xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision 9c6d26df1fae6ad4718d51c48e6517913304ed27)
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt) "CPU features: " fmt
20 
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/fpsimd.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
35 #include <asm/virt.h>
36 
37 unsigned long elf_hwcap __read_mostly;
38 EXPORT_SYMBOL_GPL(elf_hwcap);
39 
40 #ifdef CONFIG_COMPAT
41 #define COMPAT_ELF_HWCAP_DEFAULT	\
42 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
45 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
46 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
47 				 COMPAT_HWCAP_LPAE)
48 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
49 unsigned int compat_elf_hwcap2 __read_mostly;
50 #endif
51 
52 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
53 EXPORT_SYMBOL(cpu_hwcaps);
54 
55 /*
56  * Flag to indicate if we have computed the system wide
57  * capabilities based on the boot time active CPUs. This
58  * will be used to determine if a new booting CPU should
59  * go through the verification process to make sure that it
60  * supports the system capabilities, without using a hotplug
61  * notifier.
62  */
63 static bool sys_caps_initialised;
64 
65 static inline void set_sys_caps_initialised(void)
66 {
67 	sys_caps_initialised = true;
68 }
69 
70 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
71 {
72 	/* file-wide pr_fmt adds "CPU features: " prefix */
73 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
74 	return 0;
75 }
76 
77 static struct notifier_block cpu_hwcaps_notifier = {
78 	.notifier_call = dump_cpu_hwcaps
79 };
80 
81 static int __init register_cpu_hwcaps_dumper(void)
82 {
83 	atomic_notifier_chain_register(&panic_notifier_list,
84 				       &cpu_hwcaps_notifier);
85 	return 0;
86 }
87 __initcall(register_cpu_hwcaps_dumper);
88 
89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
90 EXPORT_SYMBOL(cpu_hwcap_keys);
91 
92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93 	{						\
94 		.sign = SIGNED,				\
95 		.visible = VISIBLE,			\
96 		.strict = STRICT,			\
97 		.type = TYPE,				\
98 		.shift = SHIFT,				\
99 		.width = WIDTH,				\
100 		.safe_val = SAFE_VAL,			\
101 	}
102 
103 /* Define a feature with unsigned values */
104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
105 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
106 
107 /* Define a feature with a signed value */
108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
109 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
110 
111 #define ARM64_FTR_END					\
112 	{						\
113 		.width = 0,				\
114 	}
115 
116 /* meta feature for alternatives */
117 static bool __maybe_unused
118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
119 
120 
121 /*
122  * NOTE: Any changes to the visibility of features should be kept in
123  * sync with the documentation of the CPU feature register ABI.
124  */
125 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
126 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
127 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
128 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
129 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
130 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
131 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
132 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
133 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
134 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
135 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
136 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
137 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
138 	ARM64_FTR_END,
139 };
140 
141 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
142 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
143 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
144 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
145 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
146 	ARM64_FTR_END,
147 };
148 
149 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
150 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
151 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
152 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
153 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
154 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
155 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
156 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
157 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
158 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
159 	/* Linux doesn't care about the EL3 */
160 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
161 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
162 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
163 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
164 	ARM64_FTR_END,
165 };
166 
167 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
168 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
169 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
170 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
171 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
172 	/* Linux shouldn't care about secure memory */
173 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
174 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
175 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
176 	/*
177 	 * Differing PARange is fine as long as all peripherals and memory are mapped
178 	 * within the minimum PARange of all CPUs
179 	 */
180 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
181 	ARM64_FTR_END,
182 };
183 
184 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
185 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
186 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
187 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
188 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
189 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
190 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
191 	ARM64_FTR_END,
192 };
193 
194 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
195 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
196 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
197 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
198 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
199 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
200 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
201 	ARM64_FTR_END,
202 };
203 
204 static const struct arm64_ftr_bits ftr_ctr[] = {
205 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
206 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
207 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
208 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_CWG_SHIFT, 4, 0),
209 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_ERG_SHIFT, 4, 0),
210 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
211 	/*
212 	 * Linux can handle differing I-cache policies. Userspace JITs will
213 	 * make use of *minLine.
214 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
215 	 */
216 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
217 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
218 	ARM64_FTR_END,
219 };
220 
221 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
222 	.name		= "SYS_CTR_EL0",
223 	.ftr_bits	= ftr_ctr
224 };
225 
226 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
227 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
228 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
229 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
230 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
231 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
232 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
233 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
234 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
235 	ARM64_FTR_END,
236 };
237 
238 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
239 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
240 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
241 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
242 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
243 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
244 	/*
245 	 * We can instantiate multiple PMU instances with different levels
246 	 * of support.
247 	 */
248 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
249 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
250 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
251 	ARM64_FTR_END,
252 };
253 
254 static const struct arm64_ftr_bits ftr_mvfr2[] = {
255 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
256 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
257 	ARM64_FTR_END,
258 };
259 
260 static const struct arm64_ftr_bits ftr_dczid[] = {
261 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
262 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
263 	ARM64_FTR_END,
264 };
265 
266 
267 static const struct arm64_ftr_bits ftr_id_isar5[] = {
268 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
269 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
270 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
271 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
272 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
273 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
274 	ARM64_FTR_END,
275 };
276 
277 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
278 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
279 	ARM64_FTR_END,
280 };
281 
282 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
283 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
284 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
285 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
286 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
287 	ARM64_FTR_END,
288 };
289 
290 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
291 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
292 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
293 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
294 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
295 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
296 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
297 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
298 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
299 	ARM64_FTR_END,
300 };
301 
302 static const struct arm64_ftr_bits ftr_zcr[] = {
303 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
304 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
305 	ARM64_FTR_END,
306 };
307 
308 /*
309  * Common ftr bits for a 32bit register with all hidden, strict
310  * attributes, with 4bit feature fields and a default safe value of
311  * 0. Covers the following 32bit registers:
312  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
313  */
314 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
315 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
316 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
317 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
318 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
319 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
320 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
321 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
322 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
323 	ARM64_FTR_END,
324 };
325 
326 /* Table for a single 32bit feature value */
327 static const struct arm64_ftr_bits ftr_single32[] = {
328 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
329 	ARM64_FTR_END,
330 };
331 
332 static const struct arm64_ftr_bits ftr_raz[] = {
333 	ARM64_FTR_END,
334 };
335 
336 #define ARM64_FTR_REG(id, table) {		\
337 	.sys_id = id,				\
338 	.reg = 	&(struct arm64_ftr_reg){	\
339 		.name = #id,			\
340 		.ftr_bits = &((table)[0]),	\
341 	}}
342 
343 static const struct __ftr_reg_entry {
344 	u32			sys_id;
345 	struct arm64_ftr_reg 	*reg;
346 } arm64_ftr_regs[] = {
347 
348 	/* Op1 = 0, CRn = 0, CRm = 1 */
349 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
350 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
351 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
352 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
353 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
354 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
355 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
356 
357 	/* Op1 = 0, CRn = 0, CRm = 2 */
358 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
359 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
360 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
361 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
362 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
363 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
364 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
365 
366 	/* Op1 = 0, CRn = 0, CRm = 3 */
367 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
368 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
369 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
370 
371 	/* Op1 = 0, CRn = 0, CRm = 4 */
372 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
373 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
374 	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
375 
376 	/* Op1 = 0, CRn = 0, CRm = 5 */
377 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
378 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
379 
380 	/* Op1 = 0, CRn = 0, CRm = 6 */
381 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
382 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
383 
384 	/* Op1 = 0, CRn = 0, CRm = 7 */
385 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
386 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
387 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
388 
389 	/* Op1 = 0, CRn = 1, CRm = 2 */
390 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
391 
392 	/* Op1 = 3, CRn = 0, CRm = 0 */
393 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
394 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
395 
396 	/* Op1 = 3, CRn = 14, CRm = 0 */
397 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
398 };
399 
400 static int search_cmp_ftr_reg(const void *id, const void *regp)
401 {
402 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
403 }
404 
405 /*
406  * get_arm64_ftr_reg - Lookup a feature register entry using its
407  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
408  * ascending order of sys_id , we use binary search to find a matching
409  * entry.
410  *
411  * returns - Upon success,  matching ftr_reg entry for id.
412  *         - NULL on failure. It is upto the caller to decide
413  *	     the impact of a failure.
414  */
415 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
416 {
417 	const struct __ftr_reg_entry *ret;
418 
419 	ret = bsearch((const void *)(unsigned long)sys_id,
420 			arm64_ftr_regs,
421 			ARRAY_SIZE(arm64_ftr_regs),
422 			sizeof(arm64_ftr_regs[0]),
423 			search_cmp_ftr_reg);
424 	if (ret)
425 		return ret->reg;
426 	return NULL;
427 }
428 
429 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
430 			       s64 ftr_val)
431 {
432 	u64 mask = arm64_ftr_mask(ftrp);
433 
434 	reg &= ~mask;
435 	reg |= (ftr_val << ftrp->shift) & mask;
436 	return reg;
437 }
438 
439 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
440 				s64 cur)
441 {
442 	s64 ret = 0;
443 
444 	switch (ftrp->type) {
445 	case FTR_EXACT:
446 		ret = ftrp->safe_val;
447 		break;
448 	case FTR_LOWER_SAFE:
449 		ret = new < cur ? new : cur;
450 		break;
451 	case FTR_HIGHER_SAFE:
452 		ret = new > cur ? new : cur;
453 		break;
454 	default:
455 		BUG();
456 	}
457 
458 	return ret;
459 }
460 
461 static void __init sort_ftr_regs(void)
462 {
463 	int i;
464 
465 	/* Check that the array is sorted so that we can do the binary search */
466 	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
467 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
468 }
469 
470 /*
471  * Initialise the CPU feature register from Boot CPU values.
472  * Also initiliases the strict_mask for the register.
473  * Any bits that are not covered by an arm64_ftr_bits entry are considered
474  * RES0 for the system-wide value, and must strictly match.
475  */
476 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
477 {
478 	u64 val = 0;
479 	u64 strict_mask = ~0x0ULL;
480 	u64 user_mask = 0;
481 	u64 valid_mask = 0;
482 
483 	const struct arm64_ftr_bits *ftrp;
484 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
485 
486 	BUG_ON(!reg);
487 
488 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
489 		u64 ftr_mask = arm64_ftr_mask(ftrp);
490 		s64 ftr_new = arm64_ftr_value(ftrp, new);
491 
492 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
493 
494 		valid_mask |= ftr_mask;
495 		if (!ftrp->strict)
496 			strict_mask &= ~ftr_mask;
497 		if (ftrp->visible)
498 			user_mask |= ftr_mask;
499 		else
500 			reg->user_val = arm64_ftr_set_value(ftrp,
501 							    reg->user_val,
502 							    ftrp->safe_val);
503 	}
504 
505 	val &= valid_mask;
506 
507 	reg->sys_val = val;
508 	reg->strict_mask = strict_mask;
509 	reg->user_mask = user_mask;
510 }
511 
512 extern const struct arm64_cpu_capabilities arm64_errata[];
513 static void __init setup_boot_cpu_capabilities(void);
514 
515 void __init init_cpu_features(struct cpuinfo_arm64 *info)
516 {
517 	/* Before we start using the tables, make sure it is sorted */
518 	sort_ftr_regs();
519 
520 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
521 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
522 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
523 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
524 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
525 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
526 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
527 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
528 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
529 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
530 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
531 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
532 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
533 
534 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
535 		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
536 		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
537 		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
538 		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
539 		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
540 		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
541 		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
542 		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
543 		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
544 		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
545 		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
546 		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
547 		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
548 		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
549 		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
550 		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
551 	}
552 
553 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
554 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
555 		sve_init_vq_map();
556 	}
557 
558 	/*
559 	 * Detect and enable early CPU capabilities based on the boot CPU,
560 	 * after we have initialised the CPU feature infrastructure.
561 	 */
562 	setup_boot_cpu_capabilities();
563 }
564 
565 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
566 {
567 	const struct arm64_ftr_bits *ftrp;
568 
569 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
570 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
571 		s64 ftr_new = arm64_ftr_value(ftrp, new);
572 
573 		if (ftr_cur == ftr_new)
574 			continue;
575 		/* Find a safe value */
576 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
577 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
578 	}
579 
580 }
581 
582 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
583 {
584 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
585 
586 	BUG_ON(!regp);
587 	update_cpu_ftr_reg(regp, val);
588 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
589 		return 0;
590 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
591 			regp->name, boot, cpu, val);
592 	return 1;
593 }
594 
595 /*
596  * Update system wide CPU feature registers with the values from a
597  * non-boot CPU. Also performs SANITY checks to make sure that there
598  * aren't any insane variations from that of the boot CPU.
599  */
600 void update_cpu_features(int cpu,
601 			 struct cpuinfo_arm64 *info,
602 			 struct cpuinfo_arm64 *boot)
603 {
604 	int taint = 0;
605 
606 	/*
607 	 * The kernel can handle differing I-cache policies, but otherwise
608 	 * caches should look identical. Userspace JITs will make use of
609 	 * *minLine.
610 	 */
611 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
612 				      info->reg_ctr, boot->reg_ctr);
613 
614 	/*
615 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
616 	 * could result in too much or too little memory being zeroed if a
617 	 * process is preempted and migrated between CPUs.
618 	 */
619 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
620 				      info->reg_dczid, boot->reg_dczid);
621 
622 	/* If different, timekeeping will be broken (especially with KVM) */
623 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
624 				      info->reg_cntfrq, boot->reg_cntfrq);
625 
626 	/*
627 	 * The kernel uses self-hosted debug features and expects CPUs to
628 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
629 	 * and BRPs to be identical.
630 	 * ID_AA64DFR1 is currently RES0.
631 	 */
632 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
633 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
634 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
635 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
636 	/*
637 	 * Even in big.LITTLE, processors should be identical instruction-set
638 	 * wise.
639 	 */
640 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
641 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
642 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
643 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
644 
645 	/*
646 	 * Differing PARange support is fine as long as all peripherals and
647 	 * memory are mapped within the minimum PARange of all CPUs.
648 	 * Linux should not care about secure memory.
649 	 */
650 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
651 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
652 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
653 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
654 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
655 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
656 
657 	/*
658 	 * EL3 is not our concern.
659 	 * ID_AA64PFR1 is currently RES0.
660 	 */
661 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
662 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
663 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
664 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
665 
666 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
667 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
668 
669 	/*
670 	 * If we have AArch32, we care about 32-bit features for compat.
671 	 * If the system doesn't support AArch32, don't update them.
672 	 */
673 	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
674 		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
675 
676 		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
677 					info->reg_id_dfr0, boot->reg_id_dfr0);
678 		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
679 					info->reg_id_isar0, boot->reg_id_isar0);
680 		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
681 					info->reg_id_isar1, boot->reg_id_isar1);
682 		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
683 					info->reg_id_isar2, boot->reg_id_isar2);
684 		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
685 					info->reg_id_isar3, boot->reg_id_isar3);
686 		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
687 					info->reg_id_isar4, boot->reg_id_isar4);
688 		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
689 					info->reg_id_isar5, boot->reg_id_isar5);
690 
691 		/*
692 		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
693 		 * ACTLR formats could differ across CPUs and therefore would have to
694 		 * be trapped for virtualization anyway.
695 		 */
696 		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
697 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
698 		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
699 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
700 		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
701 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
702 		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
703 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
704 		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
705 					info->reg_id_pfr0, boot->reg_id_pfr0);
706 		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
707 					info->reg_id_pfr1, boot->reg_id_pfr1);
708 		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
709 					info->reg_mvfr0, boot->reg_mvfr0);
710 		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
711 					info->reg_mvfr1, boot->reg_mvfr1);
712 		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
713 					info->reg_mvfr2, boot->reg_mvfr2);
714 	}
715 
716 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
717 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
718 					info->reg_zcr, boot->reg_zcr);
719 
720 		/* Probe vector lengths, unless we already gave up on SVE */
721 		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
722 		    !sys_caps_initialised)
723 			sve_update_vq_map();
724 	}
725 
726 	/*
727 	 * Mismatched CPU features are a recipe for disaster. Don't even
728 	 * pretend to support them.
729 	 */
730 	if (taint) {
731 		pr_warn_once("Unsupported CPU feature variation detected.\n");
732 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
733 	}
734 }
735 
736 u64 read_sanitised_ftr_reg(u32 id)
737 {
738 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
739 
740 	/* We shouldn't get a request for an unsupported register */
741 	BUG_ON(!regp);
742 	return regp->sys_val;
743 }
744 
745 #define read_sysreg_case(r)	\
746 	case r:		return read_sysreg_s(r)
747 
748 /*
749  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
750  * Read the system register on the current CPU
751  */
752 static u64 __read_sysreg_by_encoding(u32 sys_id)
753 {
754 	switch (sys_id) {
755 	read_sysreg_case(SYS_ID_PFR0_EL1);
756 	read_sysreg_case(SYS_ID_PFR1_EL1);
757 	read_sysreg_case(SYS_ID_DFR0_EL1);
758 	read_sysreg_case(SYS_ID_MMFR0_EL1);
759 	read_sysreg_case(SYS_ID_MMFR1_EL1);
760 	read_sysreg_case(SYS_ID_MMFR2_EL1);
761 	read_sysreg_case(SYS_ID_MMFR3_EL1);
762 	read_sysreg_case(SYS_ID_ISAR0_EL1);
763 	read_sysreg_case(SYS_ID_ISAR1_EL1);
764 	read_sysreg_case(SYS_ID_ISAR2_EL1);
765 	read_sysreg_case(SYS_ID_ISAR3_EL1);
766 	read_sysreg_case(SYS_ID_ISAR4_EL1);
767 	read_sysreg_case(SYS_ID_ISAR5_EL1);
768 	read_sysreg_case(SYS_MVFR0_EL1);
769 	read_sysreg_case(SYS_MVFR1_EL1);
770 	read_sysreg_case(SYS_MVFR2_EL1);
771 
772 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
773 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
774 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
775 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
776 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
777 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
778 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
779 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
780 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
781 
782 	read_sysreg_case(SYS_CNTFRQ_EL0);
783 	read_sysreg_case(SYS_CTR_EL0);
784 	read_sysreg_case(SYS_DCZID_EL0);
785 
786 	default:
787 		BUG();
788 		return 0;
789 	}
790 }
791 
792 #include <linux/irqchip/arm-gic-v3.h>
793 
794 static bool
795 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
796 {
797 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
798 
799 	return val >= entry->min_field_value;
800 }
801 
802 static bool
803 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
804 {
805 	u64 val;
806 
807 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
808 	if (scope == SCOPE_SYSTEM)
809 		val = read_sanitised_ftr_reg(entry->sys_reg);
810 	else
811 		val = __read_sysreg_by_encoding(entry->sys_reg);
812 
813 	return feature_matches(val, entry);
814 }
815 
816 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
817 {
818 	bool has_sre;
819 
820 	if (!has_cpuid_feature(entry, scope))
821 		return false;
822 
823 	has_sre = gic_enable_sre();
824 	if (!has_sre)
825 		pr_warn_once("%s present but disabled by higher exception level\n",
826 			     entry->desc);
827 
828 	return has_sre;
829 }
830 
831 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
832 {
833 	u32 midr = read_cpuid_id();
834 
835 	/* Cavium ThunderX pass 1.x and 2.x */
836 	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
837 		MIDR_CPU_VAR_REV(0, 0),
838 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
839 }
840 
841 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
842 {
843 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
844 
845 	return cpuid_feature_extract_signed_field(pfr0,
846 					ID_AA64PFR0_FP_SHIFT) < 0;
847 }
848 
849 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
850 			  int __unused)
851 {
852 	return read_sanitised_ftr_reg(SYS_CTR_EL0) & BIT(CTR_IDC_SHIFT);
853 }
854 
855 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
856 			  int __unused)
857 {
858 	return read_sanitised_ftr_reg(SYS_CTR_EL0) & BIT(CTR_DIC_SHIFT);
859 }
860 
861 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
862 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
863 
864 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
865 				int scope)
866 {
867 	/* List of CPUs that are not vulnerable and don't need KPTI */
868 	static const struct midr_range kpti_safe_list[] = {
869 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
870 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
871 	};
872 	char const *str = "command line option";
873 
874 	/*
875 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
876 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
877 	 * ends as well as you might imagine. Don't even try.
878 	 */
879 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
880 		str = "ARM64_WORKAROUND_CAVIUM_27456";
881 		__kpti_forced = -1;
882 	}
883 
884 	/* Forced? */
885 	if (__kpti_forced) {
886 		pr_info_once("kernel page table isolation forced %s by %s\n",
887 			     __kpti_forced > 0 ? "ON" : "OFF", str);
888 		return __kpti_forced > 0;
889 	}
890 
891 	/* Useful for KASLR robustness */
892 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
893 		return true;
894 
895 	/* Don't force KPTI for CPUs that are not vulnerable */
896 	if (is_midr_in_range_list(read_cpuid_id(), kpti_safe_list))
897 		return false;
898 
899 	/* Defer to CPU feature registers */
900 	return !has_cpuid_feature(entry, scope);
901 }
902 
903 static void
904 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
905 {
906 	typedef void (kpti_remap_fn)(int, int, phys_addr_t);
907 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
908 	kpti_remap_fn *remap_fn;
909 
910 	static bool kpti_applied = false;
911 	int cpu = smp_processor_id();
912 
913 	if (kpti_applied)
914 		return;
915 
916 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
917 
918 	cpu_install_idmap();
919 	remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
920 	cpu_uninstall_idmap();
921 
922 	if (!cpu)
923 		kpti_applied = true;
924 
925 	return;
926 }
927 
928 static int __init parse_kpti(char *str)
929 {
930 	bool enabled;
931 	int ret = strtobool(str, &enabled);
932 
933 	if (ret)
934 		return ret;
935 
936 	__kpti_forced = enabled ? 1 : -1;
937 	return 0;
938 }
939 __setup("kpti=", parse_kpti);
940 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
941 
942 #ifdef CONFIG_ARM64_HW_AFDBM
943 static inline void __cpu_enable_hw_dbm(void)
944 {
945 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
946 
947 	write_sysreg(tcr, tcr_el1);
948 	isb();
949 }
950 
951 static bool cpu_has_broken_dbm(void)
952 {
953 	/* List of CPUs which have broken DBM support. */
954 	static const struct midr_range cpus[] = {
955 #ifdef CONFIG_ARM64_ERRATUM_1024718
956 		MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
957 #endif
958 		{},
959 	};
960 
961 	return is_midr_in_range_list(read_cpuid_id(), cpus);
962 }
963 
964 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
965 {
966 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
967 	       !cpu_has_broken_dbm();
968 }
969 
970 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
971 {
972 	if (cpu_can_use_dbm(cap))
973 		__cpu_enable_hw_dbm();
974 }
975 
976 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
977 		       int __unused)
978 {
979 	static bool detected = false;
980 	/*
981 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
982 	 * run a mix of CPUs with and without the feature. So, we
983 	 * unconditionally enable the capability to allow any late CPU
984 	 * to use the feature. We only enable the control bits on the
985 	 * CPU, if it actually supports.
986 	 *
987 	 * We have to make sure we print the "feature" detection only
988 	 * when at least one CPU actually uses it. So check if this CPU
989 	 * can actually use it and print the message exactly once.
990 	 *
991 	 * This is safe as all CPUs (including secondary CPUs - due to the
992 	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
993 	 * goes through the "matches" check exactly once. Also if a CPU
994 	 * matches the criteria, it is guaranteed that the CPU will turn
995 	 * the DBM on, as the capability is unconditionally enabled.
996 	 */
997 	if (!detected && cpu_can_use_dbm(cap)) {
998 		detected = true;
999 		pr_info("detected: Hardware dirty bit management\n");
1000 	}
1001 
1002 	return true;
1003 }
1004 
1005 #endif
1006 
1007 #ifdef CONFIG_ARM64_VHE
1008 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1009 {
1010 	return is_kernel_in_hyp_mode();
1011 }
1012 
1013 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1014 {
1015 	/*
1016 	 * Copy register values that aren't redirected by hardware.
1017 	 *
1018 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1019 	 * this value to tpidr_el2 before we patch the code. Once we've done
1020 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1021 	 * do anything here.
1022 	 */
1023 	if (!alternatives_applied)
1024 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1025 }
1026 #endif
1027 
1028 static const struct arm64_cpu_capabilities arm64_features[] = {
1029 	{
1030 		.desc = "GIC system register CPU interface",
1031 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1032 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1033 		.matches = has_useable_gicv3_cpuif,
1034 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1035 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
1036 		.sign = FTR_UNSIGNED,
1037 		.min_field_value = 1,
1038 	},
1039 #ifdef CONFIG_ARM64_PAN
1040 	{
1041 		.desc = "Privileged Access Never",
1042 		.capability = ARM64_HAS_PAN,
1043 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1044 		.matches = has_cpuid_feature,
1045 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1046 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
1047 		.sign = FTR_UNSIGNED,
1048 		.min_field_value = 1,
1049 		.cpu_enable = cpu_enable_pan,
1050 	},
1051 #endif /* CONFIG_ARM64_PAN */
1052 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1053 	{
1054 		.desc = "LSE atomic instructions",
1055 		.capability = ARM64_HAS_LSE_ATOMICS,
1056 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1057 		.matches = has_cpuid_feature,
1058 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
1059 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1060 		.sign = FTR_UNSIGNED,
1061 		.min_field_value = 2,
1062 	},
1063 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1064 	{
1065 		.desc = "Software prefetching using PRFM",
1066 		.capability = ARM64_HAS_NO_HW_PREFETCH,
1067 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1068 		.matches = has_no_hw_prefetch,
1069 	},
1070 #ifdef CONFIG_ARM64_UAO
1071 	{
1072 		.desc = "User Access Override",
1073 		.capability = ARM64_HAS_UAO,
1074 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1075 		.matches = has_cpuid_feature,
1076 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1077 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
1078 		.min_field_value = 1,
1079 		/*
1080 		 * We rely on stop_machine() calling uao_thread_switch() to set
1081 		 * UAO immediately after patching.
1082 		 */
1083 	},
1084 #endif /* CONFIG_ARM64_UAO */
1085 #ifdef CONFIG_ARM64_PAN
1086 	{
1087 		.capability = ARM64_ALT_PAN_NOT_UAO,
1088 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1089 		.matches = cpufeature_pan_not_uao,
1090 	},
1091 #endif /* CONFIG_ARM64_PAN */
1092 #ifdef CONFIG_ARM64_VHE
1093 	{
1094 		.desc = "Virtualization Host Extensions",
1095 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
1096 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1097 		.matches = runs_at_el2,
1098 		.cpu_enable = cpu_copy_el2regs,
1099 	},
1100 #endif	/* CONFIG_ARM64_VHE */
1101 	{
1102 		.desc = "32-bit EL0 Support",
1103 		.capability = ARM64_HAS_32BIT_EL0,
1104 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1105 		.matches = has_cpuid_feature,
1106 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1107 		.sign = FTR_UNSIGNED,
1108 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
1109 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1110 	},
1111 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1112 	{
1113 		.desc = "Kernel page table isolation (KPTI)",
1114 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
1115 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1116 		/*
1117 		 * The ID feature fields below are used to indicate that
1118 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1119 		 * more details.
1120 		 */
1121 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1122 		.field_pos = ID_AA64PFR0_CSV3_SHIFT,
1123 		.min_field_value = 1,
1124 		.matches = unmap_kernel_at_el0,
1125 		.cpu_enable = kpti_install_ng_mappings,
1126 	},
1127 #endif
1128 	{
1129 		/* FP/SIMD is not implemented */
1130 		.capability = ARM64_HAS_NO_FPSIMD,
1131 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1132 		.min_field_value = 0,
1133 		.matches = has_no_fpsimd,
1134 	},
1135 #ifdef CONFIG_ARM64_PMEM
1136 	{
1137 		.desc = "Data cache clean to Point of Persistence",
1138 		.capability = ARM64_HAS_DCPOP,
1139 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1140 		.matches = has_cpuid_feature,
1141 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1142 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
1143 		.min_field_value = 1,
1144 	},
1145 #endif
1146 #ifdef CONFIG_ARM64_SVE
1147 	{
1148 		.desc = "Scalable Vector Extension",
1149 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1150 		.capability = ARM64_SVE,
1151 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1152 		.sign = FTR_UNSIGNED,
1153 		.field_pos = ID_AA64PFR0_SVE_SHIFT,
1154 		.min_field_value = ID_AA64PFR0_SVE,
1155 		.matches = has_cpuid_feature,
1156 		.cpu_enable = sve_kernel_enable,
1157 	},
1158 #endif /* CONFIG_ARM64_SVE */
1159 #ifdef CONFIG_ARM64_RAS_EXTN
1160 	{
1161 		.desc = "RAS Extension Support",
1162 		.capability = ARM64_HAS_RAS_EXTN,
1163 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1164 		.matches = has_cpuid_feature,
1165 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1166 		.sign = FTR_UNSIGNED,
1167 		.field_pos = ID_AA64PFR0_RAS_SHIFT,
1168 		.min_field_value = ID_AA64PFR0_RAS_V1,
1169 		.cpu_enable = cpu_clear_disr,
1170 	},
1171 #endif /* CONFIG_ARM64_RAS_EXTN */
1172 	{
1173 		.desc = "Data cache clean to the PoU not required for I/D coherence",
1174 		.capability = ARM64_HAS_CACHE_IDC,
1175 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1176 		.matches = has_cache_idc,
1177 	},
1178 	{
1179 		.desc = "Instruction cache invalidation not required for I/D coherence",
1180 		.capability = ARM64_HAS_CACHE_DIC,
1181 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1182 		.matches = has_cache_dic,
1183 	},
1184 #ifdef CONFIG_ARM64_HW_AFDBM
1185 	{
1186 		/*
1187 		 * Since we turn this on always, we don't want the user to
1188 		 * think that the feature is available when it may not be.
1189 		 * So hide the description.
1190 		 *
1191 		 * .desc = "Hardware pagetable Dirty Bit Management",
1192 		 *
1193 		 */
1194 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1195 		.capability = ARM64_HW_DBM,
1196 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1197 		.sign = FTR_UNSIGNED,
1198 		.field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1199 		.min_field_value = 2,
1200 		.matches = has_hw_dbm,
1201 		.cpu_enable = cpu_enable_hw_dbm,
1202 	},
1203 #endif
1204 	{},
1205 };
1206 
1207 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)	\
1208 	{							\
1209 		.desc = #cap,					\
1210 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,		\
1211 		.matches = has_cpuid_feature,			\
1212 		.sys_reg = reg,					\
1213 		.field_pos = field,				\
1214 		.sign = s,					\
1215 		.min_field_value = min_value,			\
1216 		.hwcap_type = cap_type,				\
1217 		.hwcap = cap,					\
1218 	}
1219 
1220 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1221 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
1222 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
1223 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
1224 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1225 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1226 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
1227 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1228 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1229 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
1230 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
1231 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
1232 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1233 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1234 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
1235 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1236 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1237 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1238 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1239 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
1240 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1241 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1242 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1243 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1244 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
1245 	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
1246 #ifdef CONFIG_ARM64_SVE
1247 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1248 #endif
1249 	{},
1250 };
1251 
1252 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1253 #ifdef CONFIG_COMPAT
1254 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1255 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1256 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1257 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1258 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1259 #endif
1260 	{},
1261 };
1262 
1263 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1264 {
1265 	switch (cap->hwcap_type) {
1266 	case CAP_HWCAP:
1267 		elf_hwcap |= cap->hwcap;
1268 		break;
1269 #ifdef CONFIG_COMPAT
1270 	case CAP_COMPAT_HWCAP:
1271 		compat_elf_hwcap |= (u32)cap->hwcap;
1272 		break;
1273 	case CAP_COMPAT_HWCAP2:
1274 		compat_elf_hwcap2 |= (u32)cap->hwcap;
1275 		break;
1276 #endif
1277 	default:
1278 		WARN_ON(1);
1279 		break;
1280 	}
1281 }
1282 
1283 /* Check if we have a particular HWCAP enabled */
1284 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1285 {
1286 	bool rc;
1287 
1288 	switch (cap->hwcap_type) {
1289 	case CAP_HWCAP:
1290 		rc = (elf_hwcap & cap->hwcap) != 0;
1291 		break;
1292 #ifdef CONFIG_COMPAT
1293 	case CAP_COMPAT_HWCAP:
1294 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1295 		break;
1296 	case CAP_COMPAT_HWCAP2:
1297 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1298 		break;
1299 #endif
1300 	default:
1301 		WARN_ON(1);
1302 		rc = false;
1303 	}
1304 
1305 	return rc;
1306 }
1307 
1308 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1309 {
1310 	/* We support emulation of accesses to CPU ID feature registers */
1311 	elf_hwcap |= HWCAP_CPUID;
1312 	for (; hwcaps->matches; hwcaps++)
1313 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1314 			cap_set_elf_hwcap(hwcaps);
1315 }
1316 
1317 /*
1318  * Check if the current CPU has a given feature capability.
1319  * Should be called from non-preemptible context.
1320  */
1321 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1322 			       unsigned int cap)
1323 {
1324 	const struct arm64_cpu_capabilities *caps;
1325 
1326 	if (WARN_ON(preemptible()))
1327 		return false;
1328 
1329 	for (caps = cap_array; caps->matches; caps++)
1330 		if (caps->capability == cap)
1331 			return caps->matches(caps, SCOPE_LOCAL_CPU);
1332 
1333 	return false;
1334 }
1335 
1336 static void __update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1337 				      u16 scope_mask, const char *info)
1338 {
1339 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1340 	for (; caps->matches; caps++) {
1341 		if (!(caps->type & scope_mask) ||
1342 		    !caps->matches(caps, cpucap_default_scope(caps)))
1343 			continue;
1344 
1345 		if (!cpus_have_cap(caps->capability) && caps->desc)
1346 			pr_info("%s %s\n", info, caps->desc);
1347 		cpus_set_cap(caps->capability);
1348 	}
1349 }
1350 
1351 static void update_cpu_capabilities(u16 scope_mask)
1352 {
1353 	__update_cpu_capabilities(arm64_features, scope_mask, "detected:");
1354 	__update_cpu_capabilities(arm64_errata, scope_mask,
1355 				  "enabling workaround for");
1356 }
1357 
1358 static int __enable_cpu_capability(void *arg)
1359 {
1360 	const struct arm64_cpu_capabilities *cap = arg;
1361 
1362 	cap->cpu_enable(cap);
1363 	return 0;
1364 }
1365 
1366 /*
1367  * Run through the enabled capabilities and enable() it on all active
1368  * CPUs
1369  */
1370 static void __init
1371 __enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1372 			  u16 scope_mask)
1373 {
1374 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1375 	for (; caps->matches; caps++) {
1376 		unsigned int num = caps->capability;
1377 
1378 		if (!(caps->type & scope_mask) || !cpus_have_cap(num))
1379 			continue;
1380 
1381 		/* Ensure cpus_have_const_cap(num) works */
1382 		static_branch_enable(&cpu_hwcap_keys[num]);
1383 
1384 		if (caps->cpu_enable) {
1385 			/*
1386 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
1387 			 * before any secondary CPU boots. Thus, each secondary
1388 			 * will enable the capability as appropriate via
1389 			 * check_local_cpu_capabilities(). The only exception is
1390 			 * the boot CPU, for which the capability must be
1391 			 * enabled here. This approach avoids costly
1392 			 * stop_machine() calls for this case.
1393 			 *
1394 			 * Otherwise, use stop_machine() as it schedules the
1395 			 * work allowing us to modify PSTATE, instead of
1396 			 * on_each_cpu() which uses an IPI, giving us a PSTATE
1397 			 * that disappears when we return.
1398 			 */
1399 			if (scope_mask & SCOPE_BOOT_CPU)
1400 				caps->cpu_enable(caps);
1401 			else
1402 				stop_machine(__enable_cpu_capability,
1403 					     (void *)caps, cpu_online_mask);
1404 		}
1405 	}
1406 }
1407 
1408 static void __init enable_cpu_capabilities(u16 scope_mask)
1409 {
1410 	__enable_cpu_capabilities(arm64_features, scope_mask);
1411 	__enable_cpu_capabilities(arm64_errata, scope_mask);
1412 }
1413 
1414 /*
1415  * Run through the list of capabilities to check for conflicts.
1416  * If the system has already detected a capability, take necessary
1417  * action on this CPU.
1418  *
1419  * Returns "false" on conflicts.
1420  */
1421 static bool
1422 __verify_local_cpu_caps(const struct arm64_cpu_capabilities *caps,
1423 			u16 scope_mask)
1424 {
1425 	bool cpu_has_cap, system_has_cap;
1426 
1427 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1428 
1429 	for (; caps->matches; caps++) {
1430 		if (!(caps->type & scope_mask))
1431 			continue;
1432 
1433 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1434 		system_has_cap = cpus_have_cap(caps->capability);
1435 
1436 		if (system_has_cap) {
1437 			/*
1438 			 * Check if the new CPU misses an advertised feature,
1439 			 * which is not safe to miss.
1440 			 */
1441 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1442 				break;
1443 			/*
1444 			 * We have to issue cpu_enable() irrespective of
1445 			 * whether the CPU has it or not, as it is enabeld
1446 			 * system wide. It is upto the call back to take
1447 			 * appropriate action on this CPU.
1448 			 */
1449 			if (caps->cpu_enable)
1450 				caps->cpu_enable(caps);
1451 		} else {
1452 			/*
1453 			 * Check if the CPU has this capability if it isn't
1454 			 * safe to have when the system doesn't.
1455 			 */
1456 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1457 				break;
1458 		}
1459 	}
1460 
1461 	if (caps->matches) {
1462 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1463 			smp_processor_id(), caps->capability,
1464 			caps->desc, system_has_cap, cpu_has_cap);
1465 		return false;
1466 	}
1467 
1468 	return true;
1469 }
1470 
1471 static bool verify_local_cpu_caps(u16 scope_mask)
1472 {
1473 	return __verify_local_cpu_caps(arm64_errata, scope_mask) &&
1474 	       __verify_local_cpu_caps(arm64_features, scope_mask);
1475 }
1476 
1477 /*
1478  * Check for CPU features that are used in early boot
1479  * based on the Boot CPU value.
1480  */
1481 static void check_early_cpu_features(void)
1482 {
1483 	verify_cpu_asid_bits();
1484 	/*
1485 	 * Early features are used by the kernel already. If there
1486 	 * is a conflict, we cannot proceed further.
1487 	 */
1488 	if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1489 		cpu_panic_kernel();
1490 }
1491 
1492 static void
1493 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1494 {
1495 
1496 	for (; caps->matches; caps++)
1497 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1498 			pr_crit("CPU%d: missing HWCAP: %s\n",
1499 					smp_processor_id(), caps->desc);
1500 			cpu_die_early();
1501 		}
1502 }
1503 
1504 static void verify_sve_features(void)
1505 {
1506 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1507 	u64 zcr = read_zcr_features();
1508 
1509 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1510 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1511 
1512 	if (len < safe_len || sve_verify_vq_map()) {
1513 		pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1514 			smp_processor_id());
1515 		cpu_die_early();
1516 	}
1517 
1518 	/* Add checks on other ZCR bits here if necessary */
1519 }
1520 
1521 
1522 /*
1523  * Run through the enabled system capabilities and enable() it on this CPU.
1524  * The capabilities were decided based on the available CPUs at the boot time.
1525  * Any new CPU should match the system wide status of the capability. If the
1526  * new CPU doesn't have a capability which the system now has enabled, we
1527  * cannot do anything to fix it up and could cause unexpected failures. So
1528  * we park the CPU.
1529  */
1530 static void verify_local_cpu_capabilities(void)
1531 {
1532 	/*
1533 	 * The capabilities with SCOPE_BOOT_CPU are checked from
1534 	 * check_early_cpu_features(), as they need to be verified
1535 	 * on all secondary CPUs.
1536 	 */
1537 	if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1538 		cpu_die_early();
1539 
1540 	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1541 
1542 	if (system_supports_32bit_el0())
1543 		verify_local_elf_hwcaps(compat_elf_hwcaps);
1544 
1545 	if (system_supports_sve())
1546 		verify_sve_features();
1547 }
1548 
1549 void check_local_cpu_capabilities(void)
1550 {
1551 	/*
1552 	 * All secondary CPUs should conform to the early CPU features
1553 	 * in use by the kernel based on boot CPU.
1554 	 */
1555 	check_early_cpu_features();
1556 
1557 	/*
1558 	 * If we haven't finalised the system capabilities, this CPU gets
1559 	 * a chance to update the errata work arounds and local features.
1560 	 * Otherwise, this CPU should verify that it has all the system
1561 	 * advertised capabilities.
1562 	 */
1563 	if (!sys_caps_initialised)
1564 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
1565 	else
1566 		verify_local_cpu_capabilities();
1567 }
1568 
1569 static void __init setup_boot_cpu_capabilities(void)
1570 {
1571 	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1572 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1573 	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1574 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
1575 }
1576 
1577 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1578 EXPORT_SYMBOL(arm64_const_caps_ready);
1579 
1580 static void __init mark_const_caps_ready(void)
1581 {
1582 	static_branch_enable(&arm64_const_caps_ready);
1583 }
1584 
1585 extern const struct arm64_cpu_capabilities arm64_errata[];
1586 
1587 bool this_cpu_has_cap(unsigned int cap)
1588 {
1589 	return (__this_cpu_has_cap(arm64_features, cap) ||
1590 		__this_cpu_has_cap(arm64_errata, cap));
1591 }
1592 
1593 static void __init setup_system_capabilities(void)
1594 {
1595 	/*
1596 	 * We have finalised the system-wide safe feature
1597 	 * registers, finalise the capabilities that depend
1598 	 * on it. Also enable all the available capabilities,
1599 	 * that are not enabled already.
1600 	 */
1601 	update_cpu_capabilities(SCOPE_SYSTEM);
1602 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
1603 }
1604 
1605 void __init setup_cpu_features(void)
1606 {
1607 	u32 cwg;
1608 	int cls;
1609 
1610 	setup_system_capabilities();
1611 	mark_const_caps_ready();
1612 	setup_elf_hwcaps(arm64_elf_hwcaps);
1613 
1614 	if (system_supports_32bit_el0())
1615 		setup_elf_hwcaps(compat_elf_hwcaps);
1616 
1617 	if (system_uses_ttbr0_pan())
1618 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
1619 
1620 	sve_setup();
1621 
1622 	/* Advertise that we have computed the system capabilities */
1623 	set_sys_caps_initialised();
1624 
1625 	/*
1626 	 * Check for sane CTR_EL0.CWG value.
1627 	 */
1628 	cwg = cache_type_cwg();
1629 	cls = cache_line_size();
1630 	if (!cwg)
1631 		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1632 			cls);
1633 	if (L1_CACHE_BYTES < cls)
1634 		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1635 			L1_CACHE_BYTES, cls);
1636 }
1637 
1638 static bool __maybe_unused
1639 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1640 {
1641 	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1642 }
1643 
1644 /*
1645  * We emulate only the following system register space.
1646  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1647  * See Table C5-6 System instruction encodings for System register accesses,
1648  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1649  */
1650 static inline bool __attribute_const__ is_emulated(u32 id)
1651 {
1652 	return (sys_reg_Op0(id) == 0x3 &&
1653 		sys_reg_CRn(id) == 0x0 &&
1654 		sys_reg_Op1(id) == 0x0 &&
1655 		(sys_reg_CRm(id) == 0 ||
1656 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1657 }
1658 
1659 /*
1660  * With CRm == 0, reg should be one of :
1661  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1662  */
1663 static inline int emulate_id_reg(u32 id, u64 *valp)
1664 {
1665 	switch (id) {
1666 	case SYS_MIDR_EL1:
1667 		*valp = read_cpuid_id();
1668 		break;
1669 	case SYS_MPIDR_EL1:
1670 		*valp = SYS_MPIDR_SAFE_VAL;
1671 		break;
1672 	case SYS_REVIDR_EL1:
1673 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
1674 		*valp = 0;
1675 		break;
1676 	default:
1677 		return -EINVAL;
1678 	}
1679 
1680 	return 0;
1681 }
1682 
1683 static int emulate_sys_reg(u32 id, u64 *valp)
1684 {
1685 	struct arm64_ftr_reg *regp;
1686 
1687 	if (!is_emulated(id))
1688 		return -EINVAL;
1689 
1690 	if (sys_reg_CRm(id) == 0)
1691 		return emulate_id_reg(id, valp);
1692 
1693 	regp = get_arm64_ftr_reg(id);
1694 	if (regp)
1695 		*valp = arm64_ftr_reg_user_value(regp);
1696 	else
1697 		/*
1698 		 * The untracked registers are either IMPLEMENTATION DEFINED
1699 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1700 		 */
1701 		*valp = 0;
1702 	return 0;
1703 }
1704 
1705 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1706 {
1707 	int rc;
1708 	u32 sys_reg, dst;
1709 	u64 val;
1710 
1711 	/*
1712 	 * sys_reg values are defined as used in mrs/msr instruction.
1713 	 * shift the imm value to get the encoding.
1714 	 */
1715 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1716 	rc = emulate_sys_reg(sys_reg, &val);
1717 	if (!rc) {
1718 		dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1719 		pt_regs_write_reg(regs, dst, val);
1720 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1721 	}
1722 
1723 	return rc;
1724 }
1725 
1726 static struct undef_hook mrs_hook = {
1727 	.instr_mask = 0xfff00000,
1728 	.instr_val  = 0xd5300000,
1729 	.pstate_mask = COMPAT_PSR_MODE_MASK,
1730 	.pstate_val = PSR_MODE_EL0t,
1731 	.fn = emulate_mrs,
1732 };
1733 
1734 static int __init enable_mrs_emulation(void)
1735 {
1736 	register_undef_hook(&mrs_hook);
1737 	return 0;
1738 }
1739 
1740 core_initcall(enable_mrs_emulation);
1741 
1742 void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1743 {
1744 	/* Firmware may have left a deferred SError in this register. */
1745 	write_sysreg_s(0, SYS_DISR_EL1);
1746 }
1747