xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision 8795a739)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  */
7 
8 #define pr_fmt(fmt) "CPU features: " fmt
9 
10 #include <linux/bsearch.h>
11 #include <linux/cpumask.h>
12 #include <linux/crash_dump.h>
13 #include <linux/sort.h>
14 #include <linux/stop_machine.h>
15 #include <linux/types.h>
16 #include <linux/mm.h>
17 #include <linux/cpu.h>
18 #include <asm/cpu.h>
19 #include <asm/cpufeature.h>
20 #include <asm/cpu_ops.h>
21 #include <asm/fpsimd.h>
22 #include <asm/mmu_context.h>
23 #include <asm/processor.h>
24 #include <asm/sysreg.h>
25 #include <asm/traps.h>
26 #include <asm/virt.h>
27 
28 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
29 static unsigned long elf_hwcap __read_mostly;
30 
31 #ifdef CONFIG_COMPAT
32 #define COMPAT_ELF_HWCAP_DEFAULT	\
33 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
34 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
35 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
36 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
37 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
38 				 COMPAT_HWCAP_LPAE)
39 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
40 unsigned int compat_elf_hwcap2 __read_mostly;
41 #endif
42 
43 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
44 EXPORT_SYMBOL(cpu_hwcaps);
45 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
46 
47 /* Need also bit for ARM64_CB_PATCH */
48 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
49 
50 /*
51  * Flag to indicate if we have computed the system wide
52  * capabilities based on the boot time active CPUs. This
53  * will be used to determine if a new booting CPU should
54  * go through the verification process to make sure that it
55  * supports the system capabilities, without using a hotplug
56  * notifier.
57  */
58 static bool sys_caps_initialised;
59 
60 static inline void set_sys_caps_initialised(void)
61 {
62 	sys_caps_initialised = true;
63 }
64 
65 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
66 {
67 	/* file-wide pr_fmt adds "CPU features: " prefix */
68 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
69 	return 0;
70 }
71 
72 static struct notifier_block cpu_hwcaps_notifier = {
73 	.notifier_call = dump_cpu_hwcaps
74 };
75 
76 static int __init register_cpu_hwcaps_dumper(void)
77 {
78 	atomic_notifier_chain_register(&panic_notifier_list,
79 				       &cpu_hwcaps_notifier);
80 	return 0;
81 }
82 __initcall(register_cpu_hwcaps_dumper);
83 
84 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
85 EXPORT_SYMBOL(cpu_hwcap_keys);
86 
87 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
88 	{						\
89 		.sign = SIGNED,				\
90 		.visible = VISIBLE,			\
91 		.strict = STRICT,			\
92 		.type = TYPE,				\
93 		.shift = SHIFT,				\
94 		.width = WIDTH,				\
95 		.safe_val = SAFE_VAL,			\
96 	}
97 
98 /* Define a feature with unsigned values */
99 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
100 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
101 
102 /* Define a feature with a signed value */
103 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
104 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
105 
106 #define ARM64_FTR_END					\
107 	{						\
108 		.width = 0,				\
109 	}
110 
111 /* meta feature for alternatives */
112 static bool __maybe_unused
113 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
114 
115 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
116 
117 /*
118  * NOTE: Any changes to the visibility of features should be kept in
119  * sync with the documentation of the CPU feature register ABI.
120  */
121 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
122 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
123 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
124 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
125 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
126 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
127 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
128 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
129 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
130 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
131 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
132 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
133 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
134 	ARM64_FTR_END,
135 };
136 
137 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
138 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
139 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
140 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
141 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
142 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
143 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
144 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
145 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
146 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
147 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_API_SHIFT, 4, 0),
148 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
149 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_APA_SHIFT, 4, 0),
150 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
151 	ARM64_FTR_END,
152 };
153 
154 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
155 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
156 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
157 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
158 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
159 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
160 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
161 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
162 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
163 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
164 	/* Linux doesn't care about the EL3 */
165 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
166 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
167 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
168 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
169 	ARM64_FTR_END,
170 };
171 
172 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
173 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
174 	ARM64_FTR_END,
175 };
176 
177 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
178 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
179 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
180 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
181 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
182 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
183 	ARM64_FTR_END,
184 };
185 
186 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
187 	/*
188 	 * We already refuse to boot CPUs that don't support our configured
189 	 * page size, so we can only detect mismatches for a page size other
190 	 * than the one we're currently using. Unfortunately, SoCs like this
191 	 * exist in the wild so, even though we don't like it, we'll have to go
192 	 * along with it and treat them as non-strict.
193 	 */
194 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
195 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
196 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
197 
198 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
199 	/* Linux shouldn't care about secure memory */
200 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
201 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
202 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
203 	/*
204 	 * Differing PARange is fine as long as all peripherals and memory are mapped
205 	 * within the minimum PARange of all CPUs
206 	 */
207 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
208 	ARM64_FTR_END,
209 };
210 
211 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
212 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
213 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
214 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
215 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
216 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
217 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
218 	ARM64_FTR_END,
219 };
220 
221 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
222 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
223 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
224 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
225 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
226 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
227 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
228 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
229 	ARM64_FTR_END,
230 };
231 
232 static const struct arm64_ftr_bits ftr_ctr[] = {
233 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
234 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
235 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
236 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
237 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
238 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
239 	/*
240 	 * Linux can handle differing I-cache policies. Userspace JITs will
241 	 * make use of *minLine.
242 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
243 	 */
244 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
245 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
246 	ARM64_FTR_END,
247 };
248 
249 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
250 	.name		= "SYS_CTR_EL0",
251 	.ftr_bits	= ftr_ctr
252 };
253 
254 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
255 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
256 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
257 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
258 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
259 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
260 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
261 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
262 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
263 	ARM64_FTR_END,
264 };
265 
266 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
267 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
268 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
269 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
270 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
271 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
272 	/*
273 	 * We can instantiate multiple PMU instances with different levels
274 	 * of support.
275 	 */
276 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
277 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
278 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
279 	ARM64_FTR_END,
280 };
281 
282 static const struct arm64_ftr_bits ftr_mvfr2[] = {
283 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
284 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
285 	ARM64_FTR_END,
286 };
287 
288 static const struct arm64_ftr_bits ftr_dczid[] = {
289 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
290 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
291 	ARM64_FTR_END,
292 };
293 
294 
295 static const struct arm64_ftr_bits ftr_id_isar5[] = {
296 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
297 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
298 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
299 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
300 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
301 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
302 	ARM64_FTR_END,
303 };
304 
305 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
306 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
307 	ARM64_FTR_END,
308 };
309 
310 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
311 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
312 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
313 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
314 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
315 	ARM64_FTR_END,
316 };
317 
318 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
319 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
320 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
321 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
322 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
323 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
324 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
325 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
326 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
327 	ARM64_FTR_END,
328 };
329 
330 static const struct arm64_ftr_bits ftr_zcr[] = {
331 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
332 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
333 	ARM64_FTR_END,
334 };
335 
336 /*
337  * Common ftr bits for a 32bit register with all hidden, strict
338  * attributes, with 4bit feature fields and a default safe value of
339  * 0. Covers the following 32bit registers:
340  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
341  */
342 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
343 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
344 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
345 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
346 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
347 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
348 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
349 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
350 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
351 	ARM64_FTR_END,
352 };
353 
354 /* Table for a single 32bit feature value */
355 static const struct arm64_ftr_bits ftr_single32[] = {
356 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
357 	ARM64_FTR_END,
358 };
359 
360 static const struct arm64_ftr_bits ftr_raz[] = {
361 	ARM64_FTR_END,
362 };
363 
364 #define ARM64_FTR_REG(id, table) {		\
365 	.sys_id = id,				\
366 	.reg = 	&(struct arm64_ftr_reg){	\
367 		.name = #id,			\
368 		.ftr_bits = &((table)[0]),	\
369 	}}
370 
371 static const struct __ftr_reg_entry {
372 	u32			sys_id;
373 	struct arm64_ftr_reg 	*reg;
374 } arm64_ftr_regs[] = {
375 
376 	/* Op1 = 0, CRn = 0, CRm = 1 */
377 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
378 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
379 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
380 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
381 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
382 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
383 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
384 
385 	/* Op1 = 0, CRn = 0, CRm = 2 */
386 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
387 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
388 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
389 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
390 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
391 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
392 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
393 
394 	/* Op1 = 0, CRn = 0, CRm = 3 */
395 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
396 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
397 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
398 
399 	/* Op1 = 0, CRn = 0, CRm = 4 */
400 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
401 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
402 	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
403 
404 	/* Op1 = 0, CRn = 0, CRm = 5 */
405 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
406 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
407 
408 	/* Op1 = 0, CRn = 0, CRm = 6 */
409 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
410 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
411 
412 	/* Op1 = 0, CRn = 0, CRm = 7 */
413 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
414 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
415 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
416 
417 	/* Op1 = 0, CRn = 1, CRm = 2 */
418 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
419 
420 	/* Op1 = 3, CRn = 0, CRm = 0 */
421 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
422 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
423 
424 	/* Op1 = 3, CRn = 14, CRm = 0 */
425 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
426 };
427 
428 static int search_cmp_ftr_reg(const void *id, const void *regp)
429 {
430 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
431 }
432 
433 /*
434  * get_arm64_ftr_reg - Lookup a feature register entry using its
435  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
436  * ascending order of sys_id , we use binary search to find a matching
437  * entry.
438  *
439  * returns - Upon success,  matching ftr_reg entry for id.
440  *         - NULL on failure. It is upto the caller to decide
441  *	     the impact of a failure.
442  */
443 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
444 {
445 	const struct __ftr_reg_entry *ret;
446 
447 	ret = bsearch((const void *)(unsigned long)sys_id,
448 			arm64_ftr_regs,
449 			ARRAY_SIZE(arm64_ftr_regs),
450 			sizeof(arm64_ftr_regs[0]),
451 			search_cmp_ftr_reg);
452 	if (ret)
453 		return ret->reg;
454 	return NULL;
455 }
456 
457 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
458 			       s64 ftr_val)
459 {
460 	u64 mask = arm64_ftr_mask(ftrp);
461 
462 	reg &= ~mask;
463 	reg |= (ftr_val << ftrp->shift) & mask;
464 	return reg;
465 }
466 
467 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
468 				s64 cur)
469 {
470 	s64 ret = 0;
471 
472 	switch (ftrp->type) {
473 	case FTR_EXACT:
474 		ret = ftrp->safe_val;
475 		break;
476 	case FTR_LOWER_SAFE:
477 		ret = new < cur ? new : cur;
478 		break;
479 	case FTR_HIGHER_OR_ZERO_SAFE:
480 		if (!cur || !new)
481 			break;
482 		/* Fallthrough */
483 	case FTR_HIGHER_SAFE:
484 		ret = new > cur ? new : cur;
485 		break;
486 	default:
487 		BUG();
488 	}
489 
490 	return ret;
491 }
492 
493 static void __init sort_ftr_regs(void)
494 {
495 	int i;
496 
497 	/* Check that the array is sorted so that we can do the binary search */
498 	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
499 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
500 }
501 
502 /*
503  * Initialise the CPU feature register from Boot CPU values.
504  * Also initiliases the strict_mask for the register.
505  * Any bits that are not covered by an arm64_ftr_bits entry are considered
506  * RES0 for the system-wide value, and must strictly match.
507  */
508 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
509 {
510 	u64 val = 0;
511 	u64 strict_mask = ~0x0ULL;
512 	u64 user_mask = 0;
513 	u64 valid_mask = 0;
514 
515 	const struct arm64_ftr_bits *ftrp;
516 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
517 
518 	BUG_ON(!reg);
519 
520 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
521 		u64 ftr_mask = arm64_ftr_mask(ftrp);
522 		s64 ftr_new = arm64_ftr_value(ftrp, new);
523 
524 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
525 
526 		valid_mask |= ftr_mask;
527 		if (!ftrp->strict)
528 			strict_mask &= ~ftr_mask;
529 		if (ftrp->visible)
530 			user_mask |= ftr_mask;
531 		else
532 			reg->user_val = arm64_ftr_set_value(ftrp,
533 							    reg->user_val,
534 							    ftrp->safe_val);
535 	}
536 
537 	val &= valid_mask;
538 
539 	reg->sys_val = val;
540 	reg->strict_mask = strict_mask;
541 	reg->user_mask = user_mask;
542 }
543 
544 extern const struct arm64_cpu_capabilities arm64_errata[];
545 static const struct arm64_cpu_capabilities arm64_features[];
546 
547 static void __init
548 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
549 {
550 	for (; caps->matches; caps++) {
551 		if (WARN(caps->capability >= ARM64_NCAPS,
552 			"Invalid capability %d\n", caps->capability))
553 			continue;
554 		if (WARN(cpu_hwcaps_ptrs[caps->capability],
555 			"Duplicate entry for capability %d\n",
556 			caps->capability))
557 			continue;
558 		cpu_hwcaps_ptrs[caps->capability] = caps;
559 	}
560 }
561 
562 static void __init init_cpu_hwcaps_indirect_list(void)
563 {
564 	init_cpu_hwcaps_indirect_list_from_array(arm64_features);
565 	init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
566 }
567 
568 static void __init setup_boot_cpu_capabilities(void);
569 
570 void __init init_cpu_features(struct cpuinfo_arm64 *info)
571 {
572 	/* Before we start using the tables, make sure it is sorted */
573 	sort_ftr_regs();
574 
575 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
576 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
577 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
578 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
579 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
580 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
581 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
582 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
583 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
584 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
585 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
586 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
587 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
588 
589 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
590 		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
591 		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
592 		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
593 		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
594 		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
595 		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
596 		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
597 		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
598 		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
599 		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
600 		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
601 		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
602 		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
603 		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
604 		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
605 		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
606 	}
607 
608 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
609 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
610 		sve_init_vq_map();
611 	}
612 
613 	/*
614 	 * Initialize the indirect array of CPU hwcaps capabilities pointers
615 	 * before we handle the boot CPU below.
616 	 */
617 	init_cpu_hwcaps_indirect_list();
618 
619 	/*
620 	 * Detect and enable early CPU capabilities based on the boot CPU,
621 	 * after we have initialised the CPU feature infrastructure.
622 	 */
623 	setup_boot_cpu_capabilities();
624 }
625 
626 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
627 {
628 	const struct arm64_ftr_bits *ftrp;
629 
630 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
631 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
632 		s64 ftr_new = arm64_ftr_value(ftrp, new);
633 
634 		if (ftr_cur == ftr_new)
635 			continue;
636 		/* Find a safe value */
637 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
638 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
639 	}
640 
641 }
642 
643 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
644 {
645 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
646 
647 	BUG_ON(!regp);
648 	update_cpu_ftr_reg(regp, val);
649 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
650 		return 0;
651 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
652 			regp->name, boot, cpu, val);
653 	return 1;
654 }
655 
656 /*
657  * Update system wide CPU feature registers with the values from a
658  * non-boot CPU. Also performs SANITY checks to make sure that there
659  * aren't any insane variations from that of the boot CPU.
660  */
661 void update_cpu_features(int cpu,
662 			 struct cpuinfo_arm64 *info,
663 			 struct cpuinfo_arm64 *boot)
664 {
665 	int taint = 0;
666 
667 	/*
668 	 * The kernel can handle differing I-cache policies, but otherwise
669 	 * caches should look identical. Userspace JITs will make use of
670 	 * *minLine.
671 	 */
672 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
673 				      info->reg_ctr, boot->reg_ctr);
674 
675 	/*
676 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
677 	 * could result in too much or too little memory being zeroed if a
678 	 * process is preempted and migrated between CPUs.
679 	 */
680 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
681 				      info->reg_dczid, boot->reg_dczid);
682 
683 	/* If different, timekeeping will be broken (especially with KVM) */
684 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
685 				      info->reg_cntfrq, boot->reg_cntfrq);
686 
687 	/*
688 	 * The kernel uses self-hosted debug features and expects CPUs to
689 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
690 	 * and BRPs to be identical.
691 	 * ID_AA64DFR1 is currently RES0.
692 	 */
693 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
694 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
695 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
696 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
697 	/*
698 	 * Even in big.LITTLE, processors should be identical instruction-set
699 	 * wise.
700 	 */
701 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
702 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
703 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
704 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
705 
706 	/*
707 	 * Differing PARange support is fine as long as all peripherals and
708 	 * memory are mapped within the minimum PARange of all CPUs.
709 	 * Linux should not care about secure memory.
710 	 */
711 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
712 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
713 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
714 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
715 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
716 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
717 
718 	/*
719 	 * EL3 is not our concern.
720 	 */
721 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
722 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
723 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
724 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
725 
726 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
727 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
728 
729 	/*
730 	 * If we have AArch32, we care about 32-bit features for compat.
731 	 * If the system doesn't support AArch32, don't update them.
732 	 */
733 	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
734 		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
735 
736 		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
737 					info->reg_id_dfr0, boot->reg_id_dfr0);
738 		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
739 					info->reg_id_isar0, boot->reg_id_isar0);
740 		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
741 					info->reg_id_isar1, boot->reg_id_isar1);
742 		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
743 					info->reg_id_isar2, boot->reg_id_isar2);
744 		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
745 					info->reg_id_isar3, boot->reg_id_isar3);
746 		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
747 					info->reg_id_isar4, boot->reg_id_isar4);
748 		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
749 					info->reg_id_isar5, boot->reg_id_isar5);
750 
751 		/*
752 		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
753 		 * ACTLR formats could differ across CPUs and therefore would have to
754 		 * be trapped for virtualization anyway.
755 		 */
756 		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
757 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
758 		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
759 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
760 		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
761 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
762 		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
763 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
764 		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
765 					info->reg_id_pfr0, boot->reg_id_pfr0);
766 		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
767 					info->reg_id_pfr1, boot->reg_id_pfr1);
768 		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
769 					info->reg_mvfr0, boot->reg_mvfr0);
770 		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
771 					info->reg_mvfr1, boot->reg_mvfr1);
772 		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
773 					info->reg_mvfr2, boot->reg_mvfr2);
774 	}
775 
776 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
777 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
778 					info->reg_zcr, boot->reg_zcr);
779 
780 		/* Probe vector lengths, unless we already gave up on SVE */
781 		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
782 		    !sys_caps_initialised)
783 			sve_update_vq_map();
784 	}
785 
786 	/*
787 	 * Mismatched CPU features are a recipe for disaster. Don't even
788 	 * pretend to support them.
789 	 */
790 	if (taint) {
791 		pr_warn_once("Unsupported CPU feature variation detected.\n");
792 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
793 	}
794 }
795 
796 u64 read_sanitised_ftr_reg(u32 id)
797 {
798 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
799 
800 	/* We shouldn't get a request for an unsupported register */
801 	BUG_ON(!regp);
802 	return regp->sys_val;
803 }
804 
805 #define read_sysreg_case(r)	\
806 	case r:		return read_sysreg_s(r)
807 
808 /*
809  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
810  * Read the system register on the current CPU
811  */
812 static u64 __read_sysreg_by_encoding(u32 sys_id)
813 {
814 	switch (sys_id) {
815 	read_sysreg_case(SYS_ID_PFR0_EL1);
816 	read_sysreg_case(SYS_ID_PFR1_EL1);
817 	read_sysreg_case(SYS_ID_DFR0_EL1);
818 	read_sysreg_case(SYS_ID_MMFR0_EL1);
819 	read_sysreg_case(SYS_ID_MMFR1_EL1);
820 	read_sysreg_case(SYS_ID_MMFR2_EL1);
821 	read_sysreg_case(SYS_ID_MMFR3_EL1);
822 	read_sysreg_case(SYS_ID_ISAR0_EL1);
823 	read_sysreg_case(SYS_ID_ISAR1_EL1);
824 	read_sysreg_case(SYS_ID_ISAR2_EL1);
825 	read_sysreg_case(SYS_ID_ISAR3_EL1);
826 	read_sysreg_case(SYS_ID_ISAR4_EL1);
827 	read_sysreg_case(SYS_ID_ISAR5_EL1);
828 	read_sysreg_case(SYS_MVFR0_EL1);
829 	read_sysreg_case(SYS_MVFR1_EL1);
830 	read_sysreg_case(SYS_MVFR2_EL1);
831 
832 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
833 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
834 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
835 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
836 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
837 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
838 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
839 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
840 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
841 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
842 
843 	read_sysreg_case(SYS_CNTFRQ_EL0);
844 	read_sysreg_case(SYS_CTR_EL0);
845 	read_sysreg_case(SYS_DCZID_EL0);
846 
847 	default:
848 		BUG();
849 		return 0;
850 	}
851 }
852 
853 #include <linux/irqchip/arm-gic-v3.h>
854 
855 static bool
856 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
857 {
858 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
859 
860 	return val >= entry->min_field_value;
861 }
862 
863 static bool
864 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
865 {
866 	u64 val;
867 
868 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
869 	if (scope == SCOPE_SYSTEM)
870 		val = read_sanitised_ftr_reg(entry->sys_reg);
871 	else
872 		val = __read_sysreg_by_encoding(entry->sys_reg);
873 
874 	return feature_matches(val, entry);
875 }
876 
877 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
878 {
879 	bool has_sre;
880 
881 	if (!has_cpuid_feature(entry, scope))
882 		return false;
883 
884 	has_sre = gic_enable_sre();
885 	if (!has_sre)
886 		pr_warn_once("%s present but disabled by higher exception level\n",
887 			     entry->desc);
888 
889 	return has_sre;
890 }
891 
892 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
893 {
894 	u32 midr = read_cpuid_id();
895 
896 	/* Cavium ThunderX pass 1.x and 2.x */
897 	return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
898 		MIDR_CPU_VAR_REV(0, 0),
899 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
900 }
901 
902 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
903 {
904 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
905 
906 	return cpuid_feature_extract_signed_field(pfr0,
907 					ID_AA64PFR0_FP_SHIFT) < 0;
908 }
909 
910 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
911 			  int scope)
912 {
913 	u64 ctr;
914 
915 	if (scope == SCOPE_SYSTEM)
916 		ctr = arm64_ftr_reg_ctrel0.sys_val;
917 	else
918 		ctr = read_cpuid_effective_cachetype();
919 
920 	return ctr & BIT(CTR_IDC_SHIFT);
921 }
922 
923 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
924 {
925 	/*
926 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
927 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
928 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
929 	 * value.
930 	 */
931 	if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
932 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
933 }
934 
935 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
936 			  int scope)
937 {
938 	u64 ctr;
939 
940 	if (scope == SCOPE_SYSTEM)
941 		ctr = arm64_ftr_reg_ctrel0.sys_val;
942 	else
943 		ctr = read_cpuid_cachetype();
944 
945 	return ctr & BIT(CTR_DIC_SHIFT);
946 }
947 
948 static bool __maybe_unused
949 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
950 {
951 	/*
952 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
953 	 * may share TLB entries with a CPU stuck in the crashed
954 	 * kernel.
955 	 */
956 	 if (is_kdump_kernel())
957 		return false;
958 
959 	return has_cpuid_feature(entry, scope);
960 }
961 
962 static bool __meltdown_safe = true;
963 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
964 
965 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
966 				int scope)
967 {
968 	/* List of CPUs that are not vulnerable and don't need KPTI */
969 	static const struct midr_range kpti_safe_list[] = {
970 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
971 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
972 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
973 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
974 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
975 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
976 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
977 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
978 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
979 		{ /* sentinel */ }
980 	};
981 	char const *str = "kpti command line option";
982 	bool meltdown_safe;
983 
984 	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
985 
986 	/* Defer to CPU feature registers */
987 	if (has_cpuid_feature(entry, scope))
988 		meltdown_safe = true;
989 
990 	if (!meltdown_safe)
991 		__meltdown_safe = false;
992 
993 	/*
994 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
995 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
996 	 * ends as well as you might imagine. Don't even try.
997 	 */
998 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
999 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1000 		__kpti_forced = -1;
1001 	}
1002 
1003 	/* Useful for KASLR robustness */
1004 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0) {
1005 		if (!__kpti_forced) {
1006 			str = "KASLR";
1007 			__kpti_forced = 1;
1008 		}
1009 	}
1010 
1011 	if (cpu_mitigations_off() && !__kpti_forced) {
1012 		str = "mitigations=off";
1013 		__kpti_forced = -1;
1014 	}
1015 
1016 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1017 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1018 		return false;
1019 	}
1020 
1021 	/* Forced? */
1022 	if (__kpti_forced) {
1023 		pr_info_once("kernel page table isolation forced %s by %s\n",
1024 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1025 		return __kpti_forced > 0;
1026 	}
1027 
1028 	return !meltdown_safe;
1029 }
1030 
1031 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1032 static void
1033 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1034 {
1035 	typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1036 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1037 	kpti_remap_fn *remap_fn;
1038 
1039 	static bool kpti_applied = false;
1040 	int cpu = smp_processor_id();
1041 
1042 	/*
1043 	 * We don't need to rewrite the page-tables if either we've done
1044 	 * it already or we have KASLR enabled and therefore have not
1045 	 * created any global mappings at all.
1046 	 */
1047 	if (kpti_applied || kaslr_offset() > 0)
1048 		return;
1049 
1050 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1051 
1052 	cpu_install_idmap();
1053 	remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1054 	cpu_uninstall_idmap();
1055 
1056 	if (!cpu)
1057 		kpti_applied = true;
1058 
1059 	return;
1060 }
1061 #else
1062 static void
1063 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1064 {
1065 }
1066 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1067 
1068 static int __init parse_kpti(char *str)
1069 {
1070 	bool enabled;
1071 	int ret = strtobool(str, &enabled);
1072 
1073 	if (ret)
1074 		return ret;
1075 
1076 	__kpti_forced = enabled ? 1 : -1;
1077 	return 0;
1078 }
1079 early_param("kpti", parse_kpti);
1080 
1081 #ifdef CONFIG_ARM64_HW_AFDBM
1082 static inline void __cpu_enable_hw_dbm(void)
1083 {
1084 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1085 
1086 	write_sysreg(tcr, tcr_el1);
1087 	isb();
1088 }
1089 
1090 static bool cpu_has_broken_dbm(void)
1091 {
1092 	/* List of CPUs which have broken DBM support. */
1093 	static const struct midr_range cpus[] = {
1094 #ifdef CONFIG_ARM64_ERRATUM_1024718
1095 		MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
1096 #endif
1097 		{},
1098 	};
1099 
1100 	return is_midr_in_range_list(read_cpuid_id(), cpus);
1101 }
1102 
1103 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1104 {
1105 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1106 	       !cpu_has_broken_dbm();
1107 }
1108 
1109 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1110 {
1111 	if (cpu_can_use_dbm(cap))
1112 		__cpu_enable_hw_dbm();
1113 }
1114 
1115 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1116 		       int __unused)
1117 {
1118 	static bool detected = false;
1119 	/*
1120 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
1121 	 * run a mix of CPUs with and without the feature. So, we
1122 	 * unconditionally enable the capability to allow any late CPU
1123 	 * to use the feature. We only enable the control bits on the
1124 	 * CPU, if it actually supports.
1125 	 *
1126 	 * We have to make sure we print the "feature" detection only
1127 	 * when at least one CPU actually uses it. So check if this CPU
1128 	 * can actually use it and print the message exactly once.
1129 	 *
1130 	 * This is safe as all CPUs (including secondary CPUs - due to the
1131 	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1132 	 * goes through the "matches" check exactly once. Also if a CPU
1133 	 * matches the criteria, it is guaranteed that the CPU will turn
1134 	 * the DBM on, as the capability is unconditionally enabled.
1135 	 */
1136 	if (!detected && cpu_can_use_dbm(cap)) {
1137 		detected = true;
1138 		pr_info("detected: Hardware dirty bit management\n");
1139 	}
1140 
1141 	return true;
1142 }
1143 
1144 #endif
1145 
1146 #ifdef CONFIG_ARM64_VHE
1147 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1148 {
1149 	return is_kernel_in_hyp_mode();
1150 }
1151 
1152 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1153 {
1154 	/*
1155 	 * Copy register values that aren't redirected by hardware.
1156 	 *
1157 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1158 	 * this value to tpidr_el2 before we patch the code. Once we've done
1159 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1160 	 * do anything here.
1161 	 */
1162 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1163 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1164 }
1165 #endif
1166 
1167 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1168 {
1169 	u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1170 
1171 	/* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1172 	WARN_ON(val & (7 << 27 | 7 << 21));
1173 }
1174 
1175 #ifdef CONFIG_ARM64_SSBD
1176 static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
1177 {
1178 	if (user_mode(regs))
1179 		return 1;
1180 
1181 	if (instr & BIT(PSTATE_Imm_shift))
1182 		regs->pstate |= PSR_SSBS_BIT;
1183 	else
1184 		regs->pstate &= ~PSR_SSBS_BIT;
1185 
1186 	arm64_skip_faulting_instruction(regs, 4);
1187 	return 0;
1188 }
1189 
1190 static struct undef_hook ssbs_emulation_hook = {
1191 	.instr_mask	= ~(1U << PSTATE_Imm_shift),
1192 	.instr_val	= 0xd500401f | PSTATE_SSBS,
1193 	.fn		= ssbs_emulation_handler,
1194 };
1195 
1196 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
1197 {
1198 	static bool undef_hook_registered = false;
1199 	static DEFINE_RAW_SPINLOCK(hook_lock);
1200 
1201 	raw_spin_lock(&hook_lock);
1202 	if (!undef_hook_registered) {
1203 		register_undef_hook(&ssbs_emulation_hook);
1204 		undef_hook_registered = true;
1205 	}
1206 	raw_spin_unlock(&hook_lock);
1207 
1208 	if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1209 		sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
1210 		arm64_set_ssbd_mitigation(false);
1211 	} else {
1212 		arm64_set_ssbd_mitigation(true);
1213 	}
1214 }
1215 #endif /* CONFIG_ARM64_SSBD */
1216 
1217 #ifdef CONFIG_ARM64_PAN
1218 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1219 {
1220 	/*
1221 	 * We modify PSTATE. This won't work from irq context as the PSTATE
1222 	 * is discarded once we return from the exception.
1223 	 */
1224 	WARN_ON_ONCE(in_interrupt());
1225 
1226 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1227 	asm(SET_PSTATE_PAN(1));
1228 }
1229 #endif /* CONFIG_ARM64_PAN */
1230 
1231 #ifdef CONFIG_ARM64_RAS_EXTN
1232 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1233 {
1234 	/* Firmware may have left a deferred SError in this register. */
1235 	write_sysreg_s(0, SYS_DISR_EL1);
1236 }
1237 #endif /* CONFIG_ARM64_RAS_EXTN */
1238 
1239 #ifdef CONFIG_ARM64_PTR_AUTH
1240 static void cpu_enable_address_auth(struct arm64_cpu_capabilities const *cap)
1241 {
1242 	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ENIA | SCTLR_ELx_ENIB |
1243 				       SCTLR_ELx_ENDA | SCTLR_ELx_ENDB);
1244 }
1245 #endif /* CONFIG_ARM64_PTR_AUTH */
1246 
1247 #ifdef CONFIG_ARM64_PSEUDO_NMI
1248 static bool enable_pseudo_nmi;
1249 
1250 static int __init early_enable_pseudo_nmi(char *p)
1251 {
1252 	return strtobool(p, &enable_pseudo_nmi);
1253 }
1254 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1255 
1256 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1257 				   int scope)
1258 {
1259 	return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1260 }
1261 #endif
1262 
1263 static const struct arm64_cpu_capabilities arm64_features[] = {
1264 	{
1265 		.desc = "GIC system register CPU interface",
1266 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1267 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1268 		.matches = has_useable_gicv3_cpuif,
1269 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1270 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
1271 		.sign = FTR_UNSIGNED,
1272 		.min_field_value = 1,
1273 	},
1274 #ifdef CONFIG_ARM64_PAN
1275 	{
1276 		.desc = "Privileged Access Never",
1277 		.capability = ARM64_HAS_PAN,
1278 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1279 		.matches = has_cpuid_feature,
1280 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1281 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
1282 		.sign = FTR_UNSIGNED,
1283 		.min_field_value = 1,
1284 		.cpu_enable = cpu_enable_pan,
1285 	},
1286 #endif /* CONFIG_ARM64_PAN */
1287 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1288 	{
1289 		.desc = "LSE atomic instructions",
1290 		.capability = ARM64_HAS_LSE_ATOMICS,
1291 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1292 		.matches = has_cpuid_feature,
1293 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
1294 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1295 		.sign = FTR_UNSIGNED,
1296 		.min_field_value = 2,
1297 	},
1298 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1299 	{
1300 		.desc = "Software prefetching using PRFM",
1301 		.capability = ARM64_HAS_NO_HW_PREFETCH,
1302 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1303 		.matches = has_no_hw_prefetch,
1304 	},
1305 #ifdef CONFIG_ARM64_UAO
1306 	{
1307 		.desc = "User Access Override",
1308 		.capability = ARM64_HAS_UAO,
1309 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1310 		.matches = has_cpuid_feature,
1311 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1312 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
1313 		.min_field_value = 1,
1314 		/*
1315 		 * We rely on stop_machine() calling uao_thread_switch() to set
1316 		 * UAO immediately after patching.
1317 		 */
1318 	},
1319 #endif /* CONFIG_ARM64_UAO */
1320 #ifdef CONFIG_ARM64_PAN
1321 	{
1322 		.capability = ARM64_ALT_PAN_NOT_UAO,
1323 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1324 		.matches = cpufeature_pan_not_uao,
1325 	},
1326 #endif /* CONFIG_ARM64_PAN */
1327 #ifdef CONFIG_ARM64_VHE
1328 	{
1329 		.desc = "Virtualization Host Extensions",
1330 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
1331 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1332 		.matches = runs_at_el2,
1333 		.cpu_enable = cpu_copy_el2regs,
1334 	},
1335 #endif	/* CONFIG_ARM64_VHE */
1336 	{
1337 		.desc = "32-bit EL0 Support",
1338 		.capability = ARM64_HAS_32BIT_EL0,
1339 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1340 		.matches = has_cpuid_feature,
1341 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1342 		.sign = FTR_UNSIGNED,
1343 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
1344 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1345 	},
1346 	{
1347 		.desc = "Kernel page table isolation (KPTI)",
1348 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
1349 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1350 		/*
1351 		 * The ID feature fields below are used to indicate that
1352 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1353 		 * more details.
1354 		 */
1355 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1356 		.field_pos = ID_AA64PFR0_CSV3_SHIFT,
1357 		.min_field_value = 1,
1358 		.matches = unmap_kernel_at_el0,
1359 		.cpu_enable = kpti_install_ng_mappings,
1360 	},
1361 	{
1362 		/* FP/SIMD is not implemented */
1363 		.capability = ARM64_HAS_NO_FPSIMD,
1364 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1365 		.min_field_value = 0,
1366 		.matches = has_no_fpsimd,
1367 	},
1368 #ifdef CONFIG_ARM64_PMEM
1369 	{
1370 		.desc = "Data cache clean to Point of Persistence",
1371 		.capability = ARM64_HAS_DCPOP,
1372 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1373 		.matches = has_cpuid_feature,
1374 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1375 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
1376 		.min_field_value = 1,
1377 	},
1378 	{
1379 		.desc = "Data cache clean to Point of Deep Persistence",
1380 		.capability = ARM64_HAS_DCPODP,
1381 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1382 		.matches = has_cpuid_feature,
1383 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1384 		.sign = FTR_UNSIGNED,
1385 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
1386 		.min_field_value = 2,
1387 	},
1388 #endif
1389 #ifdef CONFIG_ARM64_SVE
1390 	{
1391 		.desc = "Scalable Vector Extension",
1392 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1393 		.capability = ARM64_SVE,
1394 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1395 		.sign = FTR_UNSIGNED,
1396 		.field_pos = ID_AA64PFR0_SVE_SHIFT,
1397 		.min_field_value = ID_AA64PFR0_SVE,
1398 		.matches = has_cpuid_feature,
1399 		.cpu_enable = sve_kernel_enable,
1400 	},
1401 #endif /* CONFIG_ARM64_SVE */
1402 #ifdef CONFIG_ARM64_RAS_EXTN
1403 	{
1404 		.desc = "RAS Extension Support",
1405 		.capability = ARM64_HAS_RAS_EXTN,
1406 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1407 		.matches = has_cpuid_feature,
1408 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1409 		.sign = FTR_UNSIGNED,
1410 		.field_pos = ID_AA64PFR0_RAS_SHIFT,
1411 		.min_field_value = ID_AA64PFR0_RAS_V1,
1412 		.cpu_enable = cpu_clear_disr,
1413 	},
1414 #endif /* CONFIG_ARM64_RAS_EXTN */
1415 	{
1416 		.desc = "Data cache clean to the PoU not required for I/D coherence",
1417 		.capability = ARM64_HAS_CACHE_IDC,
1418 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1419 		.matches = has_cache_idc,
1420 		.cpu_enable = cpu_emulate_effective_ctr,
1421 	},
1422 	{
1423 		.desc = "Instruction cache invalidation not required for I/D coherence",
1424 		.capability = ARM64_HAS_CACHE_DIC,
1425 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1426 		.matches = has_cache_dic,
1427 	},
1428 	{
1429 		.desc = "Stage-2 Force Write-Back",
1430 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1431 		.capability = ARM64_HAS_STAGE2_FWB,
1432 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1433 		.sign = FTR_UNSIGNED,
1434 		.field_pos = ID_AA64MMFR2_FWB_SHIFT,
1435 		.min_field_value = 1,
1436 		.matches = has_cpuid_feature,
1437 		.cpu_enable = cpu_has_fwb,
1438 	},
1439 #ifdef CONFIG_ARM64_HW_AFDBM
1440 	{
1441 		/*
1442 		 * Since we turn this on always, we don't want the user to
1443 		 * think that the feature is available when it may not be.
1444 		 * So hide the description.
1445 		 *
1446 		 * .desc = "Hardware pagetable Dirty Bit Management",
1447 		 *
1448 		 */
1449 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1450 		.capability = ARM64_HW_DBM,
1451 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1452 		.sign = FTR_UNSIGNED,
1453 		.field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1454 		.min_field_value = 2,
1455 		.matches = has_hw_dbm,
1456 		.cpu_enable = cpu_enable_hw_dbm,
1457 	},
1458 #endif
1459 	{
1460 		.desc = "CRC32 instructions",
1461 		.capability = ARM64_HAS_CRC32,
1462 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1463 		.matches = has_cpuid_feature,
1464 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
1465 		.field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1466 		.min_field_value = 1,
1467 	},
1468 #ifdef CONFIG_ARM64_SSBD
1469 	{
1470 		.desc = "Speculative Store Bypassing Safe (SSBS)",
1471 		.capability = ARM64_SSBS,
1472 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1473 		.matches = has_cpuid_feature,
1474 		.sys_reg = SYS_ID_AA64PFR1_EL1,
1475 		.field_pos = ID_AA64PFR1_SSBS_SHIFT,
1476 		.sign = FTR_UNSIGNED,
1477 		.min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1478 		.cpu_enable = cpu_enable_ssbs,
1479 	},
1480 #endif
1481 #ifdef CONFIG_ARM64_CNP
1482 	{
1483 		.desc = "Common not Private translations",
1484 		.capability = ARM64_HAS_CNP,
1485 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1486 		.matches = has_useable_cnp,
1487 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1488 		.sign = FTR_UNSIGNED,
1489 		.field_pos = ID_AA64MMFR2_CNP_SHIFT,
1490 		.min_field_value = 1,
1491 		.cpu_enable = cpu_enable_cnp,
1492 	},
1493 #endif
1494 	{
1495 		.desc = "Speculation barrier (SB)",
1496 		.capability = ARM64_HAS_SB,
1497 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1498 		.matches = has_cpuid_feature,
1499 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1500 		.field_pos = ID_AA64ISAR1_SB_SHIFT,
1501 		.sign = FTR_UNSIGNED,
1502 		.min_field_value = 1,
1503 	},
1504 #ifdef CONFIG_ARM64_PTR_AUTH
1505 	{
1506 		.desc = "Address authentication (architected algorithm)",
1507 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
1508 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1509 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1510 		.sign = FTR_UNSIGNED,
1511 		.field_pos = ID_AA64ISAR1_APA_SHIFT,
1512 		.min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
1513 		.matches = has_cpuid_feature,
1514 		.cpu_enable = cpu_enable_address_auth,
1515 	},
1516 	{
1517 		.desc = "Address authentication (IMP DEF algorithm)",
1518 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
1519 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1520 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1521 		.sign = FTR_UNSIGNED,
1522 		.field_pos = ID_AA64ISAR1_API_SHIFT,
1523 		.min_field_value = ID_AA64ISAR1_API_IMP_DEF,
1524 		.matches = has_cpuid_feature,
1525 		.cpu_enable = cpu_enable_address_auth,
1526 	},
1527 	{
1528 		.desc = "Generic authentication (architected algorithm)",
1529 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH,
1530 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1531 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1532 		.sign = FTR_UNSIGNED,
1533 		.field_pos = ID_AA64ISAR1_GPA_SHIFT,
1534 		.min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
1535 		.matches = has_cpuid_feature,
1536 	},
1537 	{
1538 		.desc = "Generic authentication (IMP DEF algorithm)",
1539 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
1540 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1541 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1542 		.sign = FTR_UNSIGNED,
1543 		.field_pos = ID_AA64ISAR1_GPI_SHIFT,
1544 		.min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
1545 		.matches = has_cpuid_feature,
1546 	},
1547 #endif /* CONFIG_ARM64_PTR_AUTH */
1548 #ifdef CONFIG_ARM64_PSEUDO_NMI
1549 	{
1550 		/*
1551 		 * Depends on having GICv3
1552 		 */
1553 		.desc = "IRQ priority masking",
1554 		.capability = ARM64_HAS_IRQ_PRIO_MASKING,
1555 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1556 		.matches = can_use_gic_priorities,
1557 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1558 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
1559 		.sign = FTR_UNSIGNED,
1560 		.min_field_value = 1,
1561 	},
1562 #endif
1563 	{},
1564 };
1565 
1566 #define HWCAP_CPUID_MATCH(reg, field, s, min_value)				\
1567 		.matches = has_cpuid_feature,					\
1568 		.sys_reg = reg,							\
1569 		.field_pos = field,						\
1570 		.sign = s,							\
1571 		.min_field_value = min_value,
1572 
1573 #define __HWCAP_CAP(name, cap_type, cap)					\
1574 		.desc = name,							\
1575 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
1576 		.hwcap_type = cap_type,						\
1577 		.hwcap = cap,							\
1578 
1579 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)			\
1580 	{									\
1581 		__HWCAP_CAP(#cap, cap_type, cap)				\
1582 		HWCAP_CPUID_MATCH(reg, field, s, min_value)			\
1583 	}
1584 
1585 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
1586 	{									\
1587 		__HWCAP_CAP(#cap, cap_type, cap)				\
1588 		.matches = cpucap_multi_entry_cap_matches,			\
1589 		.match_list = list,						\
1590 	}
1591 
1592 #ifdef CONFIG_ARM64_PTR_AUTH
1593 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
1594 	{
1595 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
1596 				  FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
1597 	},
1598 	{
1599 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
1600 				  FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
1601 	},
1602 	{},
1603 };
1604 
1605 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
1606 	{
1607 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
1608 				  FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
1609 	},
1610 	{
1611 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
1612 				  FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
1613 	},
1614 	{},
1615 };
1616 #endif
1617 
1618 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1619 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
1620 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
1621 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
1622 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
1623 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
1624 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
1625 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
1626 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
1627 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
1628 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
1629 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
1630 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
1631 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
1632 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
1633 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
1634 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
1635 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
1636 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
1637 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
1638 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
1639 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
1640 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
1641 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
1642 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
1643 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
1644 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
1645 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
1646 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
1647 	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
1648 #ifdef CONFIG_ARM64_SVE
1649 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
1650 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
1651 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
1652 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
1653 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
1654 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
1655 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
1656 #endif
1657 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
1658 #ifdef CONFIG_ARM64_PTR_AUTH
1659 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
1660 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
1661 #endif
1662 	{},
1663 };
1664 
1665 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1666 #ifdef CONFIG_COMPAT
1667 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1668 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1669 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1670 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1671 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1672 #endif
1673 	{},
1674 };
1675 
1676 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1677 {
1678 	switch (cap->hwcap_type) {
1679 	case CAP_HWCAP:
1680 		cpu_set_feature(cap->hwcap);
1681 		break;
1682 #ifdef CONFIG_COMPAT
1683 	case CAP_COMPAT_HWCAP:
1684 		compat_elf_hwcap |= (u32)cap->hwcap;
1685 		break;
1686 	case CAP_COMPAT_HWCAP2:
1687 		compat_elf_hwcap2 |= (u32)cap->hwcap;
1688 		break;
1689 #endif
1690 	default:
1691 		WARN_ON(1);
1692 		break;
1693 	}
1694 }
1695 
1696 /* Check if we have a particular HWCAP enabled */
1697 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1698 {
1699 	bool rc;
1700 
1701 	switch (cap->hwcap_type) {
1702 	case CAP_HWCAP:
1703 		rc = cpu_have_feature(cap->hwcap);
1704 		break;
1705 #ifdef CONFIG_COMPAT
1706 	case CAP_COMPAT_HWCAP:
1707 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1708 		break;
1709 	case CAP_COMPAT_HWCAP2:
1710 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1711 		break;
1712 #endif
1713 	default:
1714 		WARN_ON(1);
1715 		rc = false;
1716 	}
1717 
1718 	return rc;
1719 }
1720 
1721 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1722 {
1723 	/* We support emulation of accesses to CPU ID feature registers */
1724 	cpu_set_named_feature(CPUID);
1725 	for (; hwcaps->matches; hwcaps++)
1726 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1727 			cap_set_elf_hwcap(hwcaps);
1728 }
1729 
1730 static void update_cpu_capabilities(u16 scope_mask)
1731 {
1732 	int i;
1733 	const struct arm64_cpu_capabilities *caps;
1734 
1735 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1736 	for (i = 0; i < ARM64_NCAPS; i++) {
1737 		caps = cpu_hwcaps_ptrs[i];
1738 		if (!caps || !(caps->type & scope_mask) ||
1739 		    cpus_have_cap(caps->capability) ||
1740 		    !caps->matches(caps, cpucap_default_scope(caps)))
1741 			continue;
1742 
1743 		if (caps->desc)
1744 			pr_info("detected: %s\n", caps->desc);
1745 		cpus_set_cap(caps->capability);
1746 
1747 		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
1748 			set_bit(caps->capability, boot_capabilities);
1749 	}
1750 }
1751 
1752 /*
1753  * Enable all the available capabilities on this CPU. The capabilities
1754  * with BOOT_CPU scope are handled separately and hence skipped here.
1755  */
1756 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
1757 {
1758 	int i;
1759 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
1760 
1761 	for_each_available_cap(i) {
1762 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
1763 
1764 		if (WARN_ON(!cap))
1765 			continue;
1766 
1767 		if (!(cap->type & non_boot_scope))
1768 			continue;
1769 
1770 		if (cap->cpu_enable)
1771 			cap->cpu_enable(cap);
1772 	}
1773 	return 0;
1774 }
1775 
1776 /*
1777  * Run through the enabled capabilities and enable() it on all active
1778  * CPUs
1779  */
1780 static void __init enable_cpu_capabilities(u16 scope_mask)
1781 {
1782 	int i;
1783 	const struct arm64_cpu_capabilities *caps;
1784 	bool boot_scope;
1785 
1786 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1787 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
1788 
1789 	for (i = 0; i < ARM64_NCAPS; i++) {
1790 		unsigned int num;
1791 
1792 		caps = cpu_hwcaps_ptrs[i];
1793 		if (!caps || !(caps->type & scope_mask))
1794 			continue;
1795 		num = caps->capability;
1796 		if (!cpus_have_cap(num))
1797 			continue;
1798 
1799 		/* Ensure cpus_have_const_cap(num) works */
1800 		static_branch_enable(&cpu_hwcap_keys[num]);
1801 
1802 		if (boot_scope && caps->cpu_enable)
1803 			/*
1804 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
1805 			 * before any secondary CPU boots. Thus, each secondary
1806 			 * will enable the capability as appropriate via
1807 			 * check_local_cpu_capabilities(). The only exception is
1808 			 * the boot CPU, for which the capability must be
1809 			 * enabled here. This approach avoids costly
1810 			 * stop_machine() calls for this case.
1811 			 */
1812 			caps->cpu_enable(caps);
1813 	}
1814 
1815 	/*
1816 	 * For all non-boot scope capabilities, use stop_machine()
1817 	 * as it schedules the work allowing us to modify PSTATE,
1818 	 * instead of on_each_cpu() which uses an IPI, giving us a
1819 	 * PSTATE that disappears when we return.
1820 	 */
1821 	if (!boot_scope)
1822 		stop_machine(cpu_enable_non_boot_scope_capabilities,
1823 			     NULL, cpu_online_mask);
1824 }
1825 
1826 /*
1827  * Run through the list of capabilities to check for conflicts.
1828  * If the system has already detected a capability, take necessary
1829  * action on this CPU.
1830  *
1831  * Returns "false" on conflicts.
1832  */
1833 static bool verify_local_cpu_caps(u16 scope_mask)
1834 {
1835 	int i;
1836 	bool cpu_has_cap, system_has_cap;
1837 	const struct arm64_cpu_capabilities *caps;
1838 
1839 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1840 
1841 	for (i = 0; i < ARM64_NCAPS; i++) {
1842 		caps = cpu_hwcaps_ptrs[i];
1843 		if (!caps || !(caps->type & scope_mask))
1844 			continue;
1845 
1846 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1847 		system_has_cap = cpus_have_cap(caps->capability);
1848 
1849 		if (system_has_cap) {
1850 			/*
1851 			 * Check if the new CPU misses an advertised feature,
1852 			 * which is not safe to miss.
1853 			 */
1854 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1855 				break;
1856 			/*
1857 			 * We have to issue cpu_enable() irrespective of
1858 			 * whether the CPU has it or not, as it is enabeld
1859 			 * system wide. It is upto the call back to take
1860 			 * appropriate action on this CPU.
1861 			 */
1862 			if (caps->cpu_enable)
1863 				caps->cpu_enable(caps);
1864 		} else {
1865 			/*
1866 			 * Check if the CPU has this capability if it isn't
1867 			 * safe to have when the system doesn't.
1868 			 */
1869 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1870 				break;
1871 		}
1872 	}
1873 
1874 	if (i < ARM64_NCAPS) {
1875 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1876 			smp_processor_id(), caps->capability,
1877 			caps->desc, system_has_cap, cpu_has_cap);
1878 		return false;
1879 	}
1880 
1881 	return true;
1882 }
1883 
1884 /*
1885  * Check for CPU features that are used in early boot
1886  * based on the Boot CPU value.
1887  */
1888 static void check_early_cpu_features(void)
1889 {
1890 	verify_cpu_asid_bits();
1891 	/*
1892 	 * Early features are used by the kernel already. If there
1893 	 * is a conflict, we cannot proceed further.
1894 	 */
1895 	if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1896 		cpu_panic_kernel();
1897 }
1898 
1899 static void
1900 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1901 {
1902 
1903 	for (; caps->matches; caps++)
1904 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1905 			pr_crit("CPU%d: missing HWCAP: %s\n",
1906 					smp_processor_id(), caps->desc);
1907 			cpu_die_early();
1908 		}
1909 }
1910 
1911 static void verify_sve_features(void)
1912 {
1913 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1914 	u64 zcr = read_zcr_features();
1915 
1916 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1917 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1918 
1919 	if (len < safe_len || sve_verify_vq_map()) {
1920 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
1921 			smp_processor_id());
1922 		cpu_die_early();
1923 	}
1924 
1925 	/* Add checks on other ZCR bits here if necessary */
1926 }
1927 
1928 
1929 /*
1930  * Run through the enabled system capabilities and enable() it on this CPU.
1931  * The capabilities were decided based on the available CPUs at the boot time.
1932  * Any new CPU should match the system wide status of the capability. If the
1933  * new CPU doesn't have a capability which the system now has enabled, we
1934  * cannot do anything to fix it up and could cause unexpected failures. So
1935  * we park the CPU.
1936  */
1937 static void verify_local_cpu_capabilities(void)
1938 {
1939 	/*
1940 	 * The capabilities with SCOPE_BOOT_CPU are checked from
1941 	 * check_early_cpu_features(), as they need to be verified
1942 	 * on all secondary CPUs.
1943 	 */
1944 	if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1945 		cpu_die_early();
1946 
1947 	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1948 
1949 	if (system_supports_32bit_el0())
1950 		verify_local_elf_hwcaps(compat_elf_hwcaps);
1951 
1952 	if (system_supports_sve())
1953 		verify_sve_features();
1954 }
1955 
1956 void check_local_cpu_capabilities(void)
1957 {
1958 	/*
1959 	 * All secondary CPUs should conform to the early CPU features
1960 	 * in use by the kernel based on boot CPU.
1961 	 */
1962 	check_early_cpu_features();
1963 
1964 	/*
1965 	 * If we haven't finalised the system capabilities, this CPU gets
1966 	 * a chance to update the errata work arounds and local features.
1967 	 * Otherwise, this CPU should verify that it has all the system
1968 	 * advertised capabilities.
1969 	 */
1970 	if (!sys_caps_initialised)
1971 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
1972 	else
1973 		verify_local_cpu_capabilities();
1974 }
1975 
1976 static void __init setup_boot_cpu_capabilities(void)
1977 {
1978 	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1979 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1980 	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1981 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
1982 }
1983 
1984 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1985 EXPORT_SYMBOL(arm64_const_caps_ready);
1986 
1987 static void __init mark_const_caps_ready(void)
1988 {
1989 	static_branch_enable(&arm64_const_caps_ready);
1990 }
1991 
1992 bool this_cpu_has_cap(unsigned int n)
1993 {
1994 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
1995 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
1996 
1997 		if (cap)
1998 			return cap->matches(cap, SCOPE_LOCAL_CPU);
1999 	}
2000 
2001 	return false;
2002 }
2003 
2004 void cpu_set_feature(unsigned int num)
2005 {
2006 	WARN_ON(num >= MAX_CPU_FEATURES);
2007 	elf_hwcap |= BIT(num);
2008 }
2009 EXPORT_SYMBOL_GPL(cpu_set_feature);
2010 
2011 bool cpu_have_feature(unsigned int num)
2012 {
2013 	WARN_ON(num >= MAX_CPU_FEATURES);
2014 	return elf_hwcap & BIT(num);
2015 }
2016 EXPORT_SYMBOL_GPL(cpu_have_feature);
2017 
2018 unsigned long cpu_get_elf_hwcap(void)
2019 {
2020 	/*
2021 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
2022 	 * note that for userspace compatibility we guarantee that bits 62
2023 	 * and 63 will always be returned as 0.
2024 	 */
2025 	return lower_32_bits(elf_hwcap);
2026 }
2027 
2028 unsigned long cpu_get_elf_hwcap2(void)
2029 {
2030 	return upper_32_bits(elf_hwcap);
2031 }
2032 
2033 static void __init setup_system_capabilities(void)
2034 {
2035 	/*
2036 	 * We have finalised the system-wide safe feature
2037 	 * registers, finalise the capabilities that depend
2038 	 * on it. Also enable all the available capabilities,
2039 	 * that are not enabled already.
2040 	 */
2041 	update_cpu_capabilities(SCOPE_SYSTEM);
2042 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2043 }
2044 
2045 void __init setup_cpu_features(void)
2046 {
2047 	u32 cwg;
2048 
2049 	setup_system_capabilities();
2050 	mark_const_caps_ready();
2051 	setup_elf_hwcaps(arm64_elf_hwcaps);
2052 
2053 	if (system_supports_32bit_el0())
2054 		setup_elf_hwcaps(compat_elf_hwcaps);
2055 
2056 	if (system_uses_ttbr0_pan())
2057 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2058 
2059 	sve_setup();
2060 	minsigstksz_setup();
2061 
2062 	/* Advertise that we have computed the system capabilities */
2063 	set_sys_caps_initialised();
2064 
2065 	/*
2066 	 * Check for sane CTR_EL0.CWG value.
2067 	 */
2068 	cwg = cache_type_cwg();
2069 	if (!cwg)
2070 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
2071 			ARCH_DMA_MINALIGN);
2072 }
2073 
2074 static bool __maybe_unused
2075 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
2076 {
2077 	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
2078 }
2079 
2080 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2081 {
2082 	cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2083 }
2084 
2085 /*
2086  * We emulate only the following system register space.
2087  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2088  * See Table C5-6 System instruction encodings for System register accesses,
2089  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2090  */
2091 static inline bool __attribute_const__ is_emulated(u32 id)
2092 {
2093 	return (sys_reg_Op0(id) == 0x3 &&
2094 		sys_reg_CRn(id) == 0x0 &&
2095 		sys_reg_Op1(id) == 0x0 &&
2096 		(sys_reg_CRm(id) == 0 ||
2097 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2098 }
2099 
2100 /*
2101  * With CRm == 0, reg should be one of :
2102  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2103  */
2104 static inline int emulate_id_reg(u32 id, u64 *valp)
2105 {
2106 	switch (id) {
2107 	case SYS_MIDR_EL1:
2108 		*valp = read_cpuid_id();
2109 		break;
2110 	case SYS_MPIDR_EL1:
2111 		*valp = SYS_MPIDR_SAFE_VAL;
2112 		break;
2113 	case SYS_REVIDR_EL1:
2114 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
2115 		*valp = 0;
2116 		break;
2117 	default:
2118 		return -EINVAL;
2119 	}
2120 
2121 	return 0;
2122 }
2123 
2124 static int emulate_sys_reg(u32 id, u64 *valp)
2125 {
2126 	struct arm64_ftr_reg *regp;
2127 
2128 	if (!is_emulated(id))
2129 		return -EINVAL;
2130 
2131 	if (sys_reg_CRm(id) == 0)
2132 		return emulate_id_reg(id, valp);
2133 
2134 	regp = get_arm64_ftr_reg(id);
2135 	if (regp)
2136 		*valp = arm64_ftr_reg_user_value(regp);
2137 	else
2138 		/*
2139 		 * The untracked registers are either IMPLEMENTATION DEFINED
2140 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
2141 		 */
2142 		*valp = 0;
2143 	return 0;
2144 }
2145 
2146 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2147 {
2148 	int rc;
2149 	u64 val;
2150 
2151 	rc = emulate_sys_reg(sys_reg, &val);
2152 	if (!rc) {
2153 		pt_regs_write_reg(regs, rt, val);
2154 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2155 	}
2156 	return rc;
2157 }
2158 
2159 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2160 {
2161 	u32 sys_reg, rt;
2162 
2163 	/*
2164 	 * sys_reg values are defined as used in mrs/msr instruction.
2165 	 * shift the imm value to get the encoding.
2166 	 */
2167 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2168 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2169 	return do_emulate_mrs(regs, sys_reg, rt);
2170 }
2171 
2172 static struct undef_hook mrs_hook = {
2173 	.instr_mask = 0xfff00000,
2174 	.instr_val  = 0xd5300000,
2175 	.pstate_mask = PSR_AA32_MODE_MASK,
2176 	.pstate_val = PSR_MODE_EL0t,
2177 	.fn = emulate_mrs,
2178 };
2179 
2180 static int __init enable_mrs_emulation(void)
2181 {
2182 	register_undef_hook(&mrs_hook);
2183 	return 0;
2184 }
2185 
2186 core_initcall(enable_mrs_emulation);
2187 
2188 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2189 			  char *buf)
2190 {
2191 	if (__meltdown_safe)
2192 		return sprintf(buf, "Not affected\n");
2193 
2194 	if (arm64_kernel_unmapped_at_el0())
2195 		return sprintf(buf, "Mitigation: PTI\n");
2196 
2197 	return sprintf(buf, "Vulnerable\n");
2198 }
2199