xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision a06c488d)
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt) "CPU features: " fmt
20 
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/processor.h>
28 #include <asm/sysreg.h>
29 
30 unsigned long elf_hwcap __read_mostly;
31 EXPORT_SYMBOL_GPL(elf_hwcap);
32 
33 #ifdef CONFIG_COMPAT
34 #define COMPAT_ELF_HWCAP_DEFAULT	\
35 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
36 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
37 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
38 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
39 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
40 				 COMPAT_HWCAP_LPAE)
41 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
42 unsigned int compat_elf_hwcap2 __read_mostly;
43 #endif
44 
45 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
46 
47 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
48 	{						\
49 		.sign = SIGNED,				\
50 		.strict = STRICT,			\
51 		.type = TYPE,				\
52 		.shift = SHIFT,				\
53 		.width = WIDTH,				\
54 		.safe_val = SAFE_VAL,			\
55 	}
56 
57 /* Define a feature with signed values */
58 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
59 	__ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
60 
61 /* Define a feature with unsigned value */
62 #define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
63 	__ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
64 
65 #define ARM64_FTR_END					\
66 	{						\
67 		.width = 0,				\
68 	}
69 
70 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
71 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
72 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
73 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
74 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
75 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
76 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
77 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
78 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
79 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* RAZ */
80 	ARM64_FTR_END,
81 };
82 
83 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
84 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
85 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
86 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
87 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
88 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
89 	/* Linux doesn't care about the EL3 */
90 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
91 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
92 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
93 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
94 	ARM64_FTR_END,
95 };
96 
97 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
98 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
99 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
100 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
101 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
102 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
103 	/* Linux shouldn't care about secure memory */
104 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
105 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
106 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
107 	/*
108 	 * Differing PARange is fine as long as all peripherals and memory are mapped
109 	 * within the minimum PARange of all CPUs
110 	 */
111 	U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
112 	ARM64_FTR_END,
113 };
114 
115 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
116 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
117 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
118 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
119 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
120 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
121 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
122 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
123 	ARM64_FTR_END,
124 };
125 
126 static struct arm64_ftr_bits ftr_ctr[] = {
127 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */
128 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
129 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
130 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */
131 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
132 	/*
133 	 * Linux can handle differing I-cache policies. Userspace JITs will
134 	 * make use of *minLine
135 	 */
136 	U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),	/* L1Ip */
137 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),	/* RAZ */
138 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
139 	ARM64_FTR_END,
140 };
141 
142 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
143 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),	/* InnerShr */
144 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),	/* FCSE */
145 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
146 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),	/* TCM */
147 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* ShareLvl */
148 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),	/* OuterShr */
149 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),	/* PMSA */
150 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* VMSA */
151 	ARM64_FTR_END,
152 };
153 
154 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
155 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
156 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
157 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
158 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
159 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
160 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
161 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
162 	ARM64_FTR_END,
163 };
164 
165 static struct arm64_ftr_bits ftr_mvfr2[] = {
166 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
167 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* FPMisc */
168 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* SIMDMisc */
169 	ARM64_FTR_END,
170 };
171 
172 static struct arm64_ftr_bits ftr_dczid[] = {
173 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),	/* RAZ */
174 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
175 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
176 	ARM64_FTR_END,
177 };
178 
179 
180 static struct arm64_ftr_bits ftr_id_isar5[] = {
181 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
182 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),	/* RAZ */
183 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
184 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
185 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
186 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
187 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
188 	ARM64_FTR_END,
189 };
190 
191 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
192 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
193 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* ac2 */
194 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* RAZ */
195 	ARM64_FTR_END,
196 };
197 
198 static struct arm64_ftr_bits ftr_id_pfr0[] = {
199 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),	/* RAZ */
200 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* State3 */
201 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),		/* State2 */
202 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* State1 */
203 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* State0 */
204 	ARM64_FTR_END,
205 };
206 
207 /*
208  * Common ftr bits for a 32bit register with all hidden, strict
209  * attributes, with 4bit feature fields and a default safe value of
210  * 0. Covers the following 32bit registers:
211  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
212  */
213 static struct arm64_ftr_bits ftr_generic_32bits[] = {
214 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
215 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
216 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
217 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
218 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
219 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
220 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
221 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
222 	ARM64_FTR_END,
223 };
224 
225 static struct arm64_ftr_bits ftr_generic[] = {
226 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
227 	ARM64_FTR_END,
228 };
229 
230 static struct arm64_ftr_bits ftr_generic32[] = {
231 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
232 	ARM64_FTR_END,
233 };
234 
235 static struct arm64_ftr_bits ftr_aa64raz[] = {
236 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
237 	ARM64_FTR_END,
238 };
239 
240 #define ARM64_FTR_REG(id, table)		\
241 	{					\
242 		.sys_id = id,			\
243 		.name = #id,			\
244 		.ftr_bits = &((table)[0]),	\
245 	}
246 
247 static struct arm64_ftr_reg arm64_ftr_regs[] = {
248 
249 	/* Op1 = 0, CRn = 0, CRm = 1 */
250 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
251 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
252 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
253 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
254 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
255 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
256 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
257 
258 	/* Op1 = 0, CRn = 0, CRm = 2 */
259 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
260 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
261 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
262 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
263 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
264 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
265 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
266 
267 	/* Op1 = 0, CRn = 0, CRm = 3 */
268 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
269 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
270 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
271 
272 	/* Op1 = 0, CRn = 0, CRm = 4 */
273 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
274 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
275 
276 	/* Op1 = 0, CRn = 0, CRm = 5 */
277 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
278 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
279 
280 	/* Op1 = 0, CRn = 0, CRm = 6 */
281 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
282 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
283 
284 	/* Op1 = 0, CRn = 0, CRm = 7 */
285 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
286 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
287 
288 	/* Op1 = 3, CRn = 0, CRm = 0 */
289 	ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
290 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
291 
292 	/* Op1 = 3, CRn = 14, CRm = 0 */
293 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
294 };
295 
296 static int search_cmp_ftr_reg(const void *id, const void *regp)
297 {
298 	return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
299 }
300 
301 /*
302  * get_arm64_ftr_reg - Lookup a feature register entry using its
303  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
304  * ascending order of sys_id , we use binary search to find a matching
305  * entry.
306  *
307  * returns - Upon success,  matching ftr_reg entry for id.
308  *         - NULL on failure. It is upto the caller to decide
309  *	     the impact of a failure.
310  */
311 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
312 {
313 	return bsearch((const void *)(unsigned long)sys_id,
314 			arm64_ftr_regs,
315 			ARRAY_SIZE(arm64_ftr_regs),
316 			sizeof(arm64_ftr_regs[0]),
317 			search_cmp_ftr_reg);
318 }
319 
320 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
321 {
322 	u64 mask = arm64_ftr_mask(ftrp);
323 
324 	reg &= ~mask;
325 	reg |= (ftr_val << ftrp->shift) & mask;
326 	return reg;
327 }
328 
329 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
330 {
331 	s64 ret = 0;
332 
333 	switch (ftrp->type) {
334 	case FTR_EXACT:
335 		ret = ftrp->safe_val;
336 		break;
337 	case FTR_LOWER_SAFE:
338 		ret = new < cur ? new : cur;
339 		break;
340 	case FTR_HIGHER_SAFE:
341 		ret = new > cur ? new : cur;
342 		break;
343 	default:
344 		BUG();
345 	}
346 
347 	return ret;
348 }
349 
350 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
351 {
352 	return ((const struct arm64_ftr_reg *)a)->sys_id -
353 		 ((const struct arm64_ftr_reg *)b)->sys_id;
354 }
355 
356 static void __init swap_ftr_regs(void *a, void *b, int size)
357 {
358 	struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
359 	*(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
360 	*(struct arm64_ftr_reg *)b = tmp;
361 }
362 
363 static void __init sort_ftr_regs(void)
364 {
365 	/* Keep the array sorted so that we can do the binary search */
366 	sort(arm64_ftr_regs,
367 		ARRAY_SIZE(arm64_ftr_regs),
368 		sizeof(arm64_ftr_regs[0]),
369 		sort_cmp_ftr_regs,
370 		swap_ftr_regs);
371 }
372 
373 /*
374  * Initialise the CPU feature register from Boot CPU values.
375  * Also initiliases the strict_mask for the register.
376  */
377 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
378 {
379 	u64 val = 0;
380 	u64 strict_mask = ~0x0ULL;
381 	struct arm64_ftr_bits *ftrp;
382 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
383 
384 	BUG_ON(!reg);
385 
386 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
387 		s64 ftr_new = arm64_ftr_value(ftrp, new);
388 
389 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
390 		if (!ftrp->strict)
391 			strict_mask &= ~arm64_ftr_mask(ftrp);
392 	}
393 	reg->sys_val = val;
394 	reg->strict_mask = strict_mask;
395 }
396 
397 void __init init_cpu_features(struct cpuinfo_arm64 *info)
398 {
399 	/* Before we start using the tables, make sure it is sorted */
400 	sort_ftr_regs();
401 
402 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
403 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
404 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
405 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
406 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
407 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
408 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
409 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
410 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
411 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
412 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
413 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
414 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
415 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
416 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
417 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
418 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
419 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
420 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
421 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
422 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
423 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
424 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
425 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
426 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
427 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
428 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
429 }
430 
431 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
432 {
433 	struct arm64_ftr_bits *ftrp;
434 
435 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
436 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
437 		s64 ftr_new = arm64_ftr_value(ftrp, new);
438 
439 		if (ftr_cur == ftr_new)
440 			continue;
441 		/* Find a safe value */
442 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
443 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
444 	}
445 
446 }
447 
448 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
449 {
450 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
451 
452 	BUG_ON(!regp);
453 	update_cpu_ftr_reg(regp, val);
454 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
455 		return 0;
456 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
457 			regp->name, boot, cpu, val);
458 	return 1;
459 }
460 
461 /*
462  * Update system wide CPU feature registers with the values from a
463  * non-boot CPU. Also performs SANITY checks to make sure that there
464  * aren't any insane variations from that of the boot CPU.
465  */
466 void update_cpu_features(int cpu,
467 			 struct cpuinfo_arm64 *info,
468 			 struct cpuinfo_arm64 *boot)
469 {
470 	int taint = 0;
471 
472 	/*
473 	 * The kernel can handle differing I-cache policies, but otherwise
474 	 * caches should look identical. Userspace JITs will make use of
475 	 * *minLine.
476 	 */
477 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
478 				      info->reg_ctr, boot->reg_ctr);
479 
480 	/*
481 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
482 	 * could result in too much or too little memory being zeroed if a
483 	 * process is preempted and migrated between CPUs.
484 	 */
485 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
486 				      info->reg_dczid, boot->reg_dczid);
487 
488 	/* If different, timekeeping will be broken (especially with KVM) */
489 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
490 				      info->reg_cntfrq, boot->reg_cntfrq);
491 
492 	/*
493 	 * The kernel uses self-hosted debug features and expects CPUs to
494 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
495 	 * and BRPs to be identical.
496 	 * ID_AA64DFR1 is currently RES0.
497 	 */
498 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
499 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
500 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
501 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
502 	/*
503 	 * Even in big.LITTLE, processors should be identical instruction-set
504 	 * wise.
505 	 */
506 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
507 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
508 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
509 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
510 
511 	/*
512 	 * Differing PARange support is fine as long as all peripherals and
513 	 * memory are mapped within the minimum PARange of all CPUs.
514 	 * Linux should not care about secure memory.
515 	 */
516 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
517 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
518 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
519 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
520 
521 	/*
522 	 * EL3 is not our concern.
523 	 * ID_AA64PFR1 is currently RES0.
524 	 */
525 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
526 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
527 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
528 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
529 
530 	/*
531 	 * If we have AArch32, we care about 32-bit features for compat. These
532 	 * registers should be RES0 otherwise.
533 	 */
534 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
535 					info->reg_id_dfr0, boot->reg_id_dfr0);
536 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
537 					info->reg_id_isar0, boot->reg_id_isar0);
538 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
539 					info->reg_id_isar1, boot->reg_id_isar1);
540 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
541 					info->reg_id_isar2, boot->reg_id_isar2);
542 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
543 					info->reg_id_isar3, boot->reg_id_isar3);
544 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
545 					info->reg_id_isar4, boot->reg_id_isar4);
546 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
547 					info->reg_id_isar5, boot->reg_id_isar5);
548 
549 	/*
550 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
551 	 * ACTLR formats could differ across CPUs and therefore would have to
552 	 * be trapped for virtualization anyway.
553 	 */
554 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
555 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
556 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
557 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
558 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
559 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
560 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
561 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
562 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
563 					info->reg_id_pfr0, boot->reg_id_pfr0);
564 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
565 					info->reg_id_pfr1, boot->reg_id_pfr1);
566 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
567 					info->reg_mvfr0, boot->reg_mvfr0);
568 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
569 					info->reg_mvfr1, boot->reg_mvfr1);
570 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
571 					info->reg_mvfr2, boot->reg_mvfr2);
572 
573 	/*
574 	 * Mismatched CPU features are a recipe for disaster. Don't even
575 	 * pretend to support them.
576 	 */
577 	WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
578 			"Unsupported CPU feature variation.\n");
579 }
580 
581 u64 read_system_reg(u32 id)
582 {
583 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
584 
585 	/* We shouldn't get a request for an unsupported register */
586 	BUG_ON(!regp);
587 	return regp->sys_val;
588 }
589 
590 #include <linux/irqchip/arm-gic-v3.h>
591 
592 static bool
593 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
594 {
595 	int val = cpuid_feature_extract_field(reg, entry->field_pos);
596 
597 	return val >= entry->min_field_value;
598 }
599 
600 static bool
601 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
602 {
603 	u64 val;
604 
605 	val = read_system_reg(entry->sys_reg);
606 	return feature_matches(val, entry);
607 }
608 
609 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
610 {
611 	bool has_sre;
612 
613 	if (!has_cpuid_feature(entry))
614 		return false;
615 
616 	has_sre = gic_enable_sre();
617 	if (!has_sre)
618 		pr_warn_once("%s present but disabled by higher exception level\n",
619 			     entry->desc);
620 
621 	return has_sre;
622 }
623 
624 static const struct arm64_cpu_capabilities arm64_features[] = {
625 	{
626 		.desc = "GIC system register CPU interface",
627 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
628 		.matches = has_useable_gicv3_cpuif,
629 		.sys_reg = SYS_ID_AA64PFR0_EL1,
630 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
631 		.min_field_value = 1,
632 	},
633 #ifdef CONFIG_ARM64_PAN
634 	{
635 		.desc = "Privileged Access Never",
636 		.capability = ARM64_HAS_PAN,
637 		.matches = has_cpuid_feature,
638 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
639 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
640 		.min_field_value = 1,
641 		.enable = cpu_enable_pan,
642 	},
643 #endif /* CONFIG_ARM64_PAN */
644 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
645 	{
646 		.desc = "LSE atomic instructions",
647 		.capability = ARM64_HAS_LSE_ATOMICS,
648 		.matches = has_cpuid_feature,
649 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
650 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
651 		.min_field_value = 2,
652 	},
653 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
654 	{},
655 };
656 
657 #define HWCAP_CAP(reg, field, min_value, type, cap)		\
658 	{							\
659 		.desc = #cap,					\
660 		.matches = has_cpuid_feature,			\
661 		.sys_reg = reg,					\
662 		.field_pos = field,				\
663 		.min_field_value = min_value,			\
664 		.hwcap_type = type,				\
665 		.hwcap = cap,					\
666 	}
667 
668 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
669 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 2, CAP_HWCAP, HWCAP_PMULL),
670 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 1, CAP_HWCAP, HWCAP_AES),
671 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 1, CAP_HWCAP, HWCAP_SHA1),
672 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 1, CAP_HWCAP, HWCAP_SHA2),
673 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 1, CAP_HWCAP, HWCAP_CRC32),
674 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 2, CAP_HWCAP, HWCAP_ATOMICS),
675 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 0, CAP_HWCAP, HWCAP_FP),
676 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 0, CAP_HWCAP, HWCAP_ASIMD),
677 #ifdef CONFIG_COMPAT
678 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
679 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
680 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
681 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
682 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
683 #endif
684 	{},
685 };
686 
687 static void __init cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
688 {
689 	switch (cap->hwcap_type) {
690 	case CAP_HWCAP:
691 		elf_hwcap |= cap->hwcap;
692 		break;
693 #ifdef CONFIG_COMPAT
694 	case CAP_COMPAT_HWCAP:
695 		compat_elf_hwcap |= (u32)cap->hwcap;
696 		break;
697 	case CAP_COMPAT_HWCAP2:
698 		compat_elf_hwcap2 |= (u32)cap->hwcap;
699 		break;
700 #endif
701 	default:
702 		WARN_ON(1);
703 		break;
704 	}
705 }
706 
707 /* Check if we have a particular HWCAP enabled */
708 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
709 {
710 	bool rc;
711 
712 	switch (cap->hwcap_type) {
713 	case CAP_HWCAP:
714 		rc = (elf_hwcap & cap->hwcap) != 0;
715 		break;
716 #ifdef CONFIG_COMPAT
717 	case CAP_COMPAT_HWCAP:
718 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
719 		break;
720 	case CAP_COMPAT_HWCAP2:
721 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
722 		break;
723 #endif
724 	default:
725 		WARN_ON(1);
726 		rc = false;
727 	}
728 
729 	return rc;
730 }
731 
732 static void __init setup_cpu_hwcaps(void)
733 {
734 	int i;
735 	const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
736 
737 	for (i = 0; hwcaps[i].desc; i++)
738 		if (hwcaps[i].matches(&hwcaps[i]))
739 			cap_set_hwcap(&hwcaps[i]);
740 }
741 
742 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
743 			    const char *info)
744 {
745 	int i;
746 
747 	for (i = 0; caps[i].desc; i++) {
748 		if (!caps[i].matches(&caps[i]))
749 			continue;
750 
751 		if (!cpus_have_cap(caps[i].capability))
752 			pr_info("%s %s\n", info, caps[i].desc);
753 		cpus_set_cap(caps[i].capability);
754 	}
755 }
756 
757 /*
758  * Run through the enabled capabilities and enable() it on all active
759  * CPUs
760  */
761 static void __init
762 enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
763 {
764 	int i;
765 
766 	for (i = 0; caps[i].desc; i++)
767 		if (caps[i].enable && cpus_have_cap(caps[i].capability))
768 			on_each_cpu(caps[i].enable, NULL, true);
769 }
770 
771 #ifdef CONFIG_HOTPLUG_CPU
772 
773 /*
774  * Flag to indicate if we have computed the system wide
775  * capabilities based on the boot time active CPUs. This
776  * will be used to determine if a new booting CPU should
777  * go through the verification process to make sure that it
778  * supports the system capabilities, without using a hotplug
779  * notifier.
780  */
781 static bool sys_caps_initialised;
782 
783 static inline void set_sys_caps_initialised(void)
784 {
785 	sys_caps_initialised = true;
786 }
787 
788 /*
789  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
790  */
791 static u64 __raw_read_system_reg(u32 sys_id)
792 {
793 	switch (sys_id) {
794 	case SYS_ID_PFR0_EL1:		return (u64)read_cpuid(ID_PFR0_EL1);
795 	case SYS_ID_PFR1_EL1:		return (u64)read_cpuid(ID_PFR1_EL1);
796 	case SYS_ID_DFR0_EL1:		return (u64)read_cpuid(ID_DFR0_EL1);
797 	case SYS_ID_MMFR0_EL1:		return (u64)read_cpuid(ID_MMFR0_EL1);
798 	case SYS_ID_MMFR1_EL1:		return (u64)read_cpuid(ID_MMFR1_EL1);
799 	case SYS_ID_MMFR2_EL1:		return (u64)read_cpuid(ID_MMFR2_EL1);
800 	case SYS_ID_MMFR3_EL1:		return (u64)read_cpuid(ID_MMFR3_EL1);
801 	case SYS_ID_ISAR0_EL1:		return (u64)read_cpuid(ID_ISAR0_EL1);
802 	case SYS_ID_ISAR1_EL1:		return (u64)read_cpuid(ID_ISAR1_EL1);
803 	case SYS_ID_ISAR2_EL1:		return (u64)read_cpuid(ID_ISAR2_EL1);
804 	case SYS_ID_ISAR3_EL1:		return (u64)read_cpuid(ID_ISAR3_EL1);
805 	case SYS_ID_ISAR4_EL1:		return (u64)read_cpuid(ID_ISAR4_EL1);
806 	case SYS_ID_ISAR5_EL1:		return (u64)read_cpuid(ID_ISAR4_EL1);
807 	case SYS_MVFR0_EL1:		return (u64)read_cpuid(MVFR0_EL1);
808 	case SYS_MVFR1_EL1:		return (u64)read_cpuid(MVFR1_EL1);
809 	case SYS_MVFR2_EL1:		return (u64)read_cpuid(MVFR2_EL1);
810 
811 	case SYS_ID_AA64PFR0_EL1:	return (u64)read_cpuid(ID_AA64PFR0_EL1);
812 	case SYS_ID_AA64PFR1_EL1:	return (u64)read_cpuid(ID_AA64PFR0_EL1);
813 	case SYS_ID_AA64DFR0_EL1:	return (u64)read_cpuid(ID_AA64DFR0_EL1);
814 	case SYS_ID_AA64DFR1_EL1:	return (u64)read_cpuid(ID_AA64DFR0_EL1);
815 	case SYS_ID_AA64MMFR0_EL1:	return (u64)read_cpuid(ID_AA64MMFR0_EL1);
816 	case SYS_ID_AA64MMFR1_EL1:	return (u64)read_cpuid(ID_AA64MMFR1_EL1);
817 	case SYS_ID_AA64ISAR0_EL1:	return (u64)read_cpuid(ID_AA64ISAR0_EL1);
818 	case SYS_ID_AA64ISAR1_EL1:	return (u64)read_cpuid(ID_AA64ISAR1_EL1);
819 
820 	case SYS_CNTFRQ_EL0:		return (u64)read_cpuid(CNTFRQ_EL0);
821 	case SYS_CTR_EL0:		return (u64)read_cpuid(CTR_EL0);
822 	case SYS_DCZID_EL0:		return (u64)read_cpuid(DCZID_EL0);
823 	default:
824 		BUG();
825 		return 0;
826 	}
827 }
828 
829 /*
830  * Park the CPU which doesn't have the capability as advertised
831  * by the system.
832  */
833 static void fail_incapable_cpu(char *cap_type,
834 				 const struct arm64_cpu_capabilities *cap)
835 {
836 	int cpu = smp_processor_id();
837 
838 	pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
839 	/* Mark this CPU absent */
840 	set_cpu_present(cpu, 0);
841 
842 	/* Check if we can park ourselves */
843 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
844 		cpu_ops[cpu]->cpu_die(cpu);
845 	asm(
846 	"1:	wfe\n"
847 	"	wfi\n"
848 	"	b	1b");
849 }
850 
851 /*
852  * Run through the enabled system capabilities and enable() it on this CPU.
853  * The capabilities were decided based on the available CPUs at the boot time.
854  * Any new CPU should match the system wide status of the capability. If the
855  * new CPU doesn't have a capability which the system now has enabled, we
856  * cannot do anything to fix it up and could cause unexpected failures. So
857  * we park the CPU.
858  */
859 void verify_local_cpu_capabilities(void)
860 {
861 	int i;
862 	const struct arm64_cpu_capabilities *caps;
863 
864 	/*
865 	 * If we haven't computed the system capabilities, there is nothing
866 	 * to verify.
867 	 */
868 	if (!sys_caps_initialised)
869 		return;
870 
871 	caps = arm64_features;
872 	for (i = 0; caps[i].desc; i++) {
873 		if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
874 			continue;
875 		/*
876 		 * If the new CPU misses an advertised feature, we cannot proceed
877 		 * further, park the cpu.
878 		 */
879 		if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
880 			fail_incapable_cpu("arm64_features", &caps[i]);
881 		if (caps[i].enable)
882 			caps[i].enable(NULL);
883 	}
884 
885 	for (i = 0, caps = arm64_hwcaps; caps[i].desc; i++) {
886 		if (!cpus_have_hwcap(&caps[i]))
887 			continue;
888 		if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
889 			fail_incapable_cpu("arm64_hwcaps", &caps[i]);
890 	}
891 }
892 
893 #else	/* !CONFIG_HOTPLUG_CPU */
894 
895 static inline void set_sys_caps_initialised(void)
896 {
897 }
898 
899 #endif	/* CONFIG_HOTPLUG_CPU */
900 
901 static void __init setup_feature_capabilities(void)
902 {
903 	update_cpu_capabilities(arm64_features, "detected feature:");
904 	enable_cpu_capabilities(arm64_features);
905 }
906 
907 void __init setup_cpu_features(void)
908 {
909 	u32 cwg;
910 	int cls;
911 
912 	/* Set the CPU feature capabilies */
913 	setup_feature_capabilities();
914 	setup_cpu_hwcaps();
915 
916 	/* Advertise that we have computed the system capabilities */
917 	set_sys_caps_initialised();
918 
919 	/*
920 	 * Check for sane CTR_EL0.CWG value.
921 	 */
922 	cwg = cache_type_cwg();
923 	cls = cache_line_size();
924 	if (!cwg)
925 		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
926 			cls);
927 	if (L1_CACHE_BYTES < cls)
928 		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
929 			L1_CACHE_BYTES, cls);
930 }
931