893 {
1894 	return cpumask_test_cpu(cpu, &amu_cpus);
1895 }
1896 
1897 int get_cpu_with_amu_feat(void)
1898 {
1899 	return cpumask_any(&amu_cpus);
1900 }
1901 
1902 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1903 {
1904 	if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1905 		pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1906 			smp_processor_id());
1907 		cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1908 
1909 		/* 0 reference values signal broken/disabled counters */
1910 		if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
1911 			update_freq_counters_refs();
1912 	}
1913 }
1914 
1915 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1916 		    int __unused)
1917 {
1918 	/*
1919 	 * The AMU extension is a non-conflicting feature: the kernel can
1920 	 * safely run a mix of CPUs with and without support for the
1921 	 * activity monitors extension. Therefore, unconditionally enable
1922 	 * the capability to allow any late CPU to use the feature.
1923 	 *
1924 	 * With this feature unconditionally enabled, the cpu_enable
1925 	 * function will be called for all CPUs that match the criteria,
1926 	 * including secondary and hotplugged, marking this feature as
1927 	 * present on that respective CPU. The enable function will also
1928 	 * print a detection message.
1929 	 */
1930 
1931 	return true;
1932 }
1933 #else
1934 int get_cpu_with_amu_feat(void)
1935 {
1936 	return nr_cpu_ids;
1937 }
1938 #endif
1939 
1940 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1941 {
1942 	return is_kernel_in_hyp_mode();
1943 }
1944 
1945 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1946 {
1947 	/*
1948 	 * Copy register values that aren't redirected by hardware.
1949 	 *
1950 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1951 	 * this value to tpidr_el2 before we patch the code. Once we've done
1952 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1953 	 * do anything here.
1954 	 */
1955 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1956 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1957 }
1958 
1959 #ifdef CONFIG_ARM64_PAN
1960 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1961 {
1962 	/*
1963 	 * We modify PSTATE. This won't work from irq context as the PSTATE
1964 	 * is discarded once we return from the exception.
1965 	 */
1966 	WARN_ON_ONCE(in_interrupt());
1967 
1968 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1969 	set_pstate_pan(1);
1970 }
1971 #endif /* CONFIG_ARM64_PAN */
1972 
1973 #ifdef CONFIG_ARM64_RAS_EXTN
1974 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1975 {
1976 	/* Firmware may have left a deferred SError in this register. */
1977 	write_sysreg_s(0, SYS_DISR_EL1);
1978 }
1979 #endif /* CONFIG_ARM64_RAS_EXTN */
1980 
1981 #ifdef CONFIG_ARM64_PTR_AUTH
1982 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1983 {
1984 	int boot_val, sec_val;
1985 
1986 	/* We don't expect to be called with SCOPE_SYSTEM */
1987 	WARN_ON(scope == SCOPE_SYSTEM);
1988 	/*
1989 	 * The ptr-auth feature levels are not intercompatible with lower
1990 	 * levels. Hence we must match ptr-auth feature level of the secondary
1991 	 * CPUs with that of the boot CPU. The level of boot cpu is fetched
1992 	 * from the sanitised register whereas direct register read is done for
1993 	 * the secondary CPUs.
1994 	 * The sanitised feature state is guaranteed to match that of the
1995 	 * boot CPU as a mismatched secondary CPU is parked before it gets
1996 	 * a chance to update the state, with the capability.
1997 	 */
1998 	boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1999 					       entry->field_pos, entry->sign);
2000 	if (scope & SCOPE_BOOT_CPU)
2001 		return boot_val >= entry->min_field_value;
2002 	/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2003 	sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2004 					      entry->field_pos, entry->sign);
2005 	return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2006 }
2007 
2008 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2009 				     int scope)
2010 {
2011 	bool api = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2012 	bool apa = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2013 	bool apa3 = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2014 
2015 	return apa || apa3 || api;
2016 }
2017 
2018 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2019 			     int __unused)
2020 {
2021 	bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2022 	bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2023 	bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2024 
2025 	return gpa || gpa3 || gpi;
2026 }
2027 #endif /* CONFIG_ARM64_PTR_AUTH */
2028 
2029 #ifdef CONFIG_ARM64_E0PD
2030 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2031 {
2032 	if (this_cpu_has_cap(ARM64_HAS_E0PD))
2033 		sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2034 }
2035 #endif /* CONFIG_ARM64_E0PD */
2036 
2037 #ifdef CONFIG_ARM64_PSEUDO_NMI
2038 static bool enable_pseudo_nmi;
2039 
2040 static int __init early_enable_pseudo_nmi(char *p)
2041 {
2042 	return strtobool(p, &enable_pseudo_nmi);
2043 }
2044 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
2045 
2046 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2047 				   int scope)
2048 {
2049 	return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
2050 }
2051 #endif
2052 
2053 #ifdef CONFIG_ARM64_BTI
2054 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2055 {
2056 	/*
2057 	 * Use of X16/X17 for tail-calls and trampolines that jump to
2058 	 * function entry points using BR is a requirement for
2059 	 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2060 	 * So, be strict and forbid other BRs using other registers to
2061 	 * jump onto a PACIxSP instruction:
2062 	 */
2063 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2064 	isb();
2065 }
2066 #endif /* CONFIG_ARM64_BTI */
2067 
2068 #ifdef CONFIG_ARM64_MTE
2069 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2070 {
2071 	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2072 
2073 	mte_cpu_setup();
2074 
2075 	/*
2076 	 * Clear the tags in the zero page. This needs to be done via the
2077 	 * linear map which has the Tagged attribute.
2078 	 */
2079 	if (try_page_mte_tagging(ZERO_PAGE(0))) {
2080 		mte_clear_page_tags(lm_alias(empty_zero_page));
2081 		set_page_mte_tagged(ZERO_PAGE(0));
2082 	}
2083 
2084 	kasan_init_hw_tags_cpu();
2085 }
2086 #endif /* CONFIG_ARM64_MTE */
2087 
2088 static void elf_hwcap_fixup(void)
2089 {
2090 #ifdef CONFIG_ARM64_ERRATUM_1742098
2091 	if (cpus_have_const_cap(ARM64_WORKAROUND_1742098))
2092 		compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2093 #endif /* ARM64_ERRATUM_1742098 */
2094 }
2095 
2096 #ifdef CONFIG_KVM
2097 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2098 {
2099 	return kvm_get_mode() == KVM_MODE_PROTECTED;
2100 }
2101 #endif /* CONFIG_KVM */
2102 
2103 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2104 {
2105 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2106 }
2107 
2108 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2109 {
2110 	set_pstate_dit(1);
2111 }
2112 
2113 /* Internal helper functions to match cpu capability type */
2114 static bool
2115 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2116 {
2117 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2118 }
2119 
2120 static bool
2121 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2122 {
2123 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2124 }
2125 
2126 static bool
2127 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2128 {
2129 	return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2130 }
2131 
2132 static const struct arm64_cpu_capabilities arm64_features[] = {
2133 	{
2134 		.capability = ARM64_ALWAYS_BOOT,
2135 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2136 		.matches = has_always,
2137 	},
2138 	{
2139 		.capability = ARM64_ALWAYS_SYSTEM,
2140 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2141 		.matches = has_always,
2142 	},
2143 	{
2144 		.desc = "GIC system register CPU interface",
2145 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
2146 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2147 		.matches = has_useable_gicv3_cpuif,
2148 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2149 		.field_pos = ID_AA64PFR0_EL1_GIC_SHIFT,
2150 		.field_width = 4,
2151 		.sign = FTR_UNSIGNED,
2152 		.min_field_value = 1,
2153 	},
2154 	{
2155 		.desc = "Enhanced Counter Virtualization",
2156 		.capability = ARM64_HAS_ECV,
2157 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2158 		.matches = has_cpuid_feature,
2159 		.sys_reg = SYS_ID_AA64MMFR0_EL1,
2160 		.field_pos = ID_AA64MMFR0_EL1_ECV_SHIFT,
2161 		.field_width = 4,
2162 		.sign = FTR_UNSIGNED,
2163 		.min_field_value = 1,
2164 	},
2165 #ifdef CONFIG_ARM64_PAN
2166 	{
2167 		.desc = "Privileged Access Never",
2168 		.capability = ARM64_HAS_PAN,
2169 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2170 		.matches = has_cpuid_feature,
2171 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2172 		.field_pos = ID_AA64MMFR1_EL1_PAN_SHIFT,
2173 		.field_width = 4,
2174 		.sign = FTR_UNSIGNED,
2175 		.min_field_value = 1,
2176 		.cpu_enable = cpu_enable_pan,
2177 	},
2178 #endif /* CONFIG_ARM64_PAN */
2179 #ifdef CONFIG_ARM64_EPAN
2180 	{
2181 		.desc = "Enhanced Privileged Access Never",
2182 		.capability = ARM64_HAS_EPAN,
2183 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2184 		.matches = has_cpuid_feature,
2185 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2186 		.field_pos = ID_AA64MMFR1_EL1_PAN_SHIFT,
2187 		.field_width = 4,
2188 		.sign = FTR_UNSIGNED,
2189 		.min_field_value = 3,
2190 	},
2191 #endif /* CONFIG_ARM64_EPAN */
2192 #ifdef CONFIG_ARM64_LSE_ATOMICS
2193 	{
2194 		.desc = "LSE atomic instructions",
2195 		.capability = ARM64_HAS_LSE_ATOMICS,
2196 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2197 		.matches = has_cpuid_feature,
2198 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2199 		.field_pos = ID_AA64ISAR0_EL1_ATOMIC_SHIFT,
2200 		.field_width = 4,
2201 		.sign = FTR_UNSIGNED,
2202 		.min_field_value = 2,
2203 	},
2204 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2205 	{
2206 		.desc = "Software prefetching using PRFM",
2207 		.capability = ARM64_HAS_NO_HW_PREFETCH,
2208 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2209 		.matches = has_no_hw_prefetch,
2210 	},
2211 	{
2212 		.desc = "Virtualization Host Extensions",
2213 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
2214 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2215 		.matches = runs_at_el2,
2216 		.cpu_enable = cpu_copy_el2regs,
2217 	},
2218 	{
2219 		.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2220 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2221 		.matches = has_32bit_el0,
2222 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2223 		.sign = FTR_UNSIGNED,
2224 		.field_pos = ID_AA64PFR0_EL1_EL0_SHIFT,
2225 		.field_width = 4,
2226 		.min_field_value = ID_AA64PFR0_EL1_ELx_32BIT_64BIT,
2227 	},
2228 #ifdef CONFIG_KVM
2229 	{
2230 		.desc = "32-bit EL1 Support",
2231 		.capability = ARM64_HAS_32BIT_EL1,
2232 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2233 		.matches = has_cpuid_feature,
2234 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2235 		.sign = FTR_UNSIGNED,
2236 		.field_pos = ID_AA64PFR0_EL1_EL1_SHIFT,
2237 		.field_width = 4,
2238 		.min_field_value = ID_AA64PFR0_EL1_ELx_32BIT_64BIT,
2239 	},
2240 	{
2241 		.desc = "Protected KVM",
2242 		.capability = ARM64_KVM_PROTECTED_MODE,
2243 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2244 		.matches = is_kvm_protected_mode,
2245 	},
2246 #endif
2247 	{
2248 		.desc = "Kernel page table isolation (KPTI)",
2249 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
2250 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2251 		/*
2252 		 * The ID feature fields below are used to indicate that
2253 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2254 		 * more details.
2255 		 */
2256 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2257 		.field_pos = ID_AA64PFR0_EL1_CSV3_SHIFT,
2258 		.field_width = 4,
2259 		.min_field_value = 1,
2260 		.matches = unmap_kernel_at_el0,
2261 		.cpu_enable = kpti_install_ng_mappings,
2262 	},
2263 	{
2264 		/* FP/SIMD is not implemented */
2265 		.capability = ARM64_HAS_NO_FPSIMD,
2266 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2267 		.min_field_value = 0,
2268 		.matches = has_no_fpsimd,
2269 	},
2270 #ifdef CONFIG_ARM64_PMEM
2271 	{
2272 		.desc = "Data cache clean to Point of Persistence",
2273 		.capability = ARM64_HAS_DCPOP,
2274 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2275 		.matches = has_cpuid_feature,
2276 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2277 		.field_pos = ID_AA64ISAR1_EL1_DPB_SHIFT,
2278 		.field_width = 4,
2279 		.min_field_value = 1,
2280 	},
2281 	{
2282 		.desc = "Data cache clean to Point of Deep Persistence",
2283 		.capability = ARM64_HAS_DCPODP,
2284 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2285 		.matches = has_cpuid_feature,
2286 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2287 		.sign = FTR_UNSIGNED,
2288 		.field_pos = ID_AA64ISAR1_EL1_DPB_SHIFT,
2289 		.field_width = 4,
2290 		.min_field_value = 2,
2291 	},
2292 #endif
2293 #ifdef CONFIG_ARM64_SVE
2294 	{
2295 		.desc = "Scalable Vector Extension",
2296 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2297 		.capability = ARM64_SVE,
2298 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2299 		.sign = FTR_UNSIGNED,
2300 		.field_pos = ID_AA64PFR0_EL1_SVE_SHIFT,
2301 		.field_width = 4,
2302 		.min_field_value = ID_AA64PFR0_EL1_SVE_IMP,
2303 		.matches = has_cpuid_feature,
2304 		.cpu_enable = sve_kernel_enable,
2305 	},
2306 #endif /* CONFIG_ARM64_SVE */
2307 #ifdef CONFIG_ARM64_RAS_EXTN
2308 	{
2309 		.desc = "RAS Extension Support",
2310 		.capability = ARM64_HAS_RAS_EXTN,
2311 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2312 		.matches = has_cpuid_feature,
2313 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2314 		.sign = FTR_UNSIGNED,
2315 		.field_pos = ID_AA64PFR0_EL1_RAS_SHIFT,
2316 		.field_width = 4,
2317 		.min_field_value = ID_AA64PFR0_EL1_RAS_IMP,
2318 		.cpu_enable = cpu_clear_disr,
2319 	},
2320 #endif /* CONFIG_ARM64_RAS_EXTN */
2321 #ifdef CONFIG_ARM64_AMU_EXTN
2322 	{
2323 		/*
2324 		 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
2325 		 * Therefore, don't provide .desc as we don't want the detection
2326 		 * message to be shown until at least one CPU is detected to
2327 		 * support the feature.
2328 		 */
2329 		.capability = ARM64_HAS_AMU_EXTN,
2330 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2331 		.matches = has_amu,
2332 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2333 		.sign = FTR_UNSIGNED,
2334 		.field_pos = ID_AA64PFR0_EL1_AMU_SHIFT,
2335 		.field_width = 4,
2336 		.min_field_value = ID_AA64PFR0_EL1_AMU_IMP,
2337 		.cpu_enable = cpu_amu_enable,
2338 	},
2339 #endif /* CONFIG_ARM64_AMU_EXTN */
2340 	{
2341 		.desc = "Data cache clean to the PoU not required for I/D coherence",
2342 		.capability = ARM64_HAS_CACHE_IDC,
2343 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2344 		.matches = has_cache_idc,
2345 		.cpu_enable = cpu_emulate_effective_ctr,
2346 	},
2347 	{
2348 		.desc = "Instruction cache invalidation not required for I/D coherence",
2349 		.capability = ARM64_HAS_CACHE_DIC,
2350 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2351 		.matches = has_cache_dic,
2352 	},
2353 	{
2354 		.desc = "Stage-2 Force Write-Back",
2355 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2356 		.capability = ARM64_HAS_STAGE2_FWB,
2357 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2358 		.sign = FTR_UNSIGNED,
2359 		.field_pos = ID_AA64MMFR2_EL1_FWB_SHIFT,
2360 		.field_width = 4,
2361 		.min_field_value = 1,
2362 		.matches = has_cpuid_feature,
2363 	},
2364 	{
2365 		.desc = "ARMv8.4 Translation Table Level",
2366 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2367 		.capability = ARM64_HAS_ARMv8_4_TTL,
2368 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2369 		.sign = FTR_UNSIGNED,
2370 		.field_pos = ID_AA64MMFR2_EL1_TTL_SHIFT,
2371 		.field_width = 4,
2372 		.min_field_value = 1,
2373 		.matches = has_cpuid_feature,
2374 	},
2375 	{
2376 		.desc = "TLB range maintenance instructions",
2377 		.capability = ARM64_HAS_TLB_RANGE,
2378 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2379 		.matches = has_cpuid_feature,
2380 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2381 		.field_pos = ID_AA64ISAR0_EL1_TLB_SHIFT,
2382 		.field_width = 4,
2383 		.sign = FTR_UNSIGNED,
2384 		.min_field_value = ID_AA64ISAR0_EL1_TLB_RANGE,
2385 	},
2386 #ifdef CONFIG_ARM64_HW_AFDBM
2387 	{
2388 		/*
2389 		 * Since we turn this on always, we don't want the user to
2390 		 * think that the feature is available when it may not be.
2391 		 * So hide the description.
2392 		 *
2393 		 * .desc = "Hardware pagetable Dirty Bit Management",
2394 		 *
2395 		 */
2396 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2397 		.capability = ARM64_HW_DBM,
2398 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2399 		.sign = FTR_UNSIGNED,
2400 		.field_pos = ID_AA64MMFR1_EL1_HAFDBS_SHIFT,
2401 		.field_width = 4,
2402 		.min_field_value = 2,
2403 		.matches = has_hw_dbm,
2404 		.cpu_enable = cpu_enable_hw_dbm,
2405 	},
2406 #endif
2407 	{
2408 		.desc = "CRC32 instructions",
2409 		.capability = ARM64_HAS_CRC32,
2410 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2411 		.matches = has_cpuid_feature,
2412 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2413 		.field_pos = ID_AA64ISAR0_EL1_CRC32_SHIFT,
2414 		.field_width = 4,
2415 		.min_field_value = 1,
2416 	},
2417 	{
2418 		.desc = "Speculative Store Bypassing Safe (SSBS)",
2419 		.capability = ARM64_SSBS,
2420 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2421 		.matches = has_cpuid_feature,
2422 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2423 		.field_pos = ID_AA64PFR1_EL1_SSBS_SHIFT,
2424 		.field_width = 4,
2425 		.sign = FTR_UNSIGNED,
2426 		.min_field_value = ID_AA64PFR1_EL1_SSBS_IMP,
2427 	},
2428 #ifdef CONFIG_ARM64_CNP
2429 	{
2430 		.desc = "Common not Private translations",
2431 		.capability = ARM64_HAS_CNP,
2432 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2433 		.matches = has_useable_cnp,
2434 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2435 		.sign = FTR_UNSIGNED,
2436 		.field_pos = ID_AA64MMFR2_EL1_CnP_SHIFT,
2437 		.field_width = 4,
2438 		.min_field_value = 1,
2439 		.cpu_enable = cpu_enable_cnp,
2440 	},
2441 #endif
2442 	{
2443 		.desc = "Speculation barrier (SB)",
2444 		.capability = ARM64_HAS_SB,
2445 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2446 		.matches = has_cpuid_feature,
2447 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2448 		.field_pos = ID_AA64ISAR1_EL1_SB_SHIFT,
2449 		.field_width = 4,
2450 		.sign = FTR_UNSIGNED,
2451 		.min_field_value = 1,
2452 	},
2453 #ifdef CONFIG_ARM64_PTR_AUTH
2454 	{
2455 		.desc = "Address authentication (architected QARMA5 algorithm)",
2456 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2457 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2458 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2459 		.sign = FTR_UNSIGNED,
2460 		.field_pos = ID_AA64ISAR1_EL1_APA_SHIFT,
2461 		.field_width = 4,
2462 		.min_field_value = ID_AA64ISAR1_EL1_APA_PAuth,
2463 		.matches = has_address_auth_cpucap,
2464 	},
2465 	{
2466 		.desc = "Address authentication (architected QARMA3 algorithm)",
2467 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2468 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2469 		.sys_reg = SYS_ID_AA64ISAR2_EL1,
2470 		.sign = FTR_UNSIGNED,
2471 		.field_pos = ID_AA64ISAR2_EL1_APA3_SHIFT,
2472 		.field_width = 4,
2473 		.min_field_value = ID_AA64ISAR2_EL1_APA3_PAuth,
2474 		.matches = has_address_auth_cpucap,
2475 	},
2476 	{
2477 		.desc = "Address authentication (IMP DEF algorithm)",
2478 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2479 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2480 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2481 		.sign = FTR_UNSIGNED,
2482 		.field_pos = ID_AA64ISAR1_EL1_API_SHIFT,
2483 		.field_width = 4,
2484 		.min_field_value = ID_AA64ISAR1_EL1_API_PAuth,
2485 		.matches = has_address_auth_cpucap,
2486 	},
2487 	{
2488 		.capability = ARM64_HAS_ADDRESS_AUTH,
2489 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2490 		.matches = has_address_auth_metacap,
2491 	},
2492 	{
2493 		.desc = "Generic authentication (architected QARMA5 algorithm)",
2494 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2495 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2496 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2497 		.sign = FTR_UNSIGNED,
2498 		.field_pos = ID_AA64ISAR1_EL1_GPA_SHIFT,
2499 		.field_width = 4,
2500 		.min_field_value = ID_AA64ISAR1_EL1_GPA_IMP,
2501 		.matches = has_cpuid_feature,
2502 	},
2503 	{
2504 		.desc = "Generic authentication (architected QARMA3 algorithm)",
2505 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2506 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2507 		.sys_reg = SYS_ID_AA64ISAR2_EL1,
2508 		.sign = FTR_UNSIGNED,
2509 		.field_pos = ID_AA64ISAR2_EL1_GPA3_SHIFT,
2510 		.field_width = 4,
2511 		.min_field_value = ID_AA64ISAR2_EL1_GPA3_IMP,
2512 		.matches = has_cpuid_feature,
2513 	},
2514 	{
2515 		.desc = "Generic authentication (IMP DEF algorithm)",
2516 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2517 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2518 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2519 		.sign = FTR_UNSIGNED,
2520 		.field_pos = ID_AA64ISAR1_EL1_GPI_SHIFT,
2521 		.field_width = 4,
2522 		.min_field_value = ID_AA64ISAR1_EL1_GPI_IMP,
2523 		.matches = has_cpuid_feature,
2524 	},
2525 	{
2526 		.capability = ARM64_HAS_GENERIC_AUTH,
2527 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2528 		.matches = has_generic_auth,
2529 	},
2530 #endif /* CONFIG_ARM64_PTR_AUTH */
2531 #ifdef CONFIG_ARM64_PSEUDO_NMI
2532 	{
2533 		/*
2534 		 * Depends on having GICv3
2535 		 */
2536 		.desc = "IRQ priority masking",
2537 		.capability = ARM64_HAS_IRQ_PRIO_MASKING,
2538 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2539 		.matches = can_use_gic_priorities,
2540 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2541 		.field_pos = ID_AA64PFR0_EL1_GIC_SHIFT,
2542 		.field_width = 4,
2543 		.sign = FTR_UNSIGNED,
2544 		.min_field_value = 1,
2545 	},
2546 #endif
2547 #ifdef CONFIG_ARM64_E0PD
2548 	{
2549 		.desc = "E0PD",
2550 		.capability = ARM64_HAS_E0PD,
2551 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2552 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2553 		.sign = FTR_UNSIGNED,
2554 		.field_width = 4,
2555 		.field_pos = ID_AA64MMFR2_EL1_E0PD_SHIFT,
2556 		.matches = has_cpuid_feature,
2557 		.min_field_value = 1,
2558 		.cpu_enable = cpu_enable_e0pd,
2559 	},
2560 #endif
2561 	{
2562 		.desc = "Random Number Generator",
2563 		.capability = ARM64_HAS_RNG,
2564 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2565 		.matches = has_cpuid_feature,
2566 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2567 		.field_pos = ID_AA64ISAR0_EL1_RNDR_SHIFT,
2568 		.field_width = 4,
2569 		.sign = FTR_UNSIGNED,
2570 		.min_field_value = 1,
2571 	},
2572 #ifdef CONFIG_ARM64_BTI
2573 	{
2574 		.desc = "Branch Target Identification",
2575 		.capability = ARM64_BTI,
2576 #ifdef CONFIG_ARM64_BTI_KERNEL
2577 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2578 #else
2579 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2580 #endif
2581 		.matches = has_cpuid_feature,
2582 		.cpu_enable = bti_enable,
2583 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2584 		.field_pos = ID_AA64PFR1_EL1_BT_SHIFT,
2585 		.field_width = 4,
2586 		.min_field_value = ID_AA64PFR1_EL1_BT_IMP,
2587 		.sign = FTR_UNSIGNED,
2588 	},
2589 #endif
2590 #ifdef CONFIG_ARM64_MTE
2591 	{
2592 		.desc = "Memory Tagging Extension",
2593 		.capability = ARM64_MTE,
2594 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2595 		.matches = has_cpuid_feature,
2596 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2597 		.field_pos = ID_AA64PFR1_EL1_MTE_SHIFT,
2598 		.field_width = 4,
2599 		.min_field_value = ID_AA64PFR1_EL1_MTE_MTE2,
2600 		.sign = FTR_UNSIGNED,
2601 		.cpu_enable = cpu_enable_mte,
2602 	},
2603 	{
2604 		.desc = "Asymmetric MTE Tag Check Fault",
2605 		.capability = ARM64_MTE_ASYMM,
2606 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2607 		.matches = has_cpuid_feature,
2608 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2609 		.field_pos = ID_AA64PFR1_EL1_MTE_SHIFT,
2610 		.field_width = 4,
2611 		.min_field_value = ID_AA64PFR1_EL1_MTE_MTE3,
2612 		.sign = FTR_UNSIGNED,
2613 	},
2614 #endif /* CONFIG_ARM64_MTE */
2615 	{
2616 		.desc = "RCpc load-acquire (LDAPR)",
2617 		.capability = ARM64_HAS_LDAPR,
2618 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2619 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2620 		.sign = FTR_UNSIGNED,
2621 		.field_pos = ID_AA64ISAR1_EL1_LRCPC_SHIFT,
2622 		.field_width = 4,
2623 		.matches = has_cpuid_feature,
2624 		.min_field_value = 1,
2625 	},
2626 #ifdef CONFIG_ARM64_SME
2627 	{
2628 		.desc = "Scalable Matrix Extension",
2629 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2630 		.capability = ARM64_SME,
2631 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2632 		.sign = FTR_UNSIGNED,
2633 		.field_pos = ID_AA64PFR1_EL1_SME_SHIFT,
2634 		.field_width = 4,
2635 		.min_field_value = ID_AA64PFR1_EL1_SME_IMP,
2636 		.matches = has_cpuid_feature,
2637 		.cpu_enable = sme_kernel_enable,
2638 	},
2639 	/* FA64 should be sorted after the base SME capability */
2640 	{
2641 		.desc = "FA64",
2642 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2643 		.capability = ARM64_SME_FA64,
2644 		.sys_reg = SYS_ID_AA64SMFR0_EL1,
2645 		.sign = FTR_UNSIGNED,
2646 		.field_pos = ID_AA64SMFR0_EL1_FA64_SHIFT,
2647 		.field_width = 1,
2648 		.min_field_value = ID_AA64SMFR0_EL1_FA64_IMP,
2649 		.matches = has_cpuid_feature,
2650 		.cpu_enable = fa64_kernel_enable,
2651 	},
2652 #endif /* CONFIG_ARM64_SME */
2653 	{
2654 		.desc = "WFx with timeout",
2655 		.capability = ARM64_HAS_WFXT,
2656 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2657 		.sys_reg = SYS_ID_AA64ISAR2_EL1,
2658 		.sign = FTR_UNSIGNED,
2659 		.field_pos = ID_AA64ISAR2_EL1_WFxT_SHIFT,
2660 		.field_width = 4,
2661 		.matches = has_cpuid_feature,
2662 		.min_field_value = ID_AA64ISAR2_EL1_WFxT_IMP,
2663 	},
2664 	{
2665 		.desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2666 		.capability = ARM64_HAS_TIDCP1,
2667 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2668 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2669 		.sign = FTR_UNSIGNED,
2670 		.field_pos = ID_AA64MMFR1_EL1_TIDCP1_SHIFT,
2671 		.field_width = 4,
2672 		.min_field_value = ID_AA64MMFR1_EL1_TIDCP1_IMP,
2673 		.matches = has_cpuid_feature,
2674 		.cpu_enable = cpu_trap_el0_impdef,
2675 	},
2676 	{
2677 		.desc = "Data independent timing control (DIT)",
2678 		.capability = ARM64_HAS_DIT,
2679 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2680 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2681 		.sign = FTR_UNSIGNED,
2682 		.field_pos = ID_AA64PFR0_EL1_DIT_SHIFT,
2683 		.field_width = 4,
2684 		.min_field_value = ID_AA64PFR0_EL1_DIT_IMP,
2685 		.matches = has_cpuid_feature,
2686 		.cpu_enable = cpu_enable_dit,
2687 	},
2688 	{},
2689 };
2690 
2691 #define HWCAP_CPUID_MATCH(reg, field, width, s, min_value)			\
2692 		.matches = has_user_cpuid_feature,					\
2693 		.sys_reg = reg,							\
2694 		.field_pos = field,						\
2695 		.field_width = width,						\
2696 		.sign = s,							\
2697 		.min_field_value = min_value,
2698 
2699 #define __HWCAP_CAP(name, cap_type, cap)					\
2700 		.desc = name,							\
2701 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
2702 		.hwcap_type = cap_type,						\
2703 		.hwcap = cap,							\
2704 
2705 #define HWCAP_CAP(reg, field, width, s, min_value, cap_type, cap)		\
2706 	{									\
2707 		__HWCAP_CAP(#cap, cap_type, cap)				\
2708 		HWCAP_CPUID_MATCH(reg, field, width, s, min_value) 		\
2709 	}
2710 
2711 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
2712 	{									\
2713 		__HWCAP_CAP(#cap, cap_type, cap)				\
2714 		.matches = cpucap_multi_entry_cap_matches,			\
2715 		.match_list = list,						\
2716 	}
2717 
2718 #define HWCAP_CAP_MATCH(match, cap_type, cap)					\
2719 	{									\
2720 		__HWCAP_CAP(#cap, cap_type, cap)				\
2721 		.matches = match,						\
2722 	}
2723 
2724 #ifdef CONFIG_ARM64_PTR_AUTH
2725 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2726 	{
2727 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_APA_SHIFT,
2728 				  4, FTR_UNSIGNED,
2729 				  ID_AA64ISAR1_EL1_APA_PAuth)
2730 	},
2731 	{
2732 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_APA3_SHIFT,
2733 				  4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_APA3_PAuth)
2734 	},
2735 	{
2736 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_API_SHIFT,
2737 				  4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_API_PAuth)
2738 	},
2739 	{},
2740 };
2741 
2742 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2743 	{
2744 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_GPA_SHIFT,
2745 				  4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_GPA_IMP)
2746 	},
2747 	{
2748 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_GPA3_SHIFT,
2749 				  4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_GPA3_IMP)
2750 	},
2751 	{
2752 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_GPI_SHIFT,
2753 				  4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_GPI_IMP)
2754 	},
2755 	{},
2756 };
2757 #endif
2758 
2759 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2760 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2761 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2762 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2763 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2764 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2765 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2766 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2767 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2768 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2769 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2770 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2771 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_DP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2772 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2773 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2774 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2775 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2776 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_FP_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2777 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_FP_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2778 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2779 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2780 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_DIT_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2781 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2782 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2783 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2784 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2785 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2786 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2787 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2788 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_SB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2789 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2790 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_EBF16),
2791 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2792 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2793 	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_EL1_AT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2794 #ifdef CONFIG_ARM64_SVE
2795 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_EL1_SVE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR0_EL1_SVE_IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
2796 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SVEver_SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
2797 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SVEver_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2798 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_AES_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2799 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_AES_PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2800 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_BitPerm_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2801 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_BF16_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2802 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_BF16_EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
2803 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SHA3_IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2804 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SM4_IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2805 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_I8MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2806 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_F32MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2807 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_F64MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2808 #endif
2809 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_SSBS_SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2810 #ifdef CONFIG_ARM64_BTI
2811 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_BT_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_BT_IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
2812 #endif
2813 #ifdef CONFIG_ARM64_PTR_AUTH
2814 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2815 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2816 #endif
2817 #ifdef CONFIG_ARM64_MTE
2818 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_MTE_MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
2819 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_MTE_MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2820 #endif /* CONFIG_ARM64_MTE */
2821 	HWCAP_CAP(SYS_ID_AA64MMFR0_EL1, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ECV),
2822 	HWCAP_CAP(SYS_ID_AA64MMFR1_EL1, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AFP),
2823 	HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_CSSC_IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
2824 	HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_RPRFM_IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
2825 	HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2826 	HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_WFxT_IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
2827 #ifdef CONFIG_ARM64_SME
2828 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_SME_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_SME_IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
2829 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_FA64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
2830 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_EL1_I16I64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
2831 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F64F64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
2832 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_EL1_I8I32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
2833 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F16F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
2834 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_B16F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
2835 	HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F32F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
2836 #endif /* CONFIG_ARM64_SME */
2837 	{},
2838 };
2839 
2840 #ifdef CONFIG_COMPAT
2841 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2842 {
2843 	/*
2844 	 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2845 	 * in line with that of arm32 as in vfp_init(). We make sure that the
2846 	 * check is future proof, by making sure value is non-zero.
2847 	 */
2848 	u32 mvfr1;
2849 
2850 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2851 	if (scope == SCOPE_SYSTEM)
2852 		mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2853 	else
2854 		mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2855 
2856 	return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
2857 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
2858 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
2859 }
2860 #endif
2861 
2862 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2863 #ifdef CONFIG_COMPAT
2864 	HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2865 	HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_EL1_SIMDFMAC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2866 	/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2867 	HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_EL1_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2868 	HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_EL1_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2869 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2870 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2871 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_EL1_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2872 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2873 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_EL1_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2874 #endif
2875 	{},
2876 };
2877 
2878 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2879 {
2880 	switch (cap->hwcap_type) {
2881 	case CAP_HWCAP:
2882 		cpu_set_feature(cap->hwcap);
2883 		break;
2884 #ifdef CONFIG_COMPAT
2885 	case CAP_COMPAT_HWCAP:
2886 		compat_elf_hwcap |= (u32)cap->hwcap;
2887 		break;
2888 	case CAP_COMPAT_HWCAP2:
2889 		compat_elf_hwcap2 |= (u32)cap->hwcap;
2890 		break;
2891 #endif
2892 	default:
2893 		WARN_ON(1);
2894 		break;
2895 	}
2896 }
2897 
2898 /* Check if we have a particular HWCAP enabled */
2899 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2900 {
2901 	bool rc;
2902 
2903 	switch (cap->hwcap_type) {
2904 	case CAP_HWCAP:
2905 		rc = cpu_have_feature(cap->hwcap);
2906 		break;
2907 #ifdef CONFIG_COMPAT
2908 	case CAP_COMPAT_HWCAP:
2909 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2910 		break;
2911 	case CAP_COMPAT_HWCAP2:
2912 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2913 		break;
2914 #endif
2915 	default:
2916 		WARN_ON(1);
2917 		rc = false;
2918 	}
2919 
2920 	return rc;
2921 }
2922 
2923 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2924 {
2925 	/* We support emulation of accesses to CPU ID feature registers */
2926 	cpu_set_named_feature(CPUID);
2927 	for (; hwcaps->matches; hwcaps++)
2928 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2929 			cap_set_elf_hwcap(hwcaps);
2930 }
2931 
2932 static void update_cpu_capabilities(u16 scope_mask)
2933 {
2934 	int i;
2935 	const struct arm64_cpu_capabilities *caps;
2936 
2937 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2938 	for (i = 0; i < ARM64_NCAPS; i++) {
2939 		caps = cpu_hwcaps_ptrs[i];
2940 		if (!caps || !(caps->type & scope_mask) ||
2941 		    cpus_have_cap(caps->capability) ||
2942 		    !caps->matches(caps, cpucap_default_scope(caps)))
2943 			continue;
2944 
2945 		if (caps->desc)
2946 			pr_info("detected: %s\n", caps->desc);
2947 		cpus_set_cap(caps->capability);
2948 
2949 		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2950 			set_bit(caps->capability, boot_capabilities);
2951 	}
2952 }
2953 
2954 /*
2955  * Enable all the available capabilities on this CPU. The capabilities
2956  * with BOOT_CPU scope are handled separately and hence skipped here.
2957  */
2958 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2959 {
2960 	int i;
2961 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2962 
2963 	for_each_available_cap(i) {
2964 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2965 
2966 		if (WARN_ON(!cap))
2967 			continue;
2968 
2969 		if (!(cap->type & non_boot_scope))
2970 			continue;
2971 
2972 		if (cap->cpu_enable)
2973 			cap->cpu_enable(cap);
2974 	}
2975 	return 0;
2976 }
2977 
2978 /*
2979  * Run through the enabled capabilities and enable() it on all active
2980  * CPUs
2981  */
2982 static void __init enable_cpu_capabilities(u16 scope_mask)
2983 {
2984 	int i;
2985 	const struct arm64_cpu_capabilities *caps;
2986 	bool boot_scope;
2987 
2988 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2989 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2990 
2991 	for (i = 0; i < ARM64_NCAPS; i++) {
2992 		unsigned int num;
2993 
2994 		caps = cpu_hwcaps_ptrs[i];
2995 		if (!caps || !(caps->type & scope_mask))
2996 			continue;
2997 		num = caps->capability;
2998 		if (!cpus_have_cap(num))
2999 			continue;
3000 
3001 		if (boot_scope && caps->cpu_enable)
3002 			/*
3003 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3004 			 * before any secondary CPU boots. Thus, each secondary
3005 			 * will enable the capability as appropriate via
3006 			 * check_local_cpu_capabilities(). The only exception is
3007 			 * the boot CPU, for which the capability must be
3008 			 * enabled here. This approach avoids costly
3009 			 * stop_machine() calls for this case.
3010 			 */
3011 			caps->cpu_enable(caps);
3012 	}
3013 
3014 	/*
3015 	 * For all non-boot scope capabilities, use stop_machine()
3016 	 * as it schedules the work allowing us to modify PSTATE,
3017 	 * instead of on_each_cpu() which uses an IPI, giving us a
3018 	 * PSTATE that disappears when we return.
3019 	 */
3020 	if (!boot_scope)
3021 		stop_machine(cpu_enable_non_boot_scope_capabilities,
3022 			     NULL, cpu_online_mask);
3023 }
3024 
3025 /*
3026  * Run through the list of capabilities to check for conflicts.
3027  * If the system has already detected a capability, take necessary
3028  * action on this CPU.
3029  */
3030 static void verify_local_cpu_caps(u16 scope_mask)
3031 {
3032 	int i;
3033 	bool cpu_has_cap, system_has_cap;
3034 	const struct arm64_cpu_capabilities *caps;
3035 
3036 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3037 
3038 	for (i = 0; i < ARM64_NCAPS; i++) {
3039 		caps = cpu_hwcaps_ptrs[i];
3040 		if (!caps || !(caps->type & scope_mask))
3041 			continue;
3042 
3043 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3044 		system_has_cap = cpus_have_cap(caps->capability);
3045 
3046 		if (system_has_cap) {
3047 			/*
3048 			 * Check if the new CPU misses an advertised feature,
3049 			 * which is not safe to miss.
3050 			 */
3051 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3052 				break;
3053 			/*
3054 			 * We have to issue cpu_enable() irrespective of
3055 			 * whether the CPU has it or not, as it is enabeld
3056 			 * system wide. It is upto the call back to take
3057 			 * appropriate action on this CPU.
3058 			 */
3059 			if (caps->cpu_enable)
3060 				caps->cpu_enable(caps);
3061 		} else {
3062 			/*
3063 			 * Check if the CPU has this capability if it isn't
3064 			 * safe to have when the system doesn't.
3065 			 */
3066 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3067 				break;
3068 		}
3069 	}
3070 
3071 	if (i < ARM64_NCAPS) {
3072 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3073 			smp_processor_id(), caps->capability,
3074 			caps->desc, system_has_cap, cpu_has_cap);
3075 
3076 		if (cpucap_panic_on_conflict(caps))
3077 			cpu_panic_kernel();
3078 		else
3079 			cpu_die_early();
3080 	}
3081 }
3082 
3083 /*
3084  * Check for CPU features that are used in early boot
3085  * based on the Boot CPU value.
3086  */
3087 static void check_early_cpu_features(void)
3088 {
3089 	verify_cpu_asid_bits();
3090 
3091 	verify_local_cpu_caps(SCOPE_BOOT_CPU);
3092 }
3093 
3094 static void
3095 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3096 {
3097 
3098 	for (; caps->matches; caps++)
3099 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3100 			pr_crit("CPU%d: missing HWCAP: %s\n",
3101 					smp_processor_id(), caps->desc);
3102 			cpu_die_early();
3103 		}
3104 }
3105 
3106 static void verify_local_elf_hwcaps(void)
3107 {
3108 	__verify_local_elf_hwcaps(arm64_elf_hwcaps);
3109 
3110 	if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3111 		__verify_local_elf_hwcaps(compat_elf_hwcaps);
3112 }
3113 
3114 static void verify_sve_features(void)
3115 {
3116 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
3117 	u64 zcr = read_zcr_features();
3118 
3119 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
3120 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
3121 
3122 	if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) {
3123 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
3124 			smp_processor_id());
3125 		cpu_die_early();
3126 	}
3127 
3128 	/* Add checks on other ZCR bits here if necessary */
3129 }
3130 
3131 static void verify_sme_features(void)
3132 {
3133 	u64 safe_smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
3134 	u64 smcr = read_smcr_features();
3135 
3136 	unsigned int safe_len = safe_smcr & SMCR_ELx_LEN_MASK;
3137 	unsigned int len = smcr & SMCR_ELx_LEN_MASK;
3138 
3139 	if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SME)) {
3140 		pr_crit("CPU%d: SME: vector length support mismatch\n",
3141 			smp_processor_id());
3142 		cpu_die_early();
3143 	}
3144 
3145 	/* Add checks on other SMCR bits here if necessary */
3146 }
3147 
3148 static void verify_hyp_capabilities(void)
3149 {
3150 	u64 safe_mmfr1, mmfr0, mmfr1;
3151 	int parange, ipa_max;
3152 	unsigned int safe_vmid_bits, vmid_bits;
3153 
3154 	if (!IS_ENABLED(CONFIG_KVM))
3155 		return;
3156 
3157 	safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3158 	mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3159 	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3160 
3161 	/* Verify VMID bits */
3162 	safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3163 	vmid_bits = get_vmid_bits(mmfr1);
3164 	if (vmid_bits < safe_vmid_bits) {
3165 		pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3166 		cpu_die_early();
3167 	}
3168 
3169 	/* Verify IPA range */
3170 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
3171 				ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3172 	ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3173 	if (ipa_max < get_kvm_ipa_limit()) {
3174 		pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3175 		cpu_die_early();
3176 	}
3177 }
3178 
3179 /*
3180  * Run through the enabled system capabilities and enable() it on this CPU.
3181  * The capabilities were decided based on the available CPUs at the boot time.
3182  * Any new CPU should match the system wide status of the capability. If the
3183  * new CPU doesn't have a capability which the system now has enabled, we
3184  * cannot do anything to fix it up and could cause unexpected failures. So
3185  * we park the CPU.
3186  */
3187 static void verify_local_cpu_capabilities(void)
3188 {
3189 	/*
3190 	 * The capabilities with SCOPE_BOOT_CPU are checked from
3191 	 * check_early_cpu_features(), as they need to be verified
3192 	 * on all secondary CPUs.
3193 	 */
3194 	verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3195 	verify_local_elf_hwcaps();
3196 
3197 	if (system_supports_sve())
3198 		verify_sve_features();
3199 
3200 	if (system_supports_sme())
3201 		verify_sme_features();
3202 
3203 	if (is_hyp_mode_available())
3204 		verify_hyp_capabilities();
3205 }
3206 
3207 void check_local_cpu_capabilities(void)
3208 {
3209 	/*
3210 	 * All secondary CPUs should conform to the early CPU features
3211 	 * in use by the kernel based on boot CPU.
3212 	 */
3213 	check_early_cpu_features();
3214 
3215 	/*
3216 	 * If we haven't finalised the system capabilities, this CPU gets
3217 	 * a chance to update the errata work arounds and local features.
3218 	 * Otherwise, this CPU should verify that it has all the system
3219 	 * advertised capabilities.
3220 	 */
3221 	if (!system_capabilities_finalized())
3222 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
3223 	else
3224 		verify_local_cpu_capabilities();
3225 }
3226 
3227 static void __init setup_boot_cpu_capabilities(void)
3228 {
3229 	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
3230 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3231 	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
3232 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
3233 }
3234 
3235 bool this_cpu_has_cap(unsigned int n)
3236 {
3237 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3238 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
3239 
3240 		if (cap)
3241 			return cap->matches(cap, SCOPE_LOCAL_CPU);
3242 	}
3243 
3244 	return false;
3245 }
3246 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3247 
3248 /*
3249  * This helper function is used in a narrow window when,
3250  * - The system wide safe registers are set with all the SMP CPUs and,
3251  * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
3252  * In all other cases cpus_have_{const_}cap() should be used.
3253  */
3254 static bool __maybe_unused __system_matches_cap(unsigned int n)
3255 {
3256 	if (n < ARM64_NCAPS) {
3257 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
3258 
3259 		if (cap)
3260 			return cap->matches(cap, SCOPE_SYSTEM);
3261 	}
3262 	return false;
3263 }
3264 
3265 void cpu_set_feature(unsigned int num)
3266 {
3267 	set_bit(num, elf_hwcap);
3268 }
3269 
3270 bool cpu_have_feature(unsigned int num)
3271 {
3272 	return test_bit(num, elf_hwcap);
3273 }
3274 EXPORT_SYMBOL_GPL(cpu_have_feature);
3275 
3276 unsigned long cpu_get_elf_hwcap(void)
3277 {
3278 	/*
3279 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
3280 	 * note that for userspace compatibility we guarantee that bits 62
3281 	 * and 63 will always be returned as 0.
3282 	 */
3283 	return elf_hwcap[0];
3284 }
3285 
3286 unsigned long cpu_get_elf_hwcap2(void)
3287 {
3288 	return elf_hwcap[1];
3289 }
3290 
3291 static void __init setup_system_capabilities(void)
3292 {
3293 	/*
3294 	 * We have finalised the system-wide safe feature
3295 	 * registers, finalise the capabilities that depend
3296 	 * on it. Also enable all the available capabilities,
3297 	 * that are not enabled already.
3298 	 */
3299 	update_cpu_capabilities(SCOPE_SYSTEM);
3300 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3301 }
3302 
3303 void __init setup_cpu_features(void)
3304 {
3305 	u32 cwg;
3306 
3307 	setup_system_capabilities();
3308 	setup_elf_hwcaps(arm64_elf_hwcaps);
3309 
3310 	if (system_supports_32bit_el0()) {
3311 		setup_elf_hwcaps(compat_elf_hwcaps);
3312 		elf_hwcap_fixup();
3313 	}
3314 
3315 	if (system_uses_ttbr0_pan())
3316 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3317 
3318 	sve_setup();
3319 	sme_setup();
3320 	minsigstksz_setup();
3321 
3322 	/*
3323 	 * Check for sane CTR_EL0.CWG value.
3324 	 */
3325 	cwg = cache_type_cwg();
3326 	if (!cwg)
3327 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
3328 			ARCH_DMA_MINALIGN);
3329 }
3330 
3331 static int enable_mismatched_32bit_el0(unsigned int cpu)
3332 {
3333 	/*
3334 	 * The first 32-bit-capable CPU we detected and so can no longer
3335 	 * be offlined by userspace. -1 indicates we haven't yet onlined
3336 	 * a 32-bit-capable CPU.
3337 	 */
3338 	static int lucky_winner = -1;
3339 
3340 	struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3341 	bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3342 
3343 	if (cpu_32bit) {
3344 		cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3345 		static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3346 	}
3347 
3348 	if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3349 		return 0;
3350 
3351 	if (lucky_winner >= 0)
3352 		return 0;
3353 
3354 	/*
3355 	 * We've detected a mismatch. We need to keep one of our CPUs with
3356 	 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3357 	 * every CPU in the system for a 32-bit task.
3358 	 */
3359 	lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3360 							 cpu_active_mask);
3361 	get_cpu_device(lucky_winner)->offline_disabled = true;
3362 	setup_elf_hwcaps(compat_elf_hwcaps);
3363 	elf_hwcap_fixup();
3364 	pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3365 		cpu, lucky_winner);
3366 	return 0;
3367 }
3368 
3369 static int __init init_32bit_el0_mask(void)
3370 {
3371 	if (!allow_mismatched_32bit_el0)
3372 		return 0;
3373 
3374 	if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3375 		return -ENOMEM;
3376 
3377 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3378 				 "arm64/mismatched_32bit_el0:online",
3379 				 enable_mismatched_32bit_el0, NULL);
3380 }
3381 subsys_initcall_sync(init_32bit_el0_mask);
3382 
3383 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3384 {
3385 	cpu_replace_ttbr1(lm_alias(swapper_pg_dir), idmap_pg_dir);
3386 }
3387 
3388 /*
3389  * We emulate only the following system register space.
3390  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3391  * See Table C5-6 System instruction encodings for System register accesses,
3392  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3393  */
3394 static inline bool __attribute_const__ is_emulated(u32 id)
3395 {
3396 	return (sys_reg_Op0(id) == 0x3 &&
3397 		sys_reg_CRn(id) == 0x0 &&
3398 		sys_reg_Op1(id) == 0x0 &&
3399 		(sys_reg_CRm(id) == 0 ||
3400 		 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3401 }
3402 
3403 /*
3404  * With CRm == 0, reg should be one of :
3405  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3406  */
3407 static inline int emulate_id_reg(u32 id, u64 *valp)
3408 {
3409 	switch (id) {
3410 	case SYS_MIDR_EL1:
3411 		*valp = read_cpuid_id();
3412 		break;
3413 	case SYS_MPIDR_EL1:
3414 		*valp = SYS_MPIDR_SAFE_VAL;
3415 		break;
3416 	case SYS_REVIDR_EL1:
3417 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
3418 		*valp = 0;
3419 		break;
3420 	default:
3421 		return -EINVAL;
3422 	}
3423 
3424 	return 0;
3425 }
3426 
3427 static int emulate_sys_reg(u32 id, u64 *valp)
3428 {
3429 	struct arm64_ftr_reg *regp;
3430 
3431 	if (!is_emulated(id))
3432 		return -EINVAL;
3433 
3434 	if (sys_reg_CRm(id) == 0)
3435 		return emulate_id_reg(id, valp);
3436 
3437 	regp = get_arm64_ftr_reg_nowarn(id);
3438 	if (regp)
3439 		*valp = arm64_ftr_reg_user_value(regp);
3440 	else
3441 		/*
3442 		 * The untracked registers are either IMPLEMENTATION DEFINED
3443 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3444 		 */
3445 		*valp = 0;
3446 	return 0;
3447 }
3448 
3449 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3450 {
3451 	int rc;
3452 	u64 val;
3453 
3454 	rc = emulate_sys_reg(sys_reg, &val);
3455 	if (!rc) {
3456 		pt_regs_write_reg(regs, rt, val);
3457 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3458 	}
3459 	return rc;
3460 }
3461 
3462 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3463 {
3464 	u32 sys_reg, rt;
3465 
3466 	if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3467 		return false;
3468 
3469 	/*
3470 	 * sys_reg values are defined as used in mrs/msr instruction.
3471 	 * shift the imm value to get the encoding.
3472 	 */
3473 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3474 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3475 	return do_emulate_mrs(regs, sys_reg, rt) == 0;
3476 }
3477 
3478 enum mitigation_state arm64_get_meltdown_state(void)
3479 {
3480 	if (__meltdown_safe)
3481 		return SPECTRE_UNAFFECTED;
3482 
3483 	if (arm64_kernel_unmapped_at_el0())
3484 		return SPECTRE_MITIGATED;
3485 
3486 	return SPECTRE_VULNERABLE;
3487 }
3488 
3489 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3490 			  char *buf)
3491 {
3492 	switch (arm64_get_meltdown_state()) {
3493 	case SPECTRE_UNAFFECTED:
3494 		return sprintf(buf, "Not affected\n");
3495 
3496 	case SPECTRE_MITIGATED:
3497 		return sprintf(buf, "Mitigation: PTI\n");
3498 
3499 	default:
3500 		return sprintf(buf, "Vulnerable\n");
3501 	}
3502 }
3503